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ABSTRACT
Amino acid (AA) transporters may act as sensors, as well as carriers,
of tissue nutrient supplies. This review considers recent advances in
our understanding of the AA-sensing functions of AA transporters in
both epithelial and nonepithelial cells. These transporters mediate
AA exchanges between extracellular and intracellular fluid compart-
ments, delivering substrates to intracellular AA sensors. AA trans-
porters on endosomal (eg, lysosomal) membranes may themselves
function as intracellular AA sensors. AA transporters at the cell sur-
face, particularly those for large neutral AAs such as leucine, interact
functionally with intracellular nutrient-signaling pathways that reg-
ulate metabolism: for example, the mammalian target of rapamycin
complex 1 (mTORC1) pathway, which promotes cell growth, and the
general control non-derepressible (GCN) pathway, which is activated
by AA starvation. Under some circumstances, upregulation of AA
transporter expression [notably a leucine transporter, solute carrier
7A5 (SLC7A5)] is required to initiate AA-dependent activation of
the mTORC1 pathway. Certain AA transporters may have dual re-
ceptor-transporter functions, operating as “transceptors” to sense
extracellular (or intracellular) AA availability upstream of intracel-
lular signaling pathways. New opportunities for nutritional therapy
may include targeting of AA transporters (or mechanisms that up-
regulate their expression) to promote protein-anabolic signals for
retention or recovery of lean tissue mass. Am J Clin Nutr
2014;99(suppl):223S–30S.

INTRODUCTION

The cells of the human body are able to respond to changes in
availability of dietary and plasma nutrients by functional adap-
tations (eg, increasing or decreasing growth, proliferation, and
energy expenditure) appropriate to the prevailing conditions. To
do this, the systems controlling these responses are capable of
direct or indirect monitoring of intracellular and extracellular
nutrient concentrations through use of nutrient “sensors.” Nu-
merous enzymes, receptors, and transporter proteins may have
nutrient-sensor functions. This review focuses only on amino
acid (AA)5 sensing by AA transporters.

The proteolipid surface membrane of cells is a selective barrier
to nutrients and, because AAs do not readily diffuse across lipid
membranes, membrane-spanning transporter proteins (see Fig-
ure 1) are required to help move AAs in and out of a cell and
between membrane-bound intracellular compartments [eg, cy-
tosol and lysosome (see references 1 and 2 for review)]. AA
transport may be coupled to movements of ions including Na+,
H+, K+, and/or Cl2, as well as movement of other AAs by an-
tiport. The modern classification of AA transporters in mammalian
cells based on similarity between transporter gene sequences has

superseded a classical “systems”-based classification of AA
transport mechanisms (1, 3, 4), although both remain in com-
mon use. There are 6 major families of AA transporters in the
solute carrier (SLC) gene superfamily (SLC1, SLC6, SLC7,
SLC36, SLC38, and SLC43 families) and an orphan SLC16
monocarboxylate transporter, which transports aromatic AAs
(see, eg, http://www.bioparadigms.org for details of SLC genes).
The protein products of these transporter genes are characterized
by having multiple (typically 10–12) transmembrane domains
(TMDs) organized around a central pore region. Members of the
SLC3 gene family are also classed as AA transporters but are
atypical in that they form single TMD glycoproteins that act as
regulatory subunits for a subfamily of SLC7 transporters. There
is also a group of 7-TMD AA transporter proteins from the LCT
(lysosomal cystine transporter) gene family expressed at the
lysosomal membrane (5, 6). Several AA transporters are linked
to inheritable human metabolic disorders (eg, SLC7A9 and
cystinuria) (7, 8).

The AA binding sites of mammalian AA transporters generally
recognize a range of structurally similar AAs as cargo for
transport: for example, large neutral AAs (LNAAs), small neutral
AAs (SNAAs), CAAs (cationic AAs), or AAAs (anionic AAs).
AA transporter expression is tissue specific, and many cell types
express several AA transporters with overlapping specificities,
with the result that transport of a specific AA frequently involves
the integrated activity of several AA uniporters and antiporters
operating in parallel (see references 9 and 10 for review). AA
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transporter activity and substrate competition are important
factors in the determination and regulation of AA fluxes across
cell membranes (9).

