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1. Introduction

ABSTRACT

While the F200Y SNP in the beta-tubulin gene is most commonly associated with benzimidazole resis-
tance in trichostrongylid nematodes, other SNPs as well as drug efflux pathways have been implicated
in the resistance. The relative contributions of all these mechanisms are not understood sufficiently to
allow expected drug efficacy to be inferred from molecular data. As a component of developing better
means to interpret molecular resistance tests, the present study utilised a drug resistant Haemonchus
contortus isolate which possesses two of the principal benzimidazole resistance SNPs (E198A and
F200Y) in order to assess the relative degree of resistance conferred by the two SNPs. We exposed larvae
to a range of thiabendazole concentrations in in vitro development assays, and collected the surviving L3
larvae at each drug concentration to establish sub-populations showing increasing levels of resistance.
We then sequenced the isotype 1 beta-tubulin gene in pooled larval samples, and measured allele
frequencies at the two SNP positions. The frequency of the resistance allele at the 198 position increased
as the thiabendazole concentration increased, while the frequency of the resistance allele at the 200
position decreased. Genotyping of individual larvae showed that the highest drug concentration was
associated with the removal of all genotypes except for homozygous resistance at the 198 position
alongside homozygous susceptible at the 200 position. This indicates that, at least for larval life stages,
the E198A SNP is able to confer higher levels of resistance to benzimidazole drugs than the F200Y
SNP, and that the homozygosity at 198 in the highly resistant individuals is mutually exclusive with het-
erozygosity or resistant homozygosity at the 200 position. This study illustrates the need to understand
the relative contributions of different resistance mechanisms in order to maximise the degree to which
molecular tests are able to inform on drug resistance phenotype.

© 2012 Australian Society for Parasitology Published by Elsevier Ltd. All rights reserved.

drug/species combinations (Coles et al., 2006). Molecular-based
tests offer much greater sensitivity, however they are not available

As increasing anthelmintic resistance threatens the sustainabil-
ity of livestock industries worldwide (Kaplan, 2004; Sutherland
and Leathwick, 2011) there is a need to monitor resistance levels
so that appropriate drug-use decisions can be made on grazing
properties. The only readily available means of determining the
resistance status of ruminant nematodes remains the faecal egg
count reduction test (FECRT), which is laborious and lacks sensitiv-
ity. In vitro tests on the free-living life stages of some important
helminth parasites have been developed, however they have not
been widely applied in the field as they generally also lack
sensitivity, and in some cases apply to only a limited number of
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for use at present due largely to an incomplete knowledge of the
molecular basis of anthelmintic resistances, and, hence, uncer-
tainty as to the nature of the relationship between genotype and
resistance phenotype. The FECRT therefore remains the test of
choice for graziers.

Among the commonly used anthelmintic drug groups, the
molecular basis of resistance has been most studied, and is
considered to be most understood, for the benzimidazole group
(Wolstenholme et al., 2004; von Samson-Himmelstjerna, 2006;
von Samson-Himmelstjerna et al., 2007). Haemonchus contortus
has been well studied in this regard, and may be the best
characterized of the economically-important species. However an
examination of current knowledge on the basis of benzimidazole
resistance in H. contortus reveals a degree of uncertainty in the
ability to interpret the results of molecular-based resistance tests.

2211-3207/$ - see front matter © 2012 Australian Society for Parasitology Published by Elsevier Ltd. All rights reserved.
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Benzimidazole resistance in this species is considered to be
primarily due to a F200Y SNP in the beta-tubulin gene (Kwa
et al., 1994, 1995). However, a F167Y SNP has also been found to
be associated with resistance (Prichard, 2001), and more recently,
another SNP, E198A, has also been implicated in resistance in some
isolates (Ghisi et al., 2007; de Lourdes Mottier and Prichard, 2008;
Rufener et al., 2009). In addition, P-glycoprotein may play a role in
resistance to these drugs (Blackhall et al., 2008).

