
Results in Immunology 2 (2012) 88–96
Contents lists available at SciVerse ScienceDirect
Results in Immunology
2211-28

http://d

Abbre

nin; PE,

intensit
n Corr

E-m
journal homepage: www.elsevier.com/locate/rinim
Testing for HLA/peptide tetramer-binding to the T cell receptor complex
on human T lymphocytes
Pauline Weder a, Ton N.M. Schumacher a, Hergen Spits b, Rosalie M. Luiten c,n

a Division of Immunology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
b Tytgat Institute for Liver and Instestinal Research, Academic Medical Center, University of Amsterdam, The Netherlands
c Dept. of Dermatology and The Netherlands Institute for Pigment Disorders, Academic Medical Center, University of Amsterdam, The Netherlands
a r t i c l e i n f o

Article history:

Received 30 March 2012

Received in revised form

27 April 2012

Accepted 27 April 2012
Available online 10 May 2012

Keywords:

Antigen-specificity

T lymphocytes

HLA/peptide tetramer

Immune response

Patients
39/$ - see front matter & 2012 Published by

x.doi.org/10.1016/j.rinim.2012.04.001

viations: GAM-Ig, goat anti-mouse immunog

phycoerythrin; mAb, monoclonal antibody;

y

esponding author. Tel.: þ31 20 566 5304; fa

ail address: r.m.luiten@amc.uva.nl (R.M. Luite
a b s t r a c t

HLA/peptide tetramers are frequently used for ex vivo monitoring of disease- or vaccine-induced T cell

immune responses and for T cell epitope identification. However, when low-levels HLA/peptide

tetramer-positive T cell populations are encountered, it is difficult to ascertain whether this represents

a true T cell receptor (TCR)-mediated interaction or background signal. To address this issue, we have

developed a method for both HLA class I and class II tetramer assays to confirm tetramer-binding to the

TCR/CD3 complex. Preincubation of T cells with anti-CD3 mAb SPV-T3b and subsequent crosslinking

interferes with the binding of HLA/peptide tetramers to the TCR/CD3 complex and thereby indicates to

what extent HLA/peptide tetramer binds through interaction with TCR/CD3 complex. SPV-T3b

pretreatment results in a 2- to 10-fold decrease in tetramer-binding intensity to antigen-specific

CD8þ or CD4þ T cells, whereas background reactivity of HLA/peptide tetramers containing HIV-

derived peptide in HIV-negative donors remained unchanged. SPV-T3b pretreatment forms a valuable

tool to verify tetramer-based detection of antigen-specific T cells during the monitoring of immune

responses in clinical studies.

& 2012 Published by Elsevier B.V.
1. Introduction

HLA/peptide tetramers have become widely applied tools to
detect antigen-specific human T cells. These tetramers detect
antigen-specific T cells by binding to specific T cell receptors
(TCR) expressed by the T cells and reagents can be generated to
detect either antigen-specific CD4 or antigen-specific CD8 T cells. In
immunomonitoring studies of patients with cancer or viral infec-
tions, HLA/peptide tetramers have been proven valuable to monitor
the presence of specific immune responses against tumor antigens
or pathogens [8,12,17,19,23,24,28,31]. Furthermore, high-through-
out screening of cytotoxic T cell epitopes in pathogen genomes or
other disease-associated genes by HLA/peptide tetramer staining
has become a realistic option [2,29]. However, HLA/peptide tetra-
mer analyses consistently detect higher numbers of antigen-specific
T cells than other methods of detection, such as ELISPOT, cytokine
flow cytometry and limiting dilution analysis, which are based on
the activation and/or proliferation of T cells in response to stimula-
tion with antigen [28,40]. Discrepancies in the levels of antigen-
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specific T cells measured by HLA/peptide tetramers, as compared to
the other methods might indicate that HLA/peptide tetramer
analyses overestimate the size of the antigen-specific T cell popula-
tion due to nonspecific reactivity of the HLA/peptide tetramer. On
the other hand, the discrepancies may reveal an underestimation of
the number of antigen-specific T cells detected by the other three
methods due to unresponsiveness of T cells to stimulation, despite
the expression of the specific TCR [16]. Therefore, validation of HLA/
peptide tetramer analyses for reliable detection of antigen-specific
T cells is essential for the applicability of HLA/peptide tetramer
analyses in clinical studies [41,20].