The major AA sensing-signaling pathways in mammalian cells
are the mammalian target of rapamycin complex 1 (mTORC1)
and general control non-derepressible (GCN) pathways (seeFigure 2).
The AA-sensing mechanisms of the mTORC1 pathway, which is
activated when certain AAs (eg, leucine) are abundant, appear to
involve monitoring AA concentrations in both cytosol and
subcellular organelles such as lysosomes (11, 12). The GCN
pathway primarily senses intracellular AA availability at the
level of AA “charging” on transfer RNA (tRNA) bound to the
GCN2 protein kinase and is activated when one or more AAs are
scarce (13, 14). AA transporters have important roles upstream
and downstream of both mTORC1 and GCN pathways and may
help in monitoring both intracellular and extracellular AA
abundances (eg, references 15–18; see references 10, 12, and 19)
for review). AA transporters may act directly as the initiating sensor
for a signaling pathway—for example, activation of mTORC1
signaling by the SLC38A2 transporter (18)—or may serve as
a conduit for delivery of AAs to intracellular sensing pathways,
notably the leucine transporter SLC7A5 for mTORC1 activation
(17, 20). AA transporters may also generate indirect nutrient-
related signals related to effects of cotransported solutes on in-
tracellular pH and volume (see reference 10 for review).

AATRANSPORTERS ANDAA SENSING BY THE mTORC1
PATHWAY

The mTORC1 pathway is a key anabolic intracellular signaling
mechanism responsive to stimuli such as nutrients, growth fac-
tors, energy stress, hypoxia, and mechanical strain (12, 21–23). In

the nutritional context, mTORC1 has a key role in coordinating
the combination of nutrient and endocrine (largely growth fac-
tor) signals generated by a protein meal into an anabolic drive to
stimulate protein turnover and, under appropriate circumstances,
tissue growth (12, 24). The mTORC1 protein complex is composed
of mTOR itself and accessory proteins including RAPTOR
(regulatory-associated protein of mTOR), mLST8/GbL (mam-
malian LST8/G-protein b-subunit–like protein), and the in-
hibitory subunits PRAS40 (proline rich Akt substrate 40 kDa)
and DEPTOR (DEP domain-containing mTOR-interacting pro-
tein) (eg, see references 12 and 25 for review). Two of the best-
characterized downstream targets of mTORC1 are S6K1 (p70-S6
kinase 1) and eukaryotic initiation factor 4E binding protein 1
(4E-BP1) (24, 26). Phosphorylation of S6K1 by mTORC1 stim-
ulates it to interact with and phosphorylate the S6 ribosomal
protein components, increasing the rate of cellular protein syn-
thesis. In addition, 4E-BP1 in its nonphosphorylated form is
tightly associated with eukaryotic initiation factor (eIF) 4E,
a protein involved in the initial coupling of 40S ribosomes to the
5# end of mRNA strands. This association inhibits eIF4E, but
mTORC1 phosphorylation of 4E-BP1 releases it from eIF4E,
allowing the latter to promote recruitment of mRNA to ribo-
somes and hence stimulate protein synthesis (eg, references 11
and 24 for review).

The mechanisms activating mTORC1 in response to AAs and
growth factors both involve small GTPases (Rag GTPases and
Rheb GTPase, respectively) (27). Rag (Ras-related GTPase)
proteins exist as heterodimers of Rag A/B combined with Rag
C/D: Rag A/B-GTP and Rag C/D-GDP constitute the “active”
forms and the reversed nucleotide orientation the “inactive”
forms (27, 28). The Rag heterodimer docks with the Ragulator
protein complex (composed of LAMTOR 1–5), which is bound
to the lysosome membrane (29). The active forms of Rag
GTPase directly interact with “inactive” cytosolic mTORC1 by
binding with RAPTOR and cause the localization of mTORC1
to the surface of lysosomes (see Figure 3). The p62 protein is an
additional signaling adaptor linking the Rag and mTORC1
protein complexes (30). Recruitment of mTORC1 to the lyso-
some allows it to be fully activated by binding Rheb-GTP, which
provides additional signaling input from growth factor stimuli
(24) and makes AA sufficiency a prerequisite for efficient in-
sulin signaling through mTORC1 (27).