The primary role of the F200Y SNP in benzimidazole resistance
in trichostrongylid nematodes is well established (Kwa et al., 1994;
Beech et al., 1994; Elard et al., 1996; Elard and Humbert, 1999; von
Samson-Himmelstjerna et al., 2009). However, the existence of the
other mechanisms described above, and a lack of knowledge as to
the relative effects of multiple mechanisms in cases where they
may occur simultaneously, illustrates the need to develop an ap-
proach to molecular testing based on a broader understanding of
all contributing mechanisms, and the degree to which each compo-
nent will impact on the observed resistance phenotype. This will
allow for a more informed interpretation of molecular data.
The presence of both the E198A and F200Y SNPs in an isolate of
H. contortus from Australia (previously described by de Lourdes
Mottier and Prichard, 2008) provided an opportunity to evaluate
the relative contributions of the two SNPs to the observed level
of resistance. The present study aimed to examine genotypes in
this Wallangra isolate of H. contortus by dividing L3 stage larvae
into sub-populations based on their ability to survive increasing
thiabendazole concentrations in a larval development assay, that
is, on their relative resistance status. This approach offered
significant advantages over the previous comparisons of genotypes
between populations showing different levels of resistance (often
multiple drug resistances) but also differing significantly in genetic
background, hence making it difficult to associate genotype with
resistance to specific drugs. In contrast, the present study aimed
to avoid these issues by subdividing a single population of worms
on the basis of resistance of larval life stages to a single drug
(thiabendazole) in order to be able to examine correlations
between genotype and resistance to just this single compound.
Resistance allele frequencies at both the 198 and 200 SNP positions
(GCA and TAC, respectively) were measured for each of the sub
populations recovered from larval development assays at different
concentrations of thiabendazole. The original and most highly
drug-pressured populations were compared further by genotyping
individual larvae at the two SNP positions.

2. Materials and methods
2.1. Parasites

The H. contortus used for this study were from the drug suscep-
tible Kirby 1986 (Albers and Burgess, 1988) isolate and the multi-
drug resistant isolate Wallangra 2003 (Love et al., 2003). Prior to
being used in the present study these isolates were kept as frozen
stock as described by Hunt et al. (2008). Infections were main-
tained in sheep at the CSIRO Chiswick Laboratory in Armidale,
and faeces was sent regularly by courier to the CSIRO laboratory
in Brisbane for either recovery of eggs, or to establish cultures to
provide L3 stage larvae for molecular analyses.

2.2. Larval development assay

Larval development assays were conducted using an agar-based
96-well format modified from Gill et al. (1995). The thiabendazole
concentration gradient ranged from 0.005 to 10.4 pug/ml. Nematode
eggs were recovered from sheep faeces by filtration and sucrose
density centrifugation, and placed onto assay plates. The next

day, each well of the plate received 10 p of a nutrient solution con-
taining a fresh culture of Escherichia coli diluted in growth medium
(Hubert and Kerboeuf, 1984) as described by Kotze et al. (2009). For
initial assessment of ICso values (defined as the concentration of
drug required to inhibit the development of larvae to the infective
L3 stage to 50% of that observed in control wells), the assays were
terminated after 6 days by the addition of Lugol's iodine and the
numbers of L3 larvae were counted and compared to control (no
drug) wells.

Subsequent experiments involved the exposure of larvae to thia-
bendazole in the agar-based format described above, but at the end
of the incubation period the surviving larvae were collected rather
than killed with iodine. Whole 96-well plates were set-up with a
single concentration of thiabendazole in each well (concentrations:
0.33,0.65, 1.3, 2.6 pg/ml), and eggs were added to each well on day
0. The larvae were fed on day 1 as described above. On day 6, the
larvae were flushed out of the wells using water and placed into
the upper chamber of a filter apparatus. They were allowed to mi-
grate through a 20 pm mesh filter over several hours into the lower
chamber. Larvae were recovered from the lower chamber and
several aliquots were counted in order to determine the total
number of individuals. Larvae were frozen at —20 °C in groups of
approximately 3000-8000 for later molecular analysis (= pooled
larval samples). For genotyping of individuals, the larvae were
collected as described above and then exsheathed by incubation
in 0.9% saline at 42 °C with a gas mixture consisting of 40% CO,
and 60% N, bubbling through the solution. Larvae were examined
under a microscope to confirm exsheathment, and individuals were
picked into separate wells of 96-well plates in approximately 2 pul of
water, and frozen at —20 °C for later molecular analysis.

2.3. Preparation of genomic DNA, PCR, and sequencing
DNA was prepared from four sample types:

(1) Pooled Kirby or Wallangra L3 larvae that had migrated from
faecal cultures (10,000 per sample).

(2) Pooled Wallangra L3 larvae recovered from LDA plates con-
taining thiabendazole at one of four concentrations (3000-
8000 per sample).