We here describe a method to verify whether the detection of
antigen-specific T cells by both HLA class I and class II tetramers,
involves binding to the TCR/CD3 complex. We have investigated
the ability of anti-CD3 and anti-TCR antibodies to interfere with
the specific binding of HLA/peptide tetramers to T cells, and found
that preincubation of T cells with monoclonal antibody (mAb)
SPV-T3b and crosslinking with goat anti-mouse immunoglobulin
(GAM-Ig) specifically decreases the specific binding of HLA/pep-
tide tetramers. This treatment enables to distinguish binding of
HLA/peptide tetramers to T cells by interaction with the TCR/CD3
complex from TCR-unrelated nonspecific binding of HLA/peptide
tetramers. This method can be used to improve the accuracy of
HLA/peptide tetramer-reactivity directly ex vivo, without in vitro
expansion or activation.

www.elsevier.com/locate/rinim
www.elsevier.com/locate/rinim
dx.doi.org/10.1016/j.rinim.2012.04.001
dx.doi.org/10.1016/j.rinim.2012.04.001
dx.doi.org/10.1016/j.rinim.2012.04.001
mailto:r.m.luiten@amc.uva.nl
dx.doi.org/10.1016/j.rinim.2012.04.001


P. Weder et al. / Results in Immunology 2 (2012) 88–96 89
2. Materials and methods

2.1. PBMC and HLA typing

Peripheral blood mononuclear cells (PBMC) were isolated from
buffycoats from healthy donors of the Dutch Blood bank (Sanquin,
Amsterdam, The Netherlands) by standard Ficoll density centrifuga-
tion. HLA-class I typing was performed by incubating PBMC with
biotin-labeled antibodies (IgM) against HLA-A1, -A2 or -A3 (One
Lambda, Canoga Park, CA) or control biotin-labeled IgM (BD Pharmin-
gen, San Jose, CA) for 15 minutes on ice. Bound antibody was detected
by incubation with Streptavidin-FITC (Immunotech, Beckman Coulter,
Fullerton, CA) for 15 minutes, and flow cytometry analysis using a
four-color FACS Calibur (Becton Dickinson, Pont de Claix, France).
Dead cells were excluded by propidium iodide (PI) staining. HLA class
II typing was performed by sequence based typing of HLA-DRA and
HLA-DRB alleles (Sanquin, Amsterdam, The Netherlands).

2.2. Construction of HLA class I and class II/peptide tetramers

Synthetic peptides were produced at the Netherlands Cancer
Institute by standard fluorenylmethoxycarbonyl chemistry and
were 490% pure by analytical HPLC. Soluble allophycocyanin
(APC)- or phycoerythrin (PE)-labeled HLA/peptide tetramers were
generated as described [1]. HLA-A2 tetramers were produced con-
taining the following HLA-A2-binding peptides: influenza A virus
peptide (58–66) GILGFVFTL, modified MART-1 peptide (26–35,
27 A4L) ELAGIGILTV, gp100 peptide (280–288) YELPGPVTA, tyro-
sinase peptide (369–377) YMDGTMSQV, cytomegalovirus (CMV)
peptide (495–503) NLVPMVATV. PE-labeled HLA-A2/HIV tetramer
containing the p17 Gag derived SLYNTVATL peptide of the human
immunodeficiency virus (HIV), kindly provided by dr. D. van Baarle
(University Medical Center Utrecht, The Netherlands), was gener-
ated as described previously [34]. HLA-A1 tetramers were generated
with the influenza A virus peptide (44–52) CTELKLSDY or tyrosinase
peptide (243–251) KCDICTDEY. HLA-A3 tetramers were generated
with influenza A virus NP peptide (265–273) ILRGSVAHK. HLA/
peptide tetramers were tested for specific TCR binding using
antigen-specific T cell clones and control T cell clones, as described
[17]. HLA class II tetramers composed of HLA-DRA1n0101/
DRB1n0401 molecules and influenza A virus hemagglutinin peptide
(HA307-319, HLA-DR4/flu tetramer) were generated by the method
described for murine MHC class II tetramers [25].

2.3. T cell culture

CD8þ cytotoxic T cell (CTL) clone INFA24 recognized the influ-
enza A virus peptide (58–66) GILGFVFTL in HLA-A2 and was derived
from the PBMC of an HLA-A2þ healthy donor by single cell sorting of
T cells reactive with HLA-A2/flu tetramers, as described [36,42]. The
CD8þ CTL clone AKR4D8 recognizes MART-1 (26–35) peptide EAA-
GIGILTV in HLA-A2 and was derived from the PBMC of an HLA-A2þ
melanoma patient by in vitro stimulation with the autologous
melanoma cell line, as described previously [11,36]. The CD8þ CTL
line ZWI29 recognizes the gp100 (280–288) peptide YLEPGPVTA in
HLA-A2 and was isolated from the PBMC of an HLA-A2þ melanoma
patient by sorting of polyclonal T cells that bound HLA-A2/gp100
tetramer by MoFlo High speed sorter (Cytomation, Fort Collins, CO).
After expansion of this population, a second round of sorting of HLA-
A2/gp100 tetramer-positive cells was performed at a density of 10
cells/well into a 96 well plate by MoFlo High speed sorter. Both CTL
clones and CTL line ZWI29 were cultured by weekly stimulation with
a feeder cell mixture consisting of 106/ml irradiated (80 Gy) allo-
geneic PBMC and 105/ml irradiated JY cells, supplemented with
100 ng/ml PHA (HA16, Buroughs Wellcome, Bechenham, UK) or
antigenic peptide and 20 IU/ml recombinant human IL-2 (Chiron,
Amsterdam, The Netherlands) in Yssels medium as described [36,42].
CTL clone AKR4D8 and CTL line ZWI29 were immortalized by
transduction with a retrovirus encoding the human telomerase
reverse transcriptase (hTERT) gene, as described [11,18,36].

