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Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which is responsible for morbidity and

mortality in chickens. Gene expression patterns have previously been demonstrated to differ between

chicken populations that are resistant vs. susceptible to bacterial infection, but little is currently known

about gene expression response to APEC. Increased understanding of gene expression patterns associated

with resistance will facilitate genetic selection to increase resistance to APEC. Male broiler chicks were

vaccinated at 2 weeks of age and challenged with APEC at 4 weeks of age. Peripheral blood leukocytes

were collected at 1 and 5 day post-infection. Lesions on the liver, pericardium, and air sacs were used to

assign a mild or severe pathology status to non-vaccinated, challenged chicks. Ten treatment groups were

therefore generated with a priori factors of vaccination, challenge, day post-infection, and the a posteriori

factor of pathology status. Global transcriptomic response was evaluated using the Agilent 44K chicken

microarray. APEC infection resulted in more up-regulation than down-regulation of differentially

expressed genes. Immune response and metabolic processes were enriched with differentially expressed

genes. Although vaccination significantly reduced lesions in challenged bird, there was no detectable

effect of vaccination on gene expression. This study investigated the transcriptomic differences in host

responses associated with mild vs. severe pathology, in addition to the effects of vaccination and

challenge, thus revealing genes and networks associated with response to APEC and providing a

foundation for future studies on, and genetic selection for, genetic resistance to APEC.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Avian pathogenic Escherichia coli (APEC) are a subpathotye of
extraintestinal pathogenic E. coli (ExPEC) that cause extraintest-
inal diseases in poultry that are collectively known as colibacil-
losis. Infection can occur through inhalation of contaminated dust
or fecal matter, and then develop into airsacculitis. APEC then
accesses the bloodstream, resulting in septicemia and potential
for development of pericarditis and perihepatitis [18]. APEC may
also be a food safety concern, with current research showing
strong genetic similarities between APEC and human ExPEC
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[37,51,60]. These similarities suggest zoonotic potential for APEC
and APEC as a source for human ExPEC virulence genes [21,35,60].
Recently, APEC has been shown to cause disease in a rat model for
human meningitis [69]. Through horizontal and vertical transmis-
sion, APEC can cause disease and death in infected birds, resulting
in large monetary losses through condemnation of carcasses and
reduced production [4,7,63]. Though there are many serogroups
of APEC that cause disease in birds [4,61], O1 has been a focal
point for study of pathogen and host response to infection, as it is
one of the major serogroups responsible for colibacillosis world-
wide [18]. In addition, APEC O1 is one of the most well char-
acterized APEC strains in the literature [37,42,45].

Antimicrobials are commonly used to control colibacillosis in
the poultry industry. With rising concern and demonstration of
drug resistant bacteria [47], other control methods, such as
enhanced host genetics, are a growing area of research. Past
experimentation has illustrated the potential for breeding for
colibacillosis resistance [2,10], indicating that greater research
surrounding the genetic control of mechanisms of resistance is
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needed as a foundation for more effective breeding programs.
Gene expression analysis of immune tissues is commonly used to
characterize immune response [13,59] and provides potential
candidate genes for disease resistance. Expression levels of
immune genes have been shown to be heritable [68], evidence
that the tactic of genetic selection for gene expression levels could
be successful in a breeding program.

The chicken immune system is equipped with several mechan-
isms to combat pathogens. Multiple tissues each contribute
unique signals and functions to help identify and combat disease.
Peripheral blood leukocytes (PBL) are comprised of a dynamic
population of cell types that serve in both the innate and adaptive
immune responses [20,66]. Heterophils, the avian equivalent of
neutrophils, are an innate responder and typically the first cell
type to fight infection. Heterophils destroy susceptible bacteria
through phagocytosis, oxidative burst and extracellular traps
[14,22]. Proper signaling by cytokines and T-helper cells can
increase the effectiveness of immune response. The defensive
mechanisms of APEC can, however, reduce the effectiveness of the
innate immune response and may include resistance to the
detrimental effects of phagocytosis and complement, or decreas-
ing the antimicrobial activity of heterophils [28,41,50,54,58].
Enhanced genetics of the host immune response may allow
chickens to overcome APEC’s defenses. Very few publications
have documented differences in gene expression between indivi-
duals that are resistant vs. susceptible to APEC. We hypothesize
that the global transcriptome of peripheral blood leukocytes will
differ depending upon vaccination, challenge, and pathological
response to APEC. This study aims to determine these gene
expression differences associated with an APEC infection, which
will lead to a better understanding of the genetic control of
resistance and may serve as biomarkers for genetic selection for
improved response to APEC infection.
2. Materials and methods

2.1. Bacteria preparation

APEC O1 strain O1:K1:H7 (NCBI reference sequence: NC_008563.
1) was kept in brain heart infusion broth with 10% glycerol at
�80 1C. Its genomic sequence is available and has been completely
characterized [37]. Two days prior to bacterial challenge, bacteria
were removed from the freezer and streaked onto Luria Bertani (LB)
agar then incubated overnight at 37 1C. An isolated colony was then
Fig. 1. Treatment groups. Chicks were divided into treatment groups at 2 weeks of age

post-challenge, and by lesion scores assigned at necropsy. Treatment groups are bolde
placed into 10 ml of LB broth and incubated overnight at 37 1C with
shaking. On day of APEC challenge, bacteria were pelleted by
centrifugation at 5000� g for 15 minutes. The pellet was then
washed in phosphate buffered saline (PBS) 3 times before being
enumerated by spectrometric reading at 600 nm. The inoculum was
adjusted to the desired bacterial concentration, and counts were
confirmed through serial dilution plating onto MacConkey agar
overnight.