Plasma membrane AA transporters and cytosolic AA
sensing upstream of mTORC1

An increase in intracellular concentration (and/or metabolic
flux) of AAs promotes the Rag-dependent translocation of the
mTORC1 complex from the cytosol to the surface of lysosomes
(see Figure 3). LNAAs (a group including essential AAs such as
leucine, isoleucine, valine, phenylalanine, and tryptophan) are
key stimulants of mTORC1 activation alongside glutamine and
arginine. Leucine is particularly potent and is frequently used as
an exemplar to describe AA-dependent activation of mTORC1
(25). Several putative cytosolic AA sensors linked to mTORC1
activation have been reported (12, 31; see Table 1 for a sum-
mary), a number of which are capable of directly binding AAs
such as leucine [notably leucyl-tRNA synthetase (LRS), GDH
(glutamate dehydrogenase), and UBR1-2 (unbranched chain AA
receptors 1 and 2)]. When leucine binds to LRS it acts as a

FIGURE 1. Transporters and transceptors. The AA transport process pro-
ceeds through a sequence of steps as follows: 1) binding of AAs to a specific
exposed site on the transporter at the (cis) membrane surface; 2) a change in
conformation of the transporter, which results in the AA-bound site becom-
ing exposed to the opposite (trans) membrane surface through the central
pore; and 3) release of AAs and reorientation of the transporter to the initial
cis-facing conformation. AA transport may be coupled to movements of ions
including Na+, H+, K+, or Cl2 (see Figure 2). Certain AA transporters may
also act as transceptors (ie, binding or translocation of AAs is coupled to
activation of an intracellular signaling cascade), enabling them to “sense”
the size of the cis pool of AAs (10, 19). The signal may be generated directly
by the transceptor: for example, by covalent modification (eg, phosphoryla-
tion) or proteolytic cleavage of an intracellular-signaling precursor or in-
directly through an intermediate signal–generating molecule (represented
here as a transmembrane SP). The SP produces a signal (arrows) in response
to a conformational change in the transceptor due to AA binding/transloca-
tion. AA, amino acid; SP, signaling peptide.
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GTPase-activating protein (GAP) for RagD heterodimers and
helps anchor the Rag proteins to the lysosome membrane. This
switches RagD from a GTP to a GDP conformation in the
presence of AAs, which promotes the recruitment of mTORC1
to the lysosome membrane (31). Aminoacyl-tRNA synthetases
other than LRS do not cause any changes in mTORC1, although
LRS may activate mTORC1 for AAs other than leucine: for
example, isoleucine can bind to the leucine-binding site of LRS
due to misacylation (31). There is some evidence for 2 distinct
stimulatory signals from either glutamine or LNAAs for full
activation of mTORC1 (32, 33), and indeed glutamine depri-
vation may reduce mTORC1 activity without decreasing in-
tracellular leucine concentration (32). Glutaminolysis catalyzed
by GDH may provide a glutamine-specific, leucine-stimulated
signal for mTORC1 activation (33; see Table 1).