CD4þ T cells recognizing the influenza A virus hemagglutinin
peptide (HA307-319) in HLA-DRA1n0101/DRB1n0401 molecules
were cultured from the PBMC of an HLA-DRB1n0401þ healthy
donor who had been immunized against influenza virus. PBMC
were labeled with carboxy-fluorescein diacetate succinimidyl ester
(CFSE) and cultured with the hemagglutinin peptide (HA307-319).
CD4þ T cells recognizing the influenza A virus hemagglutinin
peptide (HA307-319) in HLA-DRA1n0101/DRB1n0401 molecules
were detected by binding the HLA-DR4/flu tetramer and decreased
levels of CFSE labeling, as described [22]. Cloning of the tetramer-
reactive CD4þ T cells was performed by single cell sorting of
tetramer-reactive T cells and subsequent culture, as described for
CD8þ T cell clones [36,42].

2.4. Antibodies and flow cytometry

Fluorochrome-labeled monoclonal antibodies (mAb) anti-CD3-
FITC (Leu4, BD Pharmingen), anti-CD8a–FITC (Leu2a, BD Pharmin-
gen), anti-CD8b–PE (Immunotech, Beckman Colter) and anti-CD4-
APC (DAKO, Glostrup, Denmark) were used in flow cytometric
analyses. Antibody incubations were performed PBS, 1% BSA, 0.05%
sodium azide at 4 1C in 96 well round-bottom plates and cells were
acquired in a four-color FACS Calibur. Viable lymphocytes were
gated by forward and side scatter profile. Dead cells were excluded
by propidium iodide (PI) staining. Data were analyzed with Cell
Quest software (Immunocytometry systems, Becton Dickinson).

2.5. HLA/peptide tetramer-binding inhibition

HLA/peptide tetramer-binding inhibition assays were per-
formed using purified anti-CD3 mAbs SPV-T3b [27] and OKT-3
(ATCC, Rockville, MD [21]) or anti-TCR mAbs WT31 [26] and T10B9
[37], or isotype control IgG (all obtained from BD Pharmingen).
T cells or PBMC were preincubated with unlabeled SPV-T3b, OKT-3,
WT31, T10B9 antibodies or with control IgG at concentrations
ranging from 0.07–50 mg/ml for 15 minutes at 4 1C in 96 well
round-bottom plate in PBS, 1% BSA, 0.05% Sodium Azide (PBS/BSA)
supplemented with 1% normal mouse serum (NMS). Cells were
washed and incubated with Goat anti-mouse immunoglobulins
IgA, IgG, IgM (GAM-Ig, dilution 1:60, ICN Biomedicals, Zoetermeer,
The Netherlands) for 15 minutes 4 1C. After washing, the cells were
incubated with 500 ng HLA/peptide tetramer per 106 cells in PBS/
BSA at 37 1C for 15 minutes. HLA/peptide tetramer-binding inten-
sity was analyzed by flow cytometry. The levels of binding
inhibition of tetramers by SPV-T3b pretreatment was analyzed
by the decrease in mean fluorescence intensity (MFI) of the
tetramer-reactive T cells. In analyses of PBMC, blocking of tetramer
binding by SPV-T3b pretreatment resulted in a (partial) decrease in
the percentage of tetramer-reactive cells in the tetramer-positive
quadrant. To estimate the MFI of the total tetramer-positive
population after SPV-T3b pretreatment (MFIc), the MFI value of
the tetramer-reactive T cells was corrected for the fluorescence
intensity of the cells, in which tetramer binding was fully blocked
(FIneg). This MFIc was calculated by the formula: MFIc¼(Tm1�

MFI1þ(Tm0-Tm1)� FIneg)/Tm0, in which Tm1 and MFI1 are the
percentage of tetramer-positive cells and the MFI value after SPV-
T3b pretreatment, respectively, Tm0 the percentage of tetramer-
positive cells without SPV-T3b pretreatment or after control mIgG
pretreatment and FIneg the fluorescence intensity (FI) of the
quadrant setting discriminating tetramer-positive and negative
cells. FIneg is taken as MFI of the tetramer-reactive T cells, in which
tetramer-binding was fully blocked by SPV-T3b pretreatment.
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3. Results