2.2. Animal experiments

Non-vaccinated, commercial male broiler chicks were pur-
chased at 1 day of age from a local hatchery. Birds were raised on
wire-floor cages with ad libitum access to food and water. For
each replicate, 120 birds were split by vaccination status, chal-
lenge status, and day of necropsy (Fig. 1). Challenged birds were
housed separately from non-challenged birds. At 2 weeks of
age, 50% of the chicks were intramuscularly vaccinated with
0.5 ml/bird of Iss vaccine [48], containing 2 mg of vaccine and
50 mg of Quil A adjuvant in PBS. Non-vaccinated chicks received
50 mg of Quil A adjuvant in PBS via the same route. Increased
serum survival, iss, encodes an outer membrane lipoprotein and is
a virulence factor common to most APEC serotypes [36,56,61]. At
4 weeks of age, 80% of the chicks, half vaccinated and half non-
vaccinated, were challenged with 0.1 ml containing 108 colony
forming units of APEC O1 injected into the left thoracic air sac.
Non-challenged chicks received 0.1 ml of PBS via the same route.
Birds were sampled and euthanized at 2 time points, 1 and 5 day
post-infection, equally splitting birds within each group between
the two times. This experimental design was replicated six times,
for a total of 720 chickens.

Blood samples were collected from the jugular vein into 5 ml
vacuum tubes containing EDTA and placed on ice until PBL
isolation. Birds were then euthanized and internal lesion scores
assigned by a single trained investigator for 3 tissues, air sacs,
pericardium and liver, as described by Peighambari et al. [55].
Scores from 0 to 2 were assigned for pericardium and liver; scores
from 0 to 3 were assigned for air sacs. A summation of all 3 lesions
scores for each individual bird was used to generate a total lesion
score. Non-vaccinated, challenged birds were split into two
pathology categories based upon total lesion score: mild and
severe. Birds with low lesion scores were used to represent mild
pathology, with an average lesion score of 0.375, and those with
high lesion scores were used to represent severe pathology, with
an average lesion score of 6.125. Ten treatment groups were
by vaccination status, at 4 weeks of age by challenge status, by day of necropsy

d.
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generated from vaccinated (V) or non-vaccinated (NV), challenged
(C) or non-challenged (NC), day 1 or day 5 necropsy treatments
and 2 pathological categories of mild and severe within the non-
vaccinated, challenged groups (Fig. 1).

2.3. PBL isolation

PBL were separated from whole blood samples and red blood
cells removed. Phosphate buffered saline was combined with
approximately 1–3 ml of blood sample to a total volume of 10 ml.
A Histopaque 1077/1119 (Sigma Aldrich, St. Louis, MO) discontin-
uous gradient was created by placing 10 ml of Histopaque
1119 into a 50 ml tube, overlaying 10 ml of Histopaque 1077, then
overlaying 4 ml of blood/PBS mixture. The gradient mixture
was centrifuged at 700g for 30 min at room temperature. Cell
layers were removed from the plasma/Histopaque 1077 interface
(mononuclear cells) and from the 1077/1119 interface (heterophils)
with a Pasteur pipette, combined and transferred to a 15 ml tube.
Cells were washed by adding 6 ml of PBS and centrifuged at 600g

for 10 min at room temperature. Supernatant was discarded and
the cell pellet washed a second time with PBS. Supernatant was
discarded and PBL resuspended in 1.5 ml of RNAlater (AM7021)
(Applied Biosystems, Foster City, CA). Cells were refrigerated in
RNAlater for 7 day then excess RNAlater was decanted and cells
were stored at �80 1C until RNA isolation.

2.4. RNA isolation

RNA samples were isolated using the Ambion MagMax-96 kit
for Microarrays (AM1839) (Applied Biosystems, Foster City, CA).
Briefly, PBL were added to 0.6 ml of TRI Reagent Solution (Ambion,
Austin, TX). Samples were homogenized and split into two 300 ml
aliquots, with 1 aliquot further processed and the other held in
reserve. Samples were then processed using the Spin Procedure
according to manufacturer’s instructions. Total RNA was eluted
with 30 ml of Elution Buffer and stored at �80 1C. Quality and
quantity of RNA were assessed by Nanodrop (Thermo Scientific,
West Palm Beach, FL).