(3) Individual Wallangra L3 larvae that had migrated from fae-
cal cultures.

(4) Individual Wallangra L3 larvae recovered from LDA plates
containing thiabendazole at 2.6 pg/ml.

Pooled larval samples were homogenised by shaking in a 2 ml
tube containing three 3 mm glass beads and approximately 0.3 g
of 1 mm ceramic zirconia silica beads, and 160 pl lysis solution
(Qiagen QIAamp DNA miniprep kit) using a Savant FP 120
BIO121 bead beater. DNA was then recovered following the
QIAamp DNA miniprep kit instructions.

DNA was recovered from individual L3 stage larvae using the
technique described by von Samson-Himmelstjerna et al. (2009).
Larvae were digested overnight in 10 pul of a digestion buffer
(10 mM Tris-HCI, pH 8.3, containing 50 mM KCI, 2.5 mM MgCl,,
0.45% Nonident p-40, 0.45% Tween-20, and 100 pg/ml proteinase
K), followed by a 20 min incubation at 75 °C.

PCR primers were designed to differentiate between H. contortus
beta-tubulin isotype 1 and 2 genes (Table 1). PCR conditions for
pooled larvae DNA samples were as follows: 98 °C for 30 s, followed
by 35 cycles of 98 °C for 10, 60 °C for 30s and 72 °C for 25s,
followed by 72 °C for 10 min, using Finnzymes Phusion Hot Start
Polymerase II. PCR on single larva DNA was as follows: 98 °C for
30, followed by 50 cycles of 98 °C for 10s, 57 °C for 15s and
72 °C for 45 s, followed by 72 °C for 7 min, using BioRad iProof
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Table 1

Primer sequences for H. contortus beta-tubulin isotype 1 and 2 PCRs, and sequencing
across the 198 and 200 SNP positions of isotype 1 in the forward and reverse
directions.

Purpose Sequence 5'-3’ Expected
product size

PCR

Pooled larvae

Isotype 1 forward TTCTGGACCGTATGGACAG 895

Isotype 1 reverse GTAAGCTCAGCAACTGTCGAA

Isotype 2 forward GCTCCGGACCTTTTGGTGCT 2176

Isotype 2 reverse CGTGAGCTCAGAAACAGTTAGT

Single larvae

Isotype 1 forward CTAGTTGATAACGTATTAGACGTTGTC 791

Isotype 1 reverse GTAAGCTCAGCAACTGTCGAA

Sequencing

Isotype 1 forward GAGGCACTGGATCTGGAATG -

Isotype 1 reverse TCTCCATAGGTTGGATTTGTGAG -

high-fidelity DNA polymerase. PCR products were examined on 1.5%
agarose gels.

Sequencing reaction methods differed for the pooled and single
larvae preparations. For pooled larvae, the PCR products were puri-
fied using Qiagen QIAquick spin columns as per the manufacturers’
instructions. For individual larvae, PCR products were prepared for
sequencing by incubation in Exonuclease I (New England Biolabs)
(6000 Ujul), calf intestinal alkaline phosphatase (Finnzymes)
(6.3 U/ul) and sequencing buffer for 97 °C for 20 min, followed by
80 °C for 20 min. Sequencing reactions were then performed for
pooled and individual DNA with the sequencing primers listed in
Table 1 using BigDye Terminator 3.1 (BDT) (Applied Biosystems).
BDT reaction products were prepared for sequencing by either
ethanol precipitation (pooled larval DNA) or using the Agencourt
CleanSEQ cleanup protocol (individual larval DNA). All samples
were sequenced using an ABI Prism 3100 Genetic Analyser.

2.4. Determination of allele frequencies

Sequence traces were examined using ChromasPro version 1.5
software, focusing only on the F167Y (TTC/TAC), E198A (GAA/
GCA), and F200Y (TTC/TAC) SNPs. For pooled larvae, when only
one peak was present, the sample was recorded as being 100% of
the resistant or susceptible allele at that position; where two peaks
were present, the height of the nucleotide known to be associated
with resistance was expressed as a percentage of the combined
height of the two peaks. For individual larvae, the presence of a sin-
gle peak was recorded as indicating that the individual was homo-
zygous (either susceptible or resistant) at that position, while the
presence of two peaks indicated that the individual was heterozy-
gous at that position. The threshold value of heterozygote detection
was set at 50%, that is, a secondary peak was only considered
indicative of heterozygosity if its height was at least 50% of the
dominant peak. An online calculator tool (available at: http://
www.tufts.edu/~mcourt01/Documents/Court%20lab%20-%20HW%
20calculator.xls) was used to determine if the observed genotype
frequencies were consistent with the Hardy-Weinberg
equilibrium.