The generation of an anabolic signal by dietary protein re-
quires that AAs are delivered to the intracellular sensor and
effector molecules associated with the mTORC1 pathway, and
AA transporters at the plasma membrane are an essential com-
ponent of the delivery pathway (see Figure 3). AA transporters at
the plasma membrane of epithelial cells differ from those in
nonepithelial tissues, although they are from the same or related
SLC gene families. In epithelial cells, broad-scope Na+-coupled
AA symporters such as SLC6A19 (system BO, aka BOAT) (34) and
SLC6A14 (system BO,+, aka BO,+AT) (35) are able to transport
both LNAAs and SNAAs directly into cells upstream of mTORC1
activation. In contrast, LNAAs are taken up into nonepithelial
cells by exchange or facilitative mechanisms, whereas SNAAs
tend to be transported by concentrative Na+-coupled transport.
In consequence, certain SNAAs (especially glutamine and ala-
nine) become highly concentrated in tissues such as skeletal
muscle, acting as labile nitrogen stores (9, 36), whereas LNAAs
do not accumulate to any great extent and indeed tend to equilibrate

between intracellular and extracellular fluids. A sequential re-
lation between primary, secondary, and tertiary active transport
systems (see Figure 3) has developed that contributes substantially
to transport of LNAAs across cell membranes; this includes
symport (cotransport) and antiport (exchange) mechanisms op-
erating in series downstream of the Na+ pump. A key feature of
this relation is the ability of a small subset of AAs with in-
termediate size (notably glutamine) to be transported by both the
secondary and tertiary active transporters. The most prevalent
and well studied of these AA transporters are SLC38A2 (system
A, aka SNAT2), SLC1A5 (system ASC, aka ASCT2), and SLC7A5
(system L, aka LAT1) (17, 20, 37). SLC38A2 and SLC1A5 are
Na+-coupled secondary active transporters mediating Na+-SNAA
symport, and SLC7A5 is an LNAA antiporter mediating tertiary
active transport when downstream of the former. Genetic or
functional inactivation of these AA transporters inhibits rapid
growth and proliferation of mammalian cells in culture (eg,
references 17, 18, and 20), generally linked to reduced mTORC1
signaling. Conversely, induction of functional SLC7A5 gene
expression is an initiating factor for activation of the mTORC1
pathway by the proliferation factor HIF2a (hypoxia-inducible
factor 2-a) (38) and during T lymphocyte activation (20). The
level of SLC7A5 expression in fibroblasts correlates directly
with the effectiveness of leucine-induced mTORC1 activation in
these cells (39). In some circumstances, intracellular glutamine
accumulation by SLC38A2 and/or SLC1A5 may become a lim-
iting factor for mTORC1 activation due to SLC7A5 requiring
intracellular glutamine as an obligate antiporter to transport
leucine into the cell (17, 37).

Other amino acids, for example, arginine via the SLC7A1-4
(system y+, aka CAT1-4) transporters, may also influence mTORC1
pathway activation (40). Extracellular AAs may also activate
mTORC1 through certain AA transporters at the cell surface

FIGURE 2. AA pools and nutrient sensing. Homeostasis of ECF and ICF pools of AAs depends on the balance between AA fluxes through transport and
metabolic pathways. AA transporters function by specific mechanisms, which include uniport (facilitative transport; denoted as “A”), symport (cotransport;
denoted as “B”), and antiport (exchange; denoted as “C”). Net delivery of AAs to the ICF pool by AA transporters in an adult consuming a balanced diet
(equivalent to dietary AA intake at steady state) is w60–100 g/d (3, 66). The 2 major AA-sensitive signaling proteins in mammalian cells are GCN2 and
mTOR (as part of mTORC1), which respond to changes in ICF AA concentrations as shown and regulate protein turnover (and hence cell growth). AA
transceptors at the cell surface may also sense size and composition of the ECF pool of AAs. AA transceptors on intracellular membranes (not shown) may
perform equivalent roles in sensing ICF pools of AAs. AA, amino acid; ECF, extracellular fluid; GCN2, general control non-derepressible 2; ICF, intracellular
fluid; mTOR, mammalian target of rapamycin; mTORC1, mammalian target of rapamycin complex 1; SP, signaling peptide (this may generate or transmit the
transceptor signal; see Figure 1 legend for further description).
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(eg, SLC38A2) acting as dual-function “AA transceptors” (see
Figure 1 and section entitled “AA transporters and AA sensing
by the GCN pathway”) (18).