2.5. Microarray experiments

The microarray data for this experiment have been deposited
in NCBI’s Gene Expression Omnibus (GEO) [5,19] database and are
accessible through the series accession GSE31387 /http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31387S.

Gene expression was assessed utilizing the global 2-color
chicken 44K Agilent Microarray [43]. A total of 40 samples were
hybridized to the microarray, using one individual from each of
the ten treatment groups from each of 4 independent experi-
mental replications. Samples were arranged in a reference design,
using the NV–NC-day 1 sample as the reference for each experi-
mental replicate, on 36 arrays. Within each replicate, the NV–NC-
day 1 sample was hybridized to the other 9 treatment groups. Dye
assignments were swapped between replicates. Briefly, 400 ng of
total RNA was reverse transcribed into cDNA with a T7 promoter
region incorporated, then transcribed back into cRNA labeled with
either Cy3 or Cy5 dye. Before hybridization, 825 ng of each
labeled sample, Cy3 and Cy5, a blocking agent and fragmentation
buffer were mixed together and incubated for 30 minutes at
60 1C. Following incubation, gex hybridization buffer was added
and samples were hybridized to the microarray slide for 17 h at
65 1C. After hybridization, slides were washed in Agilent Wash
Buffer, Acetonitrile, and Stabilization and Drying Buffer (Agilent
Technologies, Santa Clara, CA) then scanned using GenePix 4100A
scanner and GenePix Pro software (Molecular Devices Inc.,
Sunnyvale, CA).
The median backgrounds were subtracted from the median Cy3
and Cy5 foreground intensity reads for each spot and were log
2-transformed. Technical control spots and spots exhibiting an
average signal to noise ratio of less than 3 over all 36 arrays were
excluded from further analysis. Signal to noise ratios were calcu-
lated as (median foreground�median background)/background
standard deviation for each dye. Locally Weighted Scatterplot
Smoothing (LOWESS) procedure was utilized to correct for inten-
sity dependent dye bias [17]. A linear mixed model approach was
used to estimate treatment means by fitting the difference of Cy3
and Cy5 normalized signal intensities with each treatment groups’
parameterization for each gene as described by Sandford et al.
[64]. Only one random effect, experimental replicate, was included
in the model, as likelihood ratio testing determined no effect of
slide or array position. P values were obtained for contrasts of
interest. False discovery rate was controlled by converting P values
to q values using the R package q value [67]. Gene ontology
analysis of biological processes for significant genes was
performed using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) [32,33].

2.6. Quantitative PCR validation

Quantitative real time PCR (qRT-PCR) was performed as
described by [59] to confirm microarray results. The following
fifteen genes were selected because of significance in the micro-
array study: clusters of differentiation (CD) 3e, CD4, CD5, CD28,
toll-like receptors (TLR) 7, TLR15, TLR21, heat shock protein 70
(HSP70), P20K, Rab11a, avian beta-defensins (AvBD) 2, AvBD4,
AvBD5, AvBD6, and AvBD7. 28S was utilized as a housekeeping
gene to normalize for starting concentration of RNA. Primer
sequences for CD4, CD5, TLR7, Rab11a, AvBD2, AvBD4, AvBD5,
AvBD6, and AvBD7 were designed using sequences from NCBI
and PRIMER3 [62]. Primer sequences for 28S, TLR15, and TLR21
have been previously reported (28S [38]; TLR15 [31]; TLR21 [9]).
CD3e, CD28, and P20K were previously utilized [73] but primer
sequences were not published. All unpublished primer sequences
can be found in Table 1. Each sample was run in three wells. Cycle
threshold (CT) values were recorded for each well and each
sample triplicate was averaged. Slopes representing reaction
efficiency for each gene were generated through amplification
of a serial dilution. CT values were adjusted for RNA concentration
and reaction efficiency using the formula: 40�[Sample Mean
CT Target Geneþ(Median 28S for All Samples�Sample Mean
28S)� (Slope Target Gene/Slope 28S)]. Adjusted CT values were
analyzed using the Fit Model procedure in JMP software (SAS
Institute Inc., Cary, NC). Validation was carried out utilizing RNA
extracted from different birds than those included in the micro-
array analysis representing the same treatment groups and
replicates, allowing for both technical and biological replication.
3. Results

3.1. Transcriptome analysis of PBL

Forty individual samples were analyzed by microarray; 1 bird
from each of 10 treatment groups, with 4 replications. After
removal of spots with a signal to noise ratio less than 3, a total
of 24,387 genes were included in the statistical analysis. Effects of
treatment were analyzed through contrasts of treatment groups.
Contrasts measured tested effect of time for each treatment
group, comparisons of each group to control, effect of vaccination,
and effect of pathology. Large numbers (4100) of significantly
differentially expressed genes (q valueo0.05) were detected
in 4 contrasts of interest, all involving the NV–C severe groups.
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Fig. 2. Shared significant genes. Comparison of shared significant genes within the

3 contrasts of NV–C mild day 5 vs. NV–C severe day 5, NV–C severe day 1 vs. NV–NC

group day 1, and NV–C severe day 5 vs. NV–NC group day 5. (a) Represents shared

genes over all 3 contrasts, (b–d) represent shared genes between 2 contrasts, and

(e–g) represent genes unique to a contrast. The numbers in parenthesis represent

the total number of significant genes within each contrast.