3.1. Identification of anti-CD3 or anti-TCR mAbs that compete with

HLA/peptide tetramer-binding to human T cells

Bonafide identification of antigen-specific T cells using HLA/
peptide tetramers requires the distinction between HLA/peptide
tetramer binding to the TCR/CD3 complex and TCR-unrelated
binding. To this end, we analyzed whether anti-TCR mAbs WT31
and T10B9, and anti-CD3 mAbs SPV-T3b and OKT3, which bind to
the TCR/CD3 complex, interfered with HLA/peptide tetramer bind-
ing to antigen-specific T cells. All four antibodies bound to the HLA-
A2/influenza-specific T cell clone INFA24 in a dose dependent
fashion (Fig. 1A, left panel), which saturated at a concentration of
16 mg/ml, as measured by incubation of T cells with unlabeled
antibody followed by goat anti-mouse (GAM) Ig-FITC antibody.
When WT31, SPV-T3b or OKT3 mAbs were prebound to INFA24 T
cells and cross-linked, subsequent HLA-A2/flu tetramer staining
resulted in a decreased binding of HLA/peptide tetramer as
compared to T cells without mAb preincubation (Fig. 1A, right
panel). The extent of the tetramer-binding inhibition to the T-cells
was dependent on the concentration of the TCR/CD3-reactive mAb
during the preincubation. Although anti-CD3 mAb preincubation
might induce T cell activation leading to activation-induced cell
death, antibody preincubations did not affect the viability of the T
cells, as measured by propidium iodide staining. mAb SPV-T3b was
most effective in decreasing tetramer-binding to T cell clone
INFA24, resulting in up to a four-fold decrease in mean fluores-
cence intensity (MFI). Preincubation with mAb T10B9 did not
result in a decrease in tetramer binding, despite binding of this
mAb to the T cells (Fig. 1A). These results show that binding of
HLA-A2/flu tetramer-binding intensity
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Fig. 1. Inhibition of tetramer-binding to T cells by preincubation with anti-CD3 an

concentrations ranging from 0.07–50 mg/ml of anti-CD3 antibodies, SPV-T3b (J), OKT3

by incubations with GAM-Ig and HLA-A2/flu tetramer. Left panel: binding intensity (MFI)

Binding intensity of HLA-A2/flu tetramer to CTLINFA24 following preincubation with an

two independent experiments. B, Crosslinking of bound mAb is required for inhibition

CTLINFA24 after preincubation with 5 mg/ml SPV-T3b mAb with or without crosslinking

Graph shows representative results from three experiments.
anti-CD3 mAbs SPV-T3b and OKT3 interfered more with HLA/
peptide tetramer binding than anti-TCR mAb WT31, while anti-TCR
mAb T10B9 did not affect HLA/peptide tetramer binding at all.
Based on the superior level of HLA/peptide tetramer-binding
inhibition by mAb SPV-T3b preincubation, further analyses were
performed with anti-CD3 mAb SPV-T3b.

Binding of HLA-A2/flu tetramers to the INFA24 T cells was not
inhibited by preincubation with SPV-T3b alone but required
subsequent cross-linking (Fig. 1B). Furthermore, HLA/peptide
tetramer incubation prior to mAb incubation plus cross-linking
did not significantly reduce tetramer binding intensity, which
may be due to tetramer-induced internalization of the TCR/CD3
complex. SPV-T3b mAb pretreatment was most effective when
SPV-T3b, GAM-Ig and HLA/peptide tetramer incubations were
performed as three separate consecutive incubations. Since the
incubations with anti-CD3 mAb and GAM-Ig were performed at
41C and in the presence of sodium azide, anti-CD3 mAb-induced
internalization of the TCR/CD3 complex is unlikely to occur. The
reducing effect of SPV-T3b mAb pretreatment on HLA/peptide
tetramer-binding may therefore result from sterical hindrance or
a conformational change in the CD3 complex by the immune
complexes of anti-CD3 mAb and GAM-Ig antibodies that inhibit
tetramer-binding to the TCR/CD3 complex.

Next, we analyzed the effect of SPV-T3b mAb pretreatment on
the binding of specific and control tetramers using CTL clone
INFA24, CTL clone AKR4D8 and CTL line ZWI29, specific for
influenza peptide, MART-1 peptide (27–35) or gp100 peptide
(280–288) in HLA-A2, respectively. SPV-T3b mAb pretreatment
resulted in decreased binding of specific tetramers, measured as a
ten-fold decrease in mean fluorescence intensity (MFI) by all
three clones, while the background reactivity of control tetramers
4
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remained unchanged (Fig. 2). Pretreatment with anti-TCR mAb
T10B9 and GAM-Ig did not decrease specific tetramer-binding,
indicating that for all three TCR specificities tested mAb SPV-T3b,
but not T10B9, specifically interfered with the tetramer-binding
capacity of the TCR/CD3 complex.
3.2. SPV-T3b mAb pretreatment enables distinction between HLA/

peptide tetramer-binding to T cells involving the TCR/CD3 complex

and TCR-unrelated binding

We investigated the ability of SPV-T3b mAb pretreatment to
discriminate among PBMC the antigen-specific T cells that bind
HLA/peptide tetramer through the TCR/CD3 binding from those T
cells that bind the HLA/peptide tetramer nonspecifically. PBMC of an
HLA-A2þ donor (donor A) containing a clearly detectable influenza
virus-reactive T cell population (0.64% of CD8þ T cells) was mixed
HLA-A2/MHLA-A2/flu tetramer

100 101

HLA-A2
100 101 102 103 104

100 101100 101 102 103 104
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Fig. 2. SPV-T3b pretreatment exclusively decreases the binding of tetramers to antigen

specific tetramers, HLA-A2/flu, HLA-A2/MART-1 and HLA-A2/gp100(280) respectively (

and GAM-Ig was measured on the tetramer-binding intensity (upper panel, bold lines)

reactivity of the T cells with control non-specific tetramers (thin lines). Data are repres