AA transporters and lysosomal AA sensing upstream of
mTORC1

The AA-dependent recruitment of the multiprotein mTORC1
complex to lysosomal membrane compartments (Figure 3) ap-
pears to be associated with AA accumulation into lysosomes (16),
indicating that AA transporters on endosomal membranes play
a role in AA sensing. Lysosomal degradation of proteins allows
the cell to recycle some of the AAs, and the process of autophagy
is linked to mTORC1 signaling (12, 17). The precise relations
between AA pools in the cytosol and lysosomal lumen and the
lysosomal AA transporters mediating AA exchange between
these subcellular compartments are poorly understood. Under
AA sufficiency, a lysosomal-anchored “nutrisome” protein com-
plex has been proposed as a sensor of intralysosomal AA con-
centrations upstream of mTORC1 activation (15, 16). Two putative
AA-sensing transporter proteins, the vacuolar H+-ATPase
(v-ATPase) and the SLC36A1 H+-coupled AA transporter (aka
PAT1), have been reported to function as part of the “nutrisome”
(12, 15, 16) and to physically interact with the Rag-Ragulator
complex. The v-ATPase helps generate the acidic interior of the
lysosomes compared with the slightly alkaline cytosol (pH 5 to

pH 7.4) by pumping protons into the lysosome from the cytosol,
hydrolyzing ATP to ADP in the process. SLC36A1 has both
endosomal and plasma membrane localization (41, 42) and
mediates H+-dependent AA efflux from the lysosomal lumen
into the cytosol. SLC36A1 appears to be required for AA-induced
activation of mTORC1 (43), but it exerts a negative influence on
lysosomal mTORC1 signaling when overexpressed in mamma-
lian cell lines (16). The influx/efflux and/or accumulation of
AAs into the lysosomal lumen is somehow detected by the
nutrisome [a so-called inside-out method of AA sensing (16)],
causing activation of the GEF (guanine exchange factor) func-
tion of the Ragulator complex, which, in turn, promotes the GTP
charging of RagA/B necessary for mTORC1 engagement. SLC36A1
has been suggested to act as an AA transceptor on the lysosomal
membrane (43), but although certain LNAAs may act as in-
hibitors of SLC36 transporter functional activity (44), the AA
substrate selectivity of SLC36 transporters does not match the
range of AAs activating mTORC1 (41, 44). The AA transporter
proteins mediating AA influx to lysosomes, alongside proteins
underlying many other lysosomal membrane functions, remain
unidentified. AA transport systems having functional resemblance
to the T and L carriers for LNAAs in plasma membranes have
been characterized in the membranes of intact lysosomes (45–47).
These systems (named t, l, and h) are saturable, displaying Km

values of 5–30 mmol phenylalanine, leucine, or tryptophan/L.
A recent semiquantitative proteomic analysis of rat liver

FIGURE 3. Neutral AA transporters and activation of the mTORC1 signaling pathway. This diagram shows the relation between neutral AA transport,
intracellular AA concentration, and the mTORC1 growth signaling pathway in nonepithelial mammalian cells (see text for further details). A sequential
relation between primary, secondary, and tertiary active transport systems (denoted as “I,” “II,” and “III,” respectively) contributes substantially to transport of
LNAAs across cell membranes. Energy input is provided through ATP hydrolysis by the Na+/K+ pump (primary active transport). Note the operation of
symport (cotransport) and antiport (exchange) mechanisms for AAs in series downstream of the Na+/ K+ pump. In epithelial cells, broad-scope neutral AA
transporters provide both SNAAs and LNAAs coupled to ion fluxes by secondary active transport, lessening the requirement for step III. AA (principally
LNAA) concentration and/or flux within intracellular compartments promotes recruitment of mTORC1 to lysosomes where it is activated by interactions with
Rag and Rheb GTPases. Such activation of mTORC1, downstream of nutrient (AA) and growth factor (insulin) signals, stimulates protein synthesis and
ribosome biogenesis by effector mechanisms as indicated. Both cytosolic and lysosomal AA sensors have been reported (see sections in text entitled “Plasma
membrane AA transporters and cytosolic AA sensing upstream of mTORC1” and “AA transporters and lysosomal AA sensing upstream of mTORC1”).
Remarkably little is known about the transporter or transporters mediating neutral AA uptake into lysosomes, although SLC38A7 has recently emerged as
a candidate for this role (48). Intracellular AA metabolism may also modulate growth factor signaling upstream of mTORC1 (62, 63). AA, amino acid; Akt/
PKB, protein kinase B; AMPK, adenosine monophosphate activated protein kinase; ECF, extracellular fluid; ICF, intracellular fluid; IRS-1, insulin receptor
substrate 1; LNAA, large neutral amino acid; mTORC1, mammalian target of rapamycin complex 1; PDK1, 3-phosphoinositide dependent protein kinase 1;
PI3-K, phosphatidylinositide 3-kinase; Rag, Ras-related GTPase; Rheb, Ras homolog enriched in brain; SLC36A1, solute carrier 36A1; SNAA, small neutral
amino acid; TSC1/2, tuberous sclerosis complex 1/2; V-ATPase, vacuolar H+-ATPase; 4E-BP1, eukaryotic initiation factor 4E binding protein 1.