3. Results

Dose responses of the Wallangra and Kirby isolates in larval
development assays with thiabendazole are shown in Fig. 1. The
Wallangra isolate showed a significant level of resistance to the
drug: ICso (95% Confidence Interval) Kirby 0.030 pg/ml (0.025-
0.036), Wallangra 0.397 pg/ml (0.326-0.482), resistance ratio 13.

= Kirby
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Fig. 1. Response of Kirby and Wallangra isolates of H. contortus to thiabendazole in
larval development assays. Each data point represents mean + SE, n =3 separate
assay wells. Where SEs are not visible, they are smaller than the dimensions of the
data symbols. Arrows indicate the drug concentrations that were used subsequently
to partition the Wallangra isolate into sub-populations with different levels of drug
resistance.

The arrows on Fig. 1 indicate the drug concentration levels subse-
quently used to select for sub-populations of the Wallangra isolate
that were able to survive increasing concentrations of the drug.

While beta-tubulin isotype 2 PCRs with Kirby routinely
produced an amplicon of expected size, only rarely was a product
generated with DNA prepared from Wallangra worms. Hence, the
genotyping aspects of this study were only performed on PCR
amplicons generated using primers specific for isotype 1.

Genotyping was initially performed on pooled larval samples by
simple measurement of relative sequence-trace peak heights, and
expression of the height of the peak for the resistance-associated
nucleotide at each SNP position as a % of the combined heights of
both nucleotides at each position (Table 2). The Kirby isolate pri-
marily showed the susceptible genotypes at each position of inter-
est, however it did show a low level of the resistance allele at the
200 position (TAC), as well a trace of the resistance allele at the 167
position (TAC), however the latter was only present in one out of
the three samples examined. The Wallangra isolate showed
significant levels of both the E198A and F200Y SNPs. In all pairs
of forward and reverse sequence data, the resistance allele
frequencies at either position were higher when the PCR products
were sequenced in the reverse direction than in the forward
direction.

The results of genotyping at the 198 and 200 positions for
pooled samples of Wallangra larvae (not treated with thiabenda-

Table 2
Resistance allele frequencies for the F167Y, E198A and F200Y SNPs in isotype 1 beta-
tubulin from pooled larval samples of Kirby and Wallangra isolates of H. contortus.

Isolate SNP Sequence % Resistant allele
position direction (mean * SE)?
Kirby 167 For 0
Rev 4+4
198 For 0
Rev 0
200 For 7+3
Rev 16+3
Wallangra 167 For 0
Rev 2+1
198 For 40+£2°
Rev 58+2
200 For 3220
Rev 38+1

# n =3 separate pooled samples of larvae.

b Denotes that within an isolate, and within a SNP position, the forward and
reverse sequencing data were significantly different (P < 0.05) (data were not ana-
lysed where means of one or both sequencing directions were zero).
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Fig. 2. Resistance allele frequencies at the 198 and 200 SNP positions in isotype 1
beta-tubulin from pooled samples of Wallangra larvae not exposed to thiabenda-
zole, or populations of Wallangra larvae that had survived various levels of the drug
in larval development assays; data was derived from sequencing reactions in the
forward (A) or reverse (B) directions. Each column represents mean +SE, n=3
separate pooled larval samples. Within a SNP position, columns labelled with
different letters are significantly different (P < 0.05).

zole) as well as the survivors of the various drug concentrations
(from Fig. 1) are shown in Fig. 2. It is clear that as the concentration
of thiabendazole in the assay increased, the resistance allele

Table 3

frequency at position 198 increased, alongside a decrease at the
200 position. This relationship was apparent for both forward
and reverse-sequenced samples, although, as described above,
the resistance allele frequencies were consistently higher for the
reverse sequences.