T10B9 and GAM-Ig gave similar levels of tetramer-binding as the tetramer-binding wi

Table 1
Sensitivity of detection of TCR/CD3-mediated tetramer binding in PBMC by SPV-T3b p

Tetramer-reactivity in the CD8þ T cell population

No blocking

% PBMC donor A % PBMC donor B Tetrameer Tm0
a M

100 0 A2/flu 0.64 1

50 50 A2/flu 0.44 1

25 75 A2/flu 0.26 1

12 88 A2/flu 0.21 1

6 94 A2/flu 0.12 1

3 97 A2/flu 0.11 1

0 100 A2/flu 0.13 1

a Tm0 and Tm1 indicate the percentages of tetramer-positive T cells of the CD8þ p
b MFI0 and MFI1 indicate the mean fluorescence intensity of the tetramer-positive
c MFIc indicates the mean fluorescence intensity of the tetramer-reactive T cell popu

reactivity (FIneg).
with PBMC of an HLA-A2þ donor without influenza-reactive T cells
(donor B) at decreasing concentrations and the level of influenza-
reactive T cells was tested by HLA-A2/flu tetramer analyses with
SPV-T3b pretreatment or control IgG pretreatment (Table 1). As
expected, the percentage of influenza-reactive T cells in donor A
decreased with increasing dilution of the PBMC with donor B PBMC.
SPV-T3b pretreatment of the samples prior to tetramer staining
resulted in both a decrease in MFI and in the percentage of tetramer-
positive cells in the upper right quadrant. The decrease in the
percentage of tetramer-positive cells occurs when tetramer-binding
was fully blocked and the MFI decreased to the level of tetramer-
negative cells. To estimate the MFI of the total tetramer-positive
population after SPV-T3b pretreatment (MFIc), the MFI value of the
tetramer-reactive T cells was corrected for the fluorescence intensity
of the cells, in which tetramer binding was fully blocked (FIneg), as
described in the Methods section. As shown in Table 1, at the
dilution of 12% donor A cells in the mixture, the tetramer staining
ART tetramer HLA-A2/gp100 tetramer

100 101 102 103 104

HLA-A2/flu tetramer
102 103 104

/flu tetramer

100 101 102 103 104102 103 104

CTL ZWI29
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4D8
ART-1 spec.)

-specific T cells. CTLINFA24, CTLAKR4D8 and CTLZWI29 were incubated with the

upper panel, thin lines), and the effect of preincubation with 5 mg/ml SPV-T3b mAb

. Lower panel: SPV-T3b and GAM-Ig preincubation (bold lines) did not affect the

entative of three independent experiments. Preincubation with the anti-TCR mAb

thout antibody preincubation.

retreatment.

SPV-T3b pretreatment

FI0
b Tm1 MFI1 FIq MFIneg

c Fold decrease

72 0.35 132 31 86 2.0

42 0.17 69 31 46 3.1

67 0.11 51 31 40 4.2

31 0.13 47 31 41 3.2

15 0.11 42 31 41 2.8

44 0.11 77 31 75 1.9

52 0.18 108 31 138 1.1

opulation without (Tm0) or with SPV-T3b pretreatment (Tm1), respectively.

T cells without (MFI0) or with SPV-T3b pretreatment (MFI1), respectively.

lation after SPV-T3b pretreatment corrected for T cells with fully blocked tetramer-
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indicated a level of 0.21%, which was blocked 3-fold by SPV-T3b
pretreatment, whereas the background reactivity in 100% donor B
(0.13%), in which no specific T cells are present, was not affected by
SPV-T3b pretreatment (1.1-fold). Table 1 shows that SPV-T3b
pretreatment can be used to detect small populations of antigen-
specific T cells in PBMC samples. SPV-T3b pretreatment decreases
the MFI about 2-fold in samples with a known tetramer-reactive
population, which justifies a 2-fold decrease in MFI as a threshold in
checking the TCR/CD3-mediated tetramer-binding by SPV-T3b
pretreatment.

We extended our SPV-T3b pretreatment analyses to check the
detection of antigen-specific T cells in PBMC of 5 donors, using
HLA-A1, HLA-A2 or HLA-A3 tetramers containing peptides
derived from influenza A virus (flu), cytomegalovirus (CMV),
MART-1, tyrosinase (Fig. 3 and Table 2). Fig. 3 shows a decrease
in MFI of the tetramer-reactive cells in donor 1 for HLA-A2/CMV-,
HLA-A2/MART-1- or HLA-A2/tyrosinase-reactive CD8þ T cells,
whereas the reactivity with the HLA-A2/flu tetramer was not
changed by the SPV-T3b pretreatment. These results are consis-
tent with the antigen-specific proliferation upon stimulation with
CMV-, MART-1 or tyrosinase peptide, but not influenza peptide,
seen in this donor. This antigen-specific proliferation was appar-
ent from an increase in tetramer-reactive T cells in the culture
over time, whereas tetramer-reactivity remained unchanged in
control PHA-stimulated cultures. In the panel of donors contain-
ing antigen-specific T cells, as verified by in vitro peptide
stimulation, SPV-T3b pretreatment blocked tetramer-reactivities
of the CD8þ T cell population. SPV-T3b pretreatment did not
affect the background tetramer-reactivity of the CD8 negative
population (Table 2). This background reactivity is unlikely to be
mediated by the TCR/CD3 complex, as the CD8-negative popula-
tion mostly comprised CD4þ T cells that do not recognize
peptides presented in HLA-class I.