Table 1
Primers utilized for qRT-PCR validation experiments.

Gene Accession Forward sequence 50–30 Reverse sequence 50–30

CD3e Y08917 CTGCTGTGTGTGGTTGGTG CGGATCTGGCTTCCATTTTA

CD4 AY528652 ATACCGTGGAGGAAGCTCAT TGCCACCTCATACCAGTGAT

CD5 Y12011 ACAGGAGGCTGATGAAGAGG CTCTGCTGCTCCTCCACTCT

CD28 X67915 CAGTCTTTATAATCTACCGGCAAAA TTGTTCTTCTGGTGAGGTGGA

TLR7 AJ720504 CGGAAAATGGTACATCATGC AAAGTTTTGGGAAACCAACG

Rab11a AJ720402 GCAAAAGCACCATTGGAGTA GCACCTCGATAGTACGCTGA

P20K M25784 CTAGGGAGCGGAACTACACG GTTTGGGAAGCAGCATTCAT

HSP70 NM_001006685 ATAGGGTGGGAGCCAAGAAC GGTTTCGGTCAAGCCAACT

AvBD2 AF033336 TTTCTCCAGGGTTGTCTTCG AGCAGCTTCCGACTTTGATT

AvBD4 AY621306 TTTCATCGTGCTCCTCTTTG CATAGCCCCAGGTAAGCATT

AvBD5 AY621307 CCACAAGTCATGTCCTCCAG CATGGAGATGAACGTGAAGG

AvBD6 AY621308 TGCAGGTCAGCCCTACTTTT GTCCACTGCCACATGATCC

AvBD7 AY621309 CTGCTTTCCAGGGATCTGTC GCCAGAGAAGCCATTTGGTA
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The largest number of differentially expressed genes (1914 genes)
was found in the contrast of NV–C severe day 5 vs. NV–C mild day
5. The second largest number of differentially expressed genes
(1097 genes) was found in the contrast of NV–C severe group vs.
NV–NC control group on day 1. This number was reduced to 506
differentially expressed genes for the same contrast on day 5. The
number of differentially expressed genes in the contrast of NV–C
severe day 1 vs. NV–C severe 5 was 107 genes.

Numbers of shared and unique differentially expressed genes
between 3 contrasts analyzing differences in treatment group on
the same day are displayed in Fig. 2. A total of 417 differentially
expressed genes found in the contrast of NV–C severe day 5 vs.
NV–NC control day 5 were also differentially expressed in the
NV–C severe day 5 vs. NV–C mild day 5 contrast; 280 genes
had increased expressed in the severe group in both contrasts,
137 genes had decreased expressed in the severe group in both
contrasts. In all of the shared genes between the contrasts
represented in Fig. 2, 99% of genes were expressed in the same
direction relative to the severe group; either all more highly
expressed in the severe group across all contrasts or more lowly
expressed among all contrasts.
The differences between internal lesion scores of vaccinated
and non-vaccinated, challenged birds were tested through two-
sample t-tests for each day. There was a significant
(P valueo0.001) reduction in internal lesions among vaccinated,
challenged birds compared to those non-vaccinated, challenged
birds on both days, however, no differentially expressed genes
due to vaccination effect were detected. On day 1, the mean7-
standard deviation of lesion scores for vaccinated birds was
1.5071.27 (N¼76) and unvaccinated birds 3.0671.68 (N¼87).
On day 5, the mean7standard deviation of lesion scores for
vaccinated birds was 2.9472.08 (N¼80) and unvaccinated birds
4.2871.94 (N¼85). Vaccination effect on gene expression was
tested both through the V–NC group vs. NV–NC contrast on both
days and through a contrast utilizing a combination of all
treatment groups, non-challenged and challenged, on both days.

Samples from individuals with severe pathology or collected
5 day post-infection exhibited more gene induction than repres-
sion. Of differentially expressed genes with a minimum fold
change of 1.5, 60–80% of genes exhibited induction in the
4 contrasts that include: NV–C severe day 5 vs. NV–C mild day
5, NV–C severe day 1 vs. NV–NC day 1, NV–C severe day 5 vs. NV–
NC day 5, NV–C severe day 1 vs. NV–C severe day 5. Many
differentially expressed genes showed large fold changes. In the
4 contrasts described, 25–31% of differentially expressed genes
had a fold change of 3 or greater.

Heatmaps were generated to characterize patterns of gene
expression between similar contrasts by including genes with a
minimum q value of 0.05 in any contrast (Figs. 3 and 4). The NV–C
mild group on day 5 showed more similarities to the V–NC groups
than to the challenged groups (Fig. 3). The remaining challenged
groups, both vaccinated and non-vaccinated, exhibited similar
expression patterns. The only group with notable expression
changes over time was the NV–C severe group (Fig. 4).