Table 3 shows individual larval genotypes for Wallangra worms
not treated with thiabendazole as well as the survivors of
2.6 pg/ml. The Wallangra isolate was primarily composed of larvae
which were heterozygous at both positions (45.5%) or homozygous
resistant at one position and homozygous susceptible at the other
(21.8% homozygous resistant at 198, and 23.7% homozygous resis-
tant at 200). The genotype frequencies at both positions were con-
sistent with the Hardy-Weinberg equilibrium (P=0.69 at 198,
P=0.73 at 200) in the population that was not treated with
thiabendazole. No individuals were homozygous resistant at one
position alongside heterozygosity at the other, and none were
homozygous resistant at both positions. All larvae which were able
to survive 2.6 pg/ml thiabendazole were homozygous resistant at
the 198 SNP, alongside homozygous susceptible at the 200 posi-
tion. The allele frequency for 198A was 0.50 in the absence of selec-
tion and 1.0 in the thiabendazole-selected individuals, while the
allele frequency of 200Y was 0.45 in the absence of selection and
0.0 in the thiabendazole-selected individuals; both observed differ-
ences in allele frequency were highly significant (P < 0.01).

4. Discussion

The present study has for the first time examined the relative
degree of resistance conferred by different beta-tubulin SNPs in a
parasitic nematode. Many studies have compared genotypes in dif-
ferent populations with quite different genetic backgrounds and
often with only one relevant SNP present (F200Y), and found that
resistance allele frequencies are related to some degree with the
observed levels of resistance. In contrast, this study has examined
a single population which possesses two relevant SNPs, and then
subdivided it on the basis of relative resistance status in order to
highlight the resistance mechanism utilised by the most resistant
individuals in the population. The study has indicated that the
E198A SNP confers a higher level of resistance than does the
F200Y SNP in the larvae of a field isolate of H. contortus. It is clear
that while the Wallangra isolate contains a significant number of
larvae showing heterozygosity at both the 198 and 200 positions,
or homozygous resistant at one position only, it is the individuals
which are homozygous resistant at the 198 position that show
the highest levels of resistance.

An important limitation of the present study is that we have
examined the relationship between beta-tubulin SNPs and

Individual worm genotypes at the 198 and 200 SNP positions in isotype 1 beta-tubulin for Wallangra worms not exposed to thiabendazole and the survivors of

exposure to the drug at 2.6 pg/ml in larval development assays.

Genotype? Wallangra® Wallangra 2.6 pg/ml®
Number of larvae % of total Number of larvae % of total

Hs-198, Hs-200 0 0 0 0
Het-198, Hs-200 4 7.2 0 0
Hs-198, Het-200 1 1.8 0 0
Het-198, Het-200 25 45.5 0 0
Hs-198, HR-200 12 21.8 0 0
HR-198, Hs-200 13 23.7 62 100
HR-198, Het-200 0 0 0 0
Het-198, HR-200 0 0 0 0
HR-198, HR-200 0 0 0 0

2 Hs = homozygous susceptible; Het = heterozygote; HR = homozygous resistant.

b Total of 55 larvae genotyped from the group not exposed to drug.

¢ Total of 62 larvae genotyped from the group which survived 2.6 pig/ml thiabendazole.
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benzimidazole sensitivity in larval stages of H. contortus, whereas
the relationship in adult life stages will be more important in terms
of the impact of the beta-tubulin SNPs on the ability to control
worms with benzimidazole drugs in the field. The relationship
between SNP levels and the ability of adult worms to survive
increasing concentrations of benzimidazole drugs remains to be
determined. However, the response of H. contortus in larval devel-
opment assays is known to be indicative of the relative sensitivity
of adult stages to benzimidazole drugs (Coles et al., 2006). Hence, it
is likely that our association of the relative impact of the E198A
and F200Y SNPs on drug sensitivity in the larval stages is also
indicative of adult worm relationships.

We found that larvae that were homozygous resistant at one
position were always homozygous susceptible at the other SNP.
While individuals could be heterozygous at both positions, no het-
erozygosity was seen in larvae homozygous resistant at the other
position. This suggests a degree of fitness disadvantage associated
with these combinations that may otherwise be expected to confer
high levels of resistance. Similarly, de Lourdes Mottier and Prichard
(2008) reported an absence of double homozygous resistant
individuals among a Wallangra population. Ghisi et al. (2007)
found that E198A was not observed in sequences from resistant
H. contortus isolates that had F200Y, suggesting that the two SNPs
were mutually exclusive. This is also suggested by the data in
Fig. 2. Increasing larval development assay drug concentrations
led to an increasing resistance allele frequency at the 198 SNP
position, with a concomitant decrease in the resistance allele
frequency at the 200 position.