To further verify whether SPV-T3b pretreatment discriminates
between TCR-mediated binding and unrelated binding in the
CD8þ T cell population, we tested the reactivity of HLA-A2
tetramers containing the HIV-derived p17 Gag (SLYNTVATL)
peptide on PBMC of three HLA-A2þ HIV-negative healthy donors,
in whom no T cell reactivity to HIV antigens is expected to be
present. Upon acquisition of large cell samples comprising more
than 1�106 PBMC, a small but detectable level of HLA/peptide
tetramer-reactivity was found in these donors. Importantly, this
reactivity remained unaffected by SPV-T3b pretreatment (Fig. 4).
In parallel analyses, the MFI of the population of HLA-A2/flu
tetramer-reactive T cells in these donors decreased by SPV-T3b
pretreatment, indicating that SPV-T3b pretreatment efficiently
discriminates true TCR/CD3-mediated binding from background
HLA/peptide tetramer-reactivity. Furthermore, these data show
that the low-level reactivity of HLA/peptide tetramers with CD8þ
T cell populations that lack the relevant antigen-specificity is not
mediated through binding to the TCR/CD3 complex.
Fig. 3. SPV-T3b pretreatment enables to distinguish tetramer-binding to the TCR/

CD3 complex from TCR unrelated binding among PBMC. A., PBMC from healthy

HLA-A2þ donors were incubated with HLA-A2/flu, HLA-A2/CMV, HLA-A2/MART-1

or HLA-A2/tyrosinase tetramers (horizontal axis), after preincubation with anti-

TCR mAb T10B9 (left panel) or anti-CD3 mAb SPV-T3b (right panel), followed by

GAM-Ig. After tetramer incubation the cells were incubated with FITC-labeled

anti-CD8 mAb, which is depicted on the vertical axis. Numbers in the quadrants

indicate the MFI of tetramer-binding CD8þ T cells (upper right quadrants), or the

MFI of tetramer-binding CD8- T cells (lower right quadrants), respectively. Graphs

show that blocking of HLA-A2/CMV, MART-1 and tyrosinase tetramer-reactivity is

exclusively found in the CD8þ population, but not in the CD8- population,

indicating that the latter does not involve the TCR/CD3 complex. HLA-A2/flu

tetramer reactivity was not blocked in the depicted donor. Data are representative

of three experiments performed on PBMC of two different HLA-A2þ donors, and

of one HLA-A2 negative donor. B., Graph shows an example of the eight-fold

decrease in MFI of the HLA-A2/CMV tetramer following SPV-T3b pretreatment.
3.3. Testing of binding of HLA class II tetramers to the TCR/CD3

complex on T cells

Analyses of the immune response to vaccination are mostly
performed based on the reactivity of the CD8þ T cells using
HLA class I tetramers. However, successful activation of an
effector CD8þ T cell response frequently involves the activation
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Table 2
Identification of HLA/peptide tetramer-binding T cells among donor PBMC by SPV-T3b pretreatment.

Tetramer-reactivity in the CD8þ T cell population Tetramer-reactivity in the CD8-negative T cell population

No blocking SPV-T3b pretreatment No blocking SPV-T3b pretreatment

Donor HLA
type

Tetramer Tm0
a MFI0

b Tm1 MFI1 MFIneg MFIc
c Fold

decrease
Tm0 MFI0 Tm1 MFI1 MFIneg MFIc Fold

decrease

1 A2þ A2/CMV 1.425 583 1.500 72 43 72 8.1 0.147 613 0.129 591 43 525 1.2

1 A2þ A2/

MART-1

0.077 212 0.020 189 43 82 2.6 0.019 152 0.009 214 43 125 1.2

1 A2þ A2/tyr 0.553 71 0.022 66 29 30 2.4 0.024 397 0.023 262 29 262 1.5

2 A1þ A2þ A1/flu 0.743 539 0.130 286 132 159 3.4 0.008 350 0.003 316 132 207 1.7

2 A1þ A2þ A2/flu 0.340 400 0.151 83 40 59 6.8 0.175 113 0.292 199 40 199 0.6

3 A1þ A1/flu 0.606 319 0.189 359 38 138 2.3 0.015 674 0.013 837 38 742 0.9

3 A1þ A1/tyr243 0.925 242 0.237 105 38 55 4.4 0.189 119 0.119 315 38 212 0.6

4 A3þ A3/flu 0.122 143 0.020 130 66 70 2.0 0.013 206 0.008 174 66 129 1.6

5 A1þ A1/flu 0.158 151 0.070 90 59 73 2.1 0.072 138 0.044 100 59 84 1.6

5 A1þ A1/tyr243 0.118 93 0.000 n.e. 45 45 2.1 0.077 113 0.058 124 45 104 1.1

Average decrease: 3.6 Average decrease: 1.2

a Tm0 and Tm1 indicate the percentages of tetramer-positive T cells of the CD8þ population without (Tm0) or with SPV-T3b pretreatment (Tm1), respectively.
b MFI0 and MFI1 indicate the mean fluorescence intensity of the tetramer-positive T cells without (MFI0) or with SPV-T3b pretreatment (MFI1), respectively.
c MFIc indicates the mean fluorescence intensity of the tetramer-reactive T cell population after SPV-T3b pretreatment corrected for T cells with fully blocked tetramer-