3.2. Gene ontology analysis of significant genes

Gene ontology analysis focused on biological process terms
among significant genes. Larger numbers of significantly enriched
GO terms were found in contrasts with a higher number of genes
with differential expression. Three GO terms related to response
(response to stimulus, response to stress, and defense response)
were discovered among significantly differentially expressed
genes in the contrast of NV–C severe day 1 vs. NV–C severe 5.
Among the other 3 contrasts described (NV–C severe day 5 vs. NV–
C mild day 5, NV–C severe day 1 vs. NV–NC control day 1, NV–C
severe day 5 vs. NV–NC control day 5), a variety of metabolic and
biosynthetic processes were common. Prominent within NV–C
severe day 5 vs. NV–C mild day 5, were GO terms for signal
transduction, immune system processes, ion homeostasis and,



Fig. 3. Treatments compared to controls. Heatmap comparison of fold change for each treatment group compared to the day appropriate NV–NC control. Fold change was

calculated as log 2 (treatment)� log 2 (control).
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surprisingly, several GO terms centered on reproduction. Within
NV–C severe vs. NV–NC control, response terms were prominent
on day 1, and ion homeostasis and DNA structural terms were
prominent on day 5.

GO analysis of unique and shared differentially expressed
genes for 3 contrasts (Fig. 2) was carried out; NV–C severe day
5 vs. NV–C mild day 5, NV–C severe day 1 vs. NV–NC control day
1, NV–C severe day 5 vs. NV–NC control day 5. Many of the genes
shared among contrasts were related to immune response. These
included (a) CD4, tumor necrosis factor receptor, and Rab11a
shared by all 3 contrasts; (b) ATPase, CD5, interferon gamma
receptor, and toll-like receptor 15 shared by NV–C severe day
1 vs. NV–NC control day 1 and NV–C severe day 5 vs. NV–NC
control day 5; (c) ATPase, CD3e, CD200R1, toll-like receptor
7 shared by NV–C severe day 5 vs. NV–NC control day 5 and
NV–C severe day 5 vs. NV–NC control day 5. Avian beta-defensins,
CD74 and interleukin-8 were unique to NV–C severe vs. NV–NC
control on day 1 (e). Unique to NV–C severe vs. NV–C mild on day
5 (f) were genes related to ion transport and energy (ATPases and
ATP synthases), immune response (CD28, CD79b, interleukin
4 receptor, interleukin 10 receptor beta, toll-like receptor 21),
and reproduction.

Only two contrasts, NV–C severe day 5 vs. NV–C mild
day 5 and NV–C severe day 1 vs. NV–NC control day 1, had
significantly enriched KEGG pathways detected by DAVID
(P valueo0.10, Tables 2 and 3). Many of the pathways exhibited
relatedness to defense mechanisms, including lysosome pathway,
signaling pathways, apoptosis, and NK cell mediated toxicity.
The majority of pathways had higher expression in the severe
group compared to either mild or control groups, though some,
like the cell adhesion molecules pathway and the regulation of
actin cytoskeleton, had less expression among severe groups.

3.3. Microarray validation by quantitative real time PCR

Fifteen significant genes from the microarray study were
validated through qRT-PCR analysis: CD 3e, CD4, CD5, CD28,
TLR7, TLR15, TLR21, HSP70, P20K, Rab11a, AvBD2, AvBD4, AvBD5,
AvBD6, and AvBD7. These genes had significant differential
expression in microarray analysis (q valueo0.05). Validation
was performed on two contrasts of interest, NV–C severe day
5 vs. NV–C mild day 5 for CD 3e, CD4, CD5, CD28, TLR7, TLR15,
TLR21, HSP70, P20K, and Rab11a, and NV–C severe day 1 vs. NV–
NC day 1 for AvBD2, AvBD4, AvBD5, AvBD6, and AvBD7. Results
show similar trends in direction of fold change for 12 of the
15 genes analyzed; TLR7, TLR15, and Rab11a were expressed in
the opposite direction from the microarray, although the results
were non-significant.
4. Discussion

Gene expression differences associated with challenge,
pathology, or vaccination status, can provide valuable insights
into the host response. The largest amount of gene expression
differences occurred between pathology categories classified as



Fig. 4. Day 5 compared to day 1. Heatmap comparison of fold change for each day 5 treatment group compared the day 1 treatment group. Fold change was calculated as

log 2 (day 5)� log 2 (day 1).

Table 2
Effect of severity of pathology at day 5 in non-vaccinated, APEC challenged birds on KEGG pathway enrichment (P valueo0.10).