226S TAYLOR



lysosome-enriched membranes (48) identified several AA
transporters previously assigned to other subcellular compart-
ments that may reside (at least secondarily) on lysosomes. These
include 2 LCT family members characterized by a duplicated
motif termed the PQ loop (6): PQLC4 (cystinosin) is the lyso-
somal cystine exporter defective in cystinosis (8) and PQLC2 is
a lysosomal exporter of CAAs (5). Of the relatively few neutral
AA transporters identified in this study, SLC38A7 is particularly
interesting in that 1) it appears to transport (or at least be in-
hibited by) a fairly broad range of neutral and cationic AAs
including leucine (49) and 2) several of the SLC38 family
transporters effectively operate as Na+-dependent H+-AA anti-
porters (see reference 42 for a recent review), a mechanism that
might favor AA accumulation into lysosomes via SLC38A7.

AA TRANSPORTERS AND AA SENSING BY THE GCN
PATHWAY

GCN2 is an eIF2a kinase that senses the absence of individual
cytosolic AAs by direct binding to uncharged cognate tRNAs
(13, 14). Phosphorylation of eIF2a impairs initiation of mRNA
translation at the methionine start codon and reduces global
protein synthesis. This response to AA starvation also facilitates
selective translation of specific mRNAs [eg, the transcription
factor ATF4 (activating transcription factor 4)] associated with
upregulation of genes with functions in AA biosynthesis, re-
tention, and scavenging. An important effector arm of the GCN
pathway in many cell types is upregulation of the SLC38A2 AA
transporter as an AA scavenger mechanism during periods of
AA deficiency. This process, known as “adaptive regulation,”
involves transcriptional upregulation of transporter gene ex-
pression (ATF4 binds to the AA-response element in the SLC38A2
gene, activating transcription) (50), maintenance of SLC38A2
mRNA translation through an internal ribosome entry site (51),
and increased stability (reduced degradation) of SLC38A2
transporter proteins (eg, 52). The latter feature is regulated by

a mechanism intrinsic to the SLC38A2 protein, whereby AA
transport activity (or binding of AA substrates to the transporter
protein) seemingly acts to promote internalization and degra-
dation of the protein itself when AAs are abundant (52), a fea-
ture characteristic of AA “transceptors” in other eukaryotic
organisms (19). In fact, both SLC38A2 and SLC36A1 have been
proposed to operate as multifunctional AA transceptors (15, 52),
whereby AA substrate binding to the transporter protein induces
an intracellular nutrient signal independent of AA transport.
SLC38A2 may also be involved in the central response to es-
sential AA deficiency within the anterior piriform cortex of the
brain, although not as the primary AA sensor (53). The delivery
of AAs to the cytosol from lysosomal proteolysis may also affect
the GCN pathway: for example, deletion of the PQLC2 gene
homolog laat-1 in Caenorhabditis elegans worms limits cyto-
solic lysine and arginine, causing embryonic lethality when the
GCN2 pathway is impaired (54).