reactivity (FIneg).
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Fig. 4. Validation of SPV-T3b pretreatment on HIV tetramer-reactivity in HIV-negative donors. One million PBMC from three healthy HIV-negative HLA-A2þ donors were

incubated with HLA-A2/HIV or HLA-A2/flu tetramers (horizontal axis), after preincubation with control murine IgG (upper panels of each tetramer analysis) or anti-CD3 mAb

SPV-T3b (lower panels), followed by GAM-Ig. After tetramer incubation the cells were incubated with FITC-labeled anti-CD8 mAb, which is depicted on the vertical axis.

Numbers in the quadrants indicate the MFI of tetramer-binding CD8þ T cells (upper right quadrants), or the MFI of tetramer-binding CD8- T cells (lower right quadrants),

respectively. Graphs show that the observed HLA-A2/HIV tetramer-reactivity is not affected by SPV-T3b pretreatment, whereas HLA-A2/flu reactivity is decreased. Data are

representative of three independent experiments.
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of CD4þ T cells. An increasing number of epitopes recognized by
CD4þ T cells has been identified over the last years, and for
which class II tetramers may be generated [3,5,14,30,43,44]. As
the background reactivity of HLA-class II tetramer may vary [13],
extra testing for TCR/CD3-mediated binding is useful to improve
reliable detection of antigen-specific CD4þ T cells.

We have tested our SPV-T3b pretreatment method on HLA class
II tetramers, composed of the influenza virus hemagglutinin pep-
tide (HA307-319) bound to HLA-DRA1n0101/DRB1n0401 mole-
cules (HLA-DR4/flu tetramers). As a source of PBMC containing
antigen-specific T cells, we used PBMC of a DRA1n0101/
DRB1n0401-positive donor stimulated with the influenza virus
hemagglutinin peptide (HA307-319), which resulted in an increase
in HLA-DR4/flu tetramer-reactive T cells [22]. When the PBMC
were labeled with CFSE prior to peptide stimulation, the decreased
CFSE intensity of the HLA-DR4/flu tetramer-positive CD4þ T cells
indicated that these cells had proliferated following peptide
stimulation (not shown). SPV-T3b pretreatment decreased the
MFI of HLA-DR4/flu tetramer-reactive cells, indicating that mAb
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Fig. 5. SPV-T3b pretreatment decreases the binding intensity of HLA class II

tetramers. (A) PBMC of an HLA-DRB1*0401þ healthy donor, which had been

cultured with the Influenza virus hemagglutinin peptide (HA307-319), were

incubated with the HLA-DR4/flu tetramer-reactive T cells (upper panel), or after

preincubation with anti-TCR mAb T10B9 (middle panel), or anti-CD3 mAb SPV-T3b

(lower panel) and GAM-Ig. After tetramer incubation the cells were incubated with

APC-labeled anti-CD4 mAb, which is depicted on the vertical axis. Numbers in the

upper right quadrants indicate the MFI of tetramer-binding CD4þ T cells. (B)
Crosslinking of bound anti-CD3 mAb is required for inhibition of class II tetramer-

binding. HLA-DR4/flu tetramer-reactive T cells from the PBMC in A. were cloned

by single cell sorting and tested for specific HLA-DR4/flu tetramer-binding after

preincubation with 5 mg/ml SPV-T3b mAb with or without crosslinking by GAM-

Ig, preincubation with GAM-Ig alone, or without antibody preincubation. Graph

shows typical results of two experiments of a representative CD4þ T cell clone.
SPV-T3b also interfered with binding of HLA class II tetramers
(Fig. 5A). As was observed for the HLA class I tetramers, pretreat-
ment with mAb T10B9 did not inhibit HLA-class II tetramer-
binding. To study the inhibition of tetramer-binding at the level
of a single TCR specificity, we generated T cell clones from the HLA-
DR4/flu tetramer-reactive T cell population. As shown in Fig. 5B,
binding intensity of HLA-DR4/flu tetramers to T cell clones is
almost ten-fold decreased by SPV-T3b pretreatment, indicating
that HLA-DR4/flu tetramer bound to the T cells by interaction with
the TCR/CD3 complex.