While PCRs of isotype 2 beta tubulin routinely produced ampli-
cons with DNA from pooled samples of Kirby larvae, such PCRs of-
ten failed to produce a product visible on agarose gels for
Wallangra. This is consistent with the reported loss of isotype 2
beta-tubulin in resistant isolates of H. contortus (Kwa et al.,
1993a,b).

The measurement of genotype frequencies for pooled DNA
samples using sequence trace peak heights (from von Samson-
Himmelstjerna et al., 2007) was useful for the present study in
describing the relationship between SNP frequencies and in vitro
resistance status, however its general use as a worm genotyping
tool is questionable. This method at best provides only an estimate
of genotype frequencies. We found that when resistant genotypes
were present at only low levels the method was inconsistent
between separate sequencing reactions, which resulted in large
standard errors when mean values were low (from Table 2). In
addition, the frequency values were consistently higher for the
reverse direction. This may be due to different nucleotide
incorporation efficiencies for the various nucleotides under our
experimental conditions. Different nucleotide incorporation
efficiencies are known to effect relative peak heights within a
sequence trace, as well as relative peak heights between sequenc-
ing reactions primed in the forward or reverse directions (for
example, Parker et al., 1995, 1996; Hancock et al., 2005). More
appropriate methods for routine molecular resistance testing have
been reported, most notably by von Samson-Himmelstjerna et al.
(2009) who described pyrosequencing and real time PCR assays
useful for benzimidazole resistance testing at each of the candidate
beta-tubulin SNP positions.

In order for molecular tests to adequately describe the resis-
tance status of worm populations, a better understanding of the
relationship between molecular data, either in the form of geno-
type frequencies (specifically, beta-tubulin resistance allele fre-
quencies for benzimidazole resistance) or gene expression levels
(for example, P-glycoprotein genes), and phenotype is clearly
needed. The present difficulty of interpreting molecular-based
resistance data was illustrated by von Samson-Himmelstjerna
et al. (2009) who described pyrosequencing and real time PCR as-

says for the detection of benzimidazole resistance in H. contortus.
The interpretation of test results based on the use of a threshold
frequency of the susceptible allele (TTC) at the 200 position of
90%, was shown by the authors to be an effective means to identify
the presence of drug resistance in the isolates they examined.
However, the TTC allele frequency was not a quantitative measure
of resistance. For example, two isolates with allele frequencies of
70-74% showed very similar egg hatch assay ECsqy values (range
0.08-0.14 pg/ml) as two isolates with TTC allele frequencies of
approximately 2% and 7%. In addition, three isolates showing
similarly low TTC allele frequencies (range 0-7%) showed much
higher ECsy values (range 0.4-0.66 pg/ml). Both comparisons
suggest that other mechanisms may be contributing to the
observed resistance phenotypes. Only a low level of the F167Y
SNP was detected in one isolate in this study, and no E198A was
detected, indicating that these SNPs were not contributing to the
resistance in the isolates examined. In addition, the difference in
drug sensitivity between two isolates which showed significantly
different egg hatch ECsy values alongside similar TTC frequencies
was not explained by the measurement of individual genotype
frequencies, with the numbers of heterozygous and homozygous
resistant individuals similar in both isolates. This illustrates the
need to understand the contribution of different mechanisms to
the overall resistance phenotype if the molecular data are to be
able to predict drug efficacy.

The present study is an initial step in understanding interactions
of different resistance mechanisms in a nematode population. The
results indicate that the presence of the E198A SNP in H. contortus
larvae is associated with a higher level of thiabendazole resistance
in larval life stages than the F200Y SNP. Importantly, while this rep-
resents an advance in our understanding of the interaction of the
various beta-tubulin SNPs in benzimidazole sensitivity, this specific
relationship occurs in a minority of studied cases as most published
analyses of resistance to this drug group show the presence of the
F200Y SNP and not the E198A SNP (for example, de Lourdes Mottier
and Prichard, 2008; von Samson-Himmelstjerna et al., 2009). Never-
theless, the present study highlights a general need to more clearly
define the relationships between benzimidazole drug efficacy and
resistance mechanisms (SNP frequencies at the 167, 198 and 200
positions, as well as P-glycoprotein expression levels) in order to de-
velop molecular tests which are able to more accurately predict drug
efficacy.
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