KEGG pathway Gene count Accessions

Lysosome gga04142 15 AJ721124, X95502, AJ851595, AJ719840, AJ719682, AJ289021, X07775, AJ719710,

BX931548, AJ720066, AJ720880, AJ721067, AJ719318, AJ720351, AJ720226

Oxidative phosphorylation gga00190 12 BX933021, BX932247, AJ721124, AJ720085, AF461018, AJ720322, CR382422,

CR385488, BX950606, AJ719669, AJ289021, BX934066

Galactose metabolism gga00052 5 AJ719970, AJ721042, AJ719347, AF538281, AF534111, AJ719710

Amino sugar and nucleotide sugar metabolism gga00520 7 AJ719970, AJ719291, AJ721042, AJ719347, AB071038, AF538281, AJ720584, AF534111

Cell adhesion molecules (CAMs) gga04514 8 CR390246, M14049, X56559, X67915, AY159125, Y08823, BX950651, AY528652, X71786

Calcium signaling pathway gga04020 10 BX930007, Y12601, AF020315, AY393849, AF205066, AJ720104, AJ012579, AJ719540,

M66385, NM_001031553

Pentose phosphate pathway gga00030 5 AJ719291, AJ721042, AF538281, AJ720644, AJ720046

Regulation of actin cytoskeleton gga04810 15 AJ719895, X56559, NM_001031553, BX933901, X06387, AJ720675, AY046915, BX933838,

M24637, M14049, AY159125, AJ720866, AY460177, X71786, CR523532, AJ851398

Starch and sucrose metabolism gga00500 5 AJ719970, AJ719291, AJ720880, AJ721042, AF538281, AF534111

Nicotinate and nicotinamide metabolism gga00760 4 BX930007, AJ851590, CR386613, DQ150102

Jak-STAT signaling pathway gga04630 11 CR407301, BX933215, X68073, AJ719433, AJ720866, AY957508, AF082666, AF034576,

AJ851398, U40844, AF177875
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mild and severe in the NV–C day 5 group. Several prominent
receptor types and clusters of differentiation important to
immune response and signaling were differentially expressed
between the mild and severe groups. The toll-like receptors
(TLR) 7, 15, and 21 all exhibited higher expression in the severe
group than the mild group. Surprisingly, two of these TLRs
showed fold change in the opposite direction in the qRT-PCR
results. There are several differences in the technical and statis-
tical approaches between microarray and qRT-PCR. These
conflicting results, however, do still indicate an importance of
the TLR family with regards to response to infection and illustrate
the need for further experimentation. TLRs have shown expres-
sion changes due to pathogen challenge in multiple tissues
[1,46,59]. In vitro Salmonella stimulation of heterophils from a
Salmonella-resistant population of birds revealed higher expres-
sion of TLR15 than heterophils from a Salmonella susceptible
population [53], consistent with the results of the current
qRT-PCR validation. Cultured macrophages have also shown



Table 3
Effect of severe pathology at day 1 compared to non-vaccinated, non-challenged birds on KEGG pathway enrichment (P valueo0.10).

KEGG pathway Gene count Accessions

MAPK signaling pathway gga04010 12 AJ851529, AY033635, CR387146, AJ720776, AJ851546, X68073, BX933236,

AJ719540, AF296875, AF167296, U10329, AJ851639

VEGF signaling pathway gga04370 6 AJ851529, AY033635, AJ720776, AJ719540, M64990, U10329

Natural killer cell mediated cytotoxicity gga04650 7 AJ851529, AY033635, AJ720191, AJ719540, AF296875, AY957508, AJ002317

NOD-like receptor signaling pathway gga04621 5 AY033635, AJ720776, BX935364, AY057939, M16199

Apoptosis gga04210 6 AJ720191, BX931997, U26645, AJ719540, AF296875, AY057939

Arachidonic acid metabolism gga00590 3 AJ006405, M64990, U10329

DNA replication gga03030 4 AJ720172, AJ719992, AJ719763, AJ719578

E.E. Sandford et al. / Results in Immunology 2 (2012) 44–5350
up-regulation of TLR15 when stimulated with E. coli- or Salmonella-
derived LPS [11]. It is surprising that in the current study, TLR4 and
TLR5 were not among those genes differentially expressed, because
they are considered to be the main TLRs for recognizing features of
Gram-negative bacteria such as APEC [8]. TLR4 expression differences
have been reported in heterophils due to bacterial challenge and
genetic background [59]. TLR4 and TLR5 had differential expression
in the cecum, TLR4 in the spleen and TLR5 within males in the spleen
of Salmonella infected chicks [1].

Interleukin receptors 4 and 10, and interferon gamma (IFNg)
receptor 2 all had higher expression in the severe group than the
mild group. Changes in interleukin (IL) receptor genes have been
noted in response to pathogen challenge [15], although expres-
sion changes in IL4R and IL10R have not been extensively studied.
IFNgR2 in macrophages exposed to Salmonella endotoxin in vitro
was up-regulated 4 h post-stimulation [12]. Tregs, which control
the expression of IL-4 and IFNg to prevent autoimmunity, have
been shown to fail under high antigen dose in vitro [24]. Higher
expression of receptors for these pro-inflammatory cytokines may
allow for greater downstream signaling triggered by IL-4 and
IFNg, promoting the severe pathology through autoimmunity.
Cytokines are commonly produced by PBL after pathogen chal-
lenge and have shown differential expression due to bacterial
challenge and genetic background in heterophils in vitro [59].
Although several receptors were up-regulated, no cytokine genes
were significantly differentially expressed. Leukocytes with
increased cytokine receptor levels may more readily receive and
process signals, resulting in a variety of pleiotropic effects, even if
the cytokine levels are unaltered in the animal.