AA TRANSPORTERS AND AA SENSING IN A TISSUE-
SPECIFIC CONTEXT

Lymphocytes

AA supply may become an increasingly limiting factor for
tissue protein synthesis during periods of rapid cell growth or
proliferation (eg, for lymphocytes during an immune response),
when intracellular availability of both LNAAs (eg, leucine for
protein synthesis) and SNAAs (eg, glutamine or glycine for cell
metabolism) may become highly dependent on the AA transport
capacity at the cell surface. Sustained growth may therefore
require substantial upregulation of AA transporter expression, as
is seen in the process by which T lymphocytes grow and pro-
liferate after activation through the T cell receptor (TCR). T
lymphocyte activation markedly increases protein synthesis as-
sociated with a high fold-induction of SLC7A5 mRNA and
a resultant induction of high-affinity (low mmol/L Km) LNAA

TABLE 1

Cellular proteins associated with cytosolic AA sensing upstream of mTORC11

AA sensor Mechanism Reference

LRS A component of the multi-tRNA synthetase complex involved in tRNA charging. GTPase

activating protein domain on LRS hydrolyzes GTP to GDP on RagD in the presence of

leucine. Links RagB/RagD heterodimer with Ragulator.

(31)

IMPK Implicated as an AA sensor for mTORC1 signaling by acting as a cofactor between mTOR and

RAPTOR in the presence of AAs.

(67)

MAP4K3 Ste20 family kinase regulated by AAs, acting upstream of mTORC1. (39, 68)

VPS34 Positive regulator of mTORC1 signaling, present on the surface of lysosomes. Functions

upstream of mTORC1 as an AA sensor, perhaps linked to AA-induced changes in

intracellular calcium ions.

(69, 70)

GDH Leucine activates GDH stimulating glutaminolysis and generation of a-ketoglutarate, which,

perhaps through action of prolyl hydroxylases, promotes GTP loading of RagB and

mTORC1 recruitment to lysosomes.

(33)

RalA EAA sensor for mTORC1 signaling, involves GTP binding to RalA. May localize to lysosome. (25, 71)

UBR1-2 Ubiquitin ligases, which are negative regulators of mTORC1 and interact with “N-degrons”

(AA residues at amino-terminus of target proteins). Leucine binding to UBR1-2 inhibits

their effect and promotes TORC1 signaling.

(72)

1Note that some putative cytosolic AA sensors may also localize to lysosomes. AA, amino acid; EAA, essential amino

acid; GDH, glutamate dehydrogenase; IMPK, inositol polyphosphate multikinase; LRS, leucyl–transfer RNA synthetase;

MAP4K3, mitogen-activating protein kinase kinase kinase kinase-3; mTORC1, mammalian target of rapamycin complex 1;

Rag, Ras-related GTPase; RalA, Ras-like protein A; RAPTOR, regulatory-associated protein of mTOR; Ste20, Sterile 20;

tRNA, transfer RNA; UBR1-2, unbranched chain amino acid receptors 1 and 2; VPS34, vacuolar sorting protein-34.
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uptake to increase AA supply in the most effective manner (20).
Other high-affinity AA transporters (notably SLC7A1 and SLC1A5)
are also upregulated to a lesser extent. Sustained uptake of
leucine (and other LNAAs) through SLC7A5 in activated T
lymphocytes is required for mTORC1 activation and upregula-
tion of the c-Myc mitogen and energy-supplying metabolic path-
ways (20). The SLC7A5 transporter is recognized as a potential
immunosuppressive (55) and antitumor (56) target; indeed, high-
affinity (nmol/L) inhibitors of SLC7A5 are potent immunosup-
pressants (55). Induction of SLC7A5 expression through the
TCR in T lymphocytes is blocked by cyclosporin A, an immu-
nosuppressive drug that inhibits calcineurin-mediated signaling,
but not by rapamycin, an immunosuppressant that inhibits
mTORC1 (20). A combined failure of TCR-activated growth
and proliferation in SLC7A5-null T lymphocytes (20) appears to
be more severe than the growth failure seen with mTORC1-
inhibited (rapamycin-treated) T lymphocytes. These observa-
tions indicate that SLC7A5 may have an additional AA-sensing
role above that related to mTORC1 activation that is associated
with control of cell division and proliferation.