Taken together, the method of SPV-T3b mAb pretreatment
described here allows one to determine whether HLA-class I and
class II tetramer-binding to T cells are TCR-mediated, and our
method is therefore a valuable tool for screening of polyclonal T
cell populations in patient-derived samples.
4. Discussion

Monitoring of T cell responses in cancer patients following
vaccination with tumor antigens frequently involves the analysis
of small populations of tetramer-reactive T cells. In case of low
frequency HLA/peptide tetramer-reactive T cells, the validity of
the observed HLA/peptide tetramer staining is difficult to prove
without in vitro stimulation and/or additional in vitro expansion
[19]. We describe here a new method, SPV-T3b pretreatment, to
test for binding of HLA class I/ or class II/peptide tetramers to the
TCR/CD3 complex on T lymphocytes. This method enables to
discriminate TCR/CD3-related binding of HLA/peptide tetramers
from TCR-unrelated tetramer-binding to T cells, and thereby
enhances reliable detection of antigen-specific T cells by HLA/
peptide tetramer analyses. SPV-T3b pretreatment consists of
preincubation of T cells with anti-CD3 mAb SPV-T3b followed
by incubation with GAM-Ig prior to HLA/peptide tetramer incu-
bations. Blocking of tetramer-binding by SPV-T3b pretreatment
indicates the involvement of the TCR/CD3 complex in tetramer-
binding.

HLA/peptide tetramers have mostly been validated by their
specific binding to antigen-specific T cell clones or lines, and
the absence of binding to HLA-matched control T cell clones
[23,24,28]. However, analyses of polyclonal T cells, including
PBMC, showed that HLA/peptide tetramer reactivity may also
occur in a non-antigen specific fashion [15]. The antigen-specifi-
city of HLA/peptide tetramer-binding T cells can be confirmed by
in vitro peptide stimulation of the T cells, inducing proliferation of
tetramer-reactive T cells, or by flow cytometric sorting of tetra-
mer-binding T cells [16,33,32,12]. These validation methods
depend on the in vitro growth capacity of the HLA/peptide
tetramer-positive T cells, which may vary among antigen-specific
T cells and introduce a bias in the T cell population analyzed.
Alternatively, control samples of HLA mismatched donors have
been used to estimate the nonspecific reactivity of HLA/peptide
tetramers [23,28,35]. However, allospecificity of T cells in HLA-
mismatched control samples may result in HLA/peptide tetramer-
binding. Results of HLA mismatched control samples may there-
fore overestimate background levels of tetramer reactivity that is
not fully relevant for analyses in HLA-matched patients, which do
not have such alloreactivity. These observations underline the
need for additional control measurements in HLA/peptide tetra-
mer analyses to verify the antigen-specific binding of HLA/peptide
tetramers. The new method of SPV-T3b pretreatment we describe
here discriminates binding of HLA/peptide tetramers to the TCR/
CD3 complex from TCR-unrelated binding, and thereby represents
an internal control for HLA/peptide tetramer analyses.

The mechanism by which SPV-T3b pretreatment interferes
with the binding of tetramers to T cells may include sterical
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hindrance of tetramers for binding the TCR/CD3 complex by
bound anti-CD3 antibody immune complexes or the induction
of a conformational change in the CD3 complex that reduces
tetramer-binding. The observations that SPV-T3b pretreatment is
effective at 41C and in the presence of metabolic inhibitor sodium
azide, and is not enhanced at 371C indicate that blocking of
internalization of TCR/CD3 complexes is unlikely to be respon-
sible for the inhibitory effect of SPV-T3b pretreatment. Moreover,
sterical hindrance or stabilization of tetramer-binding by bound
antibodies has been shown for antibodies against the coreceptor
CD8, which can either decrease or enhance CD8-dependent
binding of certain MHC class I tetramers to human or murine T
cells [4,6,7,10]. Surprisingly, antibodies T10B9 and WT31, which
have been described to bind the TCRab heterodimer and not to
the CD3 complex [37,38], did not interfere with tetramer-binding
upon crosslinking. For the anti-CD3-specific antibodies that were
analyzed, interference with tetramer-binding depends on the
mAb that is used. Unfortunately, as it is presently unknown
which subunit of the CD3 complex forms the ligand of these
anti-CD3 mAbs, it remains presently unknown which CD3 chain is
the most effective target for tetramer-binding inhibition. Binding
intensities of FITC-labeled anti-human CD3 mAbs HIT3a and
UCHT1 were shown to be approximately 2-fold decreased when
HLA/peptide tetramer were prebound to human antigen-specific
T cells in one study [9]. However, only minor inhibition of HLA/
peptide tetramer binding was observed after preincubation with
the anti-CD3 mAbs, and the competing effect of mAb UCHT1 was
not confirmed by others [7]. We have found that crosslinking of
the anti-CD3 mAb is required for its effect on specific tetramer-
binding performed at 37 1C, which was also reported to enhance
the specificity of tetramer-binding, as compared to 4 1C [39].

In conclusion, our method of SPV-T3b pretreatment can con-
tribute valuable data to studies of immunomonitoring of vacci-
nated patients, in which reactivity of T cells with HLA/peptide
tetramers that can be blocked by SPV-T3b pretreatment repre-
sents the total antigen-specific T cell population, including unre-
sponsive T cells.
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