Clusters of differentiation (CD) are cell surface molecules
common to leukocytes that have roles in the immune response.
Differential expression of CD molecules in response to Salmonella

and Campylobacter infections has been observed in multiple
chicken tissues: heterophils [13] and jejunum [65] with
Salmonella and ceca with Campylobacter [44]. In the current study,
many CD molecules had higher expression among the mild vs.
severe pathology group, including CD3e, CD4, CD5, CD28, CD79b,
and CD200R1. CD81 was also differentially expressed, but showed
higher expression in the severe pathology (susceptible) group.
Previous expression studies have reported higher levels of CD4
among heterophils from Salmonella resistant chickens compared
to susceptible lines [13]. This is particularly noteworthy as this
difference was noted in non-challenged birds, presenting CD4
expression level as a potential pre-challenge assessment of
susceptibility. The current study utilized bacterial challenge to
assess pathology and found higher levels of CD4 among birds
showing mild pathology (resistant) than in birds demonstrating
severe pathology (susceptible). Many CD molecules are associated
with or have higher prevalence of specific PBL types (CD3e among
T-cells [26], CD4 among T-cells [40], ggCD200R-B1 among macro-
phages [71]), suggestive of differences in PBL population compo-
sition between mildly and severely affected birds that influence
downstream pathology. Higher CD4 expression may be indicative
of a higher T-helper population within birds with mild pathology.
In humans, CD200R1 acts as a regulator of myeloid cell activation
and pro-inflammatory response [52]. Avian CD200R, specifically
ggCD200R-B1, has high homology to mammalian CD200R [71].
Lower expression among the severe pathology group would allow
an unchecked pro-inflammatory response, leading to greater host
damage.

The Ras superfamily can be divided into five major family
groups: Ras, Rab, Rho, Ran, and Arf. The superfamily has many
roles related to immune response, Ras genes can cause regulatory
changes in cell proliferation, differentiation and survival, Rho are
Ras homologous proteins with roles in the cell cycle, Rab proteins
have roles in vesicle formation and transport and Arf also
has roles in vesicle transport [72]. Ten members of the
Ras superfamily, Ras, Rab, Rho, and Arf groups, were differentially
expressed between pathology groups on day 5, introducing a new
family of genes to be explored in greater depth in the role of
immune response. Seven had higher expression among the severe
group and 3 among the mild group. Ras p21 protein activator 3,
Rasa3, which is involved in a signaling pathway for B-cells to
avoid pro-apoptotic signals [49], was higher amongst the mild
group. Rab11a has been shown to have roles in TLR4 trafficking to
phagosome and control interferon regulatory factor-3 in human
monocytes [34]. The conflicting result of the qRT-PCR validation
in Rab11a, along with the lack of literature on the Ras family in
chickens, illustrates the need for more attention to this gene
group in the investigation of immune response.

Differences between the NV–C severe group and the NV–NC
group were observed on both days. The number of differentially
expressed genes in this contrast decreased over time from 1097
genes on day 1 to 506 on day 5. This may be due to the rapid
response of PBL to infection. Unique to the day 1 comparison of
the NV–C severe and NV–NC group for PBL, genes encoding avian
beta-defensins (AvBD) and interleukin 8 were up-regulated. The
genes for AvBD2, 4, 5, 6, and 7 were all rapidly up-regulated by
APEC infection. The antimicrobial properties of beta-defensins
have been well described [70]. AvBD2, 5, 6, and 7 have been found
to be expressed in leukocytes [13,70]. TLR agonists, such as LPS,
increase AvBD2 in heterophils [39]. Additionally, structural var-
iants in AvBD genes have been associated with response to
Salmonella in chickens [30,29], indicating the feasibility of their
use in marker-assisted selection to enhance the anti-bacterial
response on a population level. The in vitro response of
macrophages to Salmonella endotoxin is typified by a significant
induction of IL8 at 1, 2, 4, and 8 h post-stimulation [12]. The
chemotactic ability of IL8 for other peripheral blood mononuclear
cells and heterophils [3] is consistent with a role in early response
to infection, as seen here, with IL8 only significantly induced in
the day 1 response.