Skeletal muscle

The increase in LNAA availability after protein or AA in-
gestion is associated with upregulation in expression of AA
transporters (eg, SLC38A2, SLC7A5) in human skeletal muscle
2–3 h postmeal (57). SLC7A5, in particular, is a high-affinity
LNAA transporter; hence, upregulation of this transporter in
muscle during the anabolic phase of the dietary cycle may
represent an adaptive response to enhance the mTORC1 growth
signal from nutrients and insulin. Indeed, muscle-specific (MCK-
Cre) SLC7A5 knockout mice fed a high-protein diet display mild
insulin resistance with reduced mTORC1 pathway activation in
skeletal muscles (N Poncet, FE Mitchell, Y-B Shi, and PM Taylor,
unpublished observations, 2013). Skeletal muscle, in common
with several other tissues, expresses both high-affinity and low-
affinity system L transporters for LNAAs (SLC7A5 and SLC7A8,
respectively) (4). Such dual-transporter systems are suggested to
help prolong preparation for cellular starvation and facilitate re-
covery from starvation, acting to “fine tune” sensing of nutrient
depletion through integration of inputs relating to internal and
external nutrient availability (58).

Epithelial cells

The broad-scope Na+-coupled neutral AA transporter SLC6A19
provides an important AA supply for epithelial mTORC1 sig-
naling and SLC6A19 knockout in mice produces a phenotype of
apparent epithelial cell starvation (34). During mammalian em-
bryonic development, AA activation of mTORC1 is an important
aspect of blastocyst activation (59). The broad-scope Na+/Cl2-
coupled AA transporter SLC6A14, which accepts both neutral
and cationic AAs as substrates, is upregulated at the blastocyst
stage; and the enhanced uptake of AAs (especially leucine) that
it affords is an important factor for blastocyst activation and
trophoblast outgrowth (35). Placental growth is modulated by
mTORC1, which regulates the activity of key AA transporters
(eg, SLC7A5) by posttranslational modifications or by affecting
transporter translocation to the placental surface (60). The ac-
tivity of placental AA transporters is decreased in intrauterine

growth restriction in conjunction with a reduction in placental
mTORC1 activity (61).

UNRESOLVED ISSUES

Whereas the importance of AA sensing and signaling to
growth andmetabolic functioning of mammalian cells and tissues
is clear, the extent to which the mTORC1 and GCN pathways
influence whole-body homeostasis in healthy, well-nourished
human adults on a day-to-day basis remains poorly understood. In
vitro cell-based studies are providing remarkable insights into the
molecular basis of AA sensing, but they generally use culture
media containing LNAAs at concentrations 2–5 times those
found in extracellular fluids in vivo and study mTORC1 acti-
vation by AA starvation followed by refeeding with leucine or
an AA mixture. In such circumstances, the “leucine-repletion
capacity” of transporters such as SLC7A5 may be critical for AA
sensing (39). Our understanding of the situation in vivo, where
lower AA concentrations that fluctuate with diurnal feeding
behavior (but will rarely decrease to concentrations constituting
AA starvation) are the prevailing condition, requires further
investigation.

At the subcellular level, the relative importance of cytosolic
and lysosomal AA sensing is still under debate. In terms of AA
sensing at the molecular level, the lack of a clear direct relation
between intracellular LNAA concentrations and mTORC1 ac-
tivity in some studies (eg, references 18 and 32) raises the
possibility that LNAA flux through a transporter or metabolic
pathway (rather than LNAA concentration per se) may be
a “sensed” variable. Other gaps in the picture of AA-dependent
mTORC1 activation include the following: 1) the mechanism by