Differential expression was seen among clusters of differentia-
tion genes and in the Rab and Rho family groups on day 1 between
the NV–C severe and NV–NC group, similar to the differential
expression between mild and severe pathologies at day 5.
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All differentially expressed CD genes were down-regulated fol-
lowing APEC challenge: CD4, CD5, CD74, CD82, CD83, and CD247.
A strain of APEC (APEC17) was previously shown to activate
caspase 3/7 in macrophages, inducing apoptosis [6]. APEC O1 in
the current study may result in APEC-induced PBL death, shifting
the PBL population structure compared to basal (non-challenged)
levels. CD247, also known as the T-cell receptor (TCR) z-chain, is
well conserved between chickens and mammals [25], and is
responsible for aiding in assembly of the TCR complex and
receptor signaling. In vitro studies of the human z-chain have
shown degradation by activated caspases [23], indicating a
possible mechanism by which APEC could reduce the abilities of
T-cells and of the cell-mediated response, resulting in more
severe pathology. Among the Rab and Rho genes that were
differently expressed, only RhoB was down-regulated in the
severe pathology group. Under stress, RhoB inhibits apoptosis
and activates NF-kB in rats [42,45], such that decrease of expres-
sion in severe pathology would allow greater apoptosis and limit
NF-kB activation. Rab11a was again higher in the severe pathol-
ogy group in this contrast, along with Rab18, 32, and 35.

Fewer significantly differentially expressed genes limited GO
analysis and interpretation of the NV–C severe day 5 and NV–NC
day 5 group comparison. Similar to other contrasts, three CD groups
were significantly differentially expressed. CD3e, CD4, and
CD200R1 showed less expression in the NV–C severe group,
suggestive of continued reduction in CD4þ leukocytes, such as
T-cells, and in regulators of pro-inflammatory response. Expression
patterns within prominent GO groupings for ion homeostasis and
cellular developmental processes were inconsistent, with no clear
trend of greater expression in one treatment group compared to
the other.

Many genes were significantly expressed in more than one
contrast (Fig. 2), which is reinforced by the common patterns seen
within the treatment/control heatmap (Fig. 3). Similarities
between NV–C severe and NV–C mild on day 5 and NV–C severe
vs. NV–NC group on day 1 suggest similarities between mild
pathology on day 5 and the control groups. This could be the
result of a return to homeostasis after a successful defense against
APEC. The changes between the severe pathology group and the
control non-challenged group over time appear to be driven by
the NV–C severe group, as this was the only group to exhibit large
changes between day 1 and day 5 (Fig. 4).

Only two contrasts, NV–C severe day 5 vs. NV–C mild day
5 and NV–C severe day 1 vs. NV–NC control day 1, had signifi-
cantly enriched KEGG pathways, as detected by DAVID
(P valueo0.10, Tables 2 and 3). Between pathology states on
day 5, genes that enriched metabolic pathways were more highly
expressed in the severe group, potentially mobilizing more
energy to fight infection. The effect of severe status compared
to the non-challenged control on day 1 illustrates the importance
of signaling pathways during early response to infection.

The lack of a detectible vaccination effect, given the large
impact on total lesion scores and the tissue analyzed, is surpris-
ing. Vaccination against Newcastle disease virus increases serum
antibody titers and can impact T cell populations in the 9 weeks
following vaccination [16]. Significant changes in IFNa and IFNg
mRNA expression have been reported in peripheral blood at 1 and
7 day post-vaccination to Marek’s disease vaccine in 6–8 week old
chickens [57]. These chickens were then sampled only 4 h after
challenge to observe differential expression patterns due to
vaccination and challenge [57]. Several cytokines showed signifi-
cant expression changes 1 day post-vaccination with complete
Freund’s adjuvant [27]. Time of vaccination, time of challenge and
time of tissue sampling all impact the observed mRNA expression
patterns. Our sampling at 15 and 19 day post-vaccination may
have been too late to observe expression changes in PBL due to
vaccination alone, and sampling at 1 and 5 day post-infection may
have been too late to observe rapid, vaccine-induced effects in
response to infection.

Great insights about how specific cell types react to a foreign
agent can be gained through targeted in vitro experimentation.
A limitation of in vitro experimentation, however, is in knowing
how well the information gained from a reduced system will
translate to response at the organismal level. The in vivo holistic
approach of this experiment allowed the assessment of each
animal’s gene expression response, not simply an individual cell
type. By utilizing samples taken from whole blood, the current
study simultaneously detected expression differences due to up-
(or down)regulation in specific cell types and the differences
caused by changes in the proportion of circulating cell types; that
is, the holistic response of the animal. Understanding the systemic
nature of complex infections, such as those caused by APEC,
requires study of a whole organism’s response and multiple
tissues, which is better accomplished through an in vivo experi-
ment. This is further highlighted through the differences in
information gained from the current experiment on PBL and prior
examination of spleen transcriptomes from these same indivi-
duals [64].

Peripheral blood leukocytes are comprised of cells with roles in
innate/adaptive response and cell/humoral-mediated responses.
Transcriptome interrogation of this system reveals which gene
expression patterns play an important role in immune response.
Additionally, these cells can be collected from live birds without
the need to harvest the breeding animal to assay the cellular
response. Through this greater understanding of host response,
candidate genes to improve genetic resistance to APEC infection
can be identified. Applying selection for beneficial genotypes in
breeding populations will generate enhanced host responses
against APEC infection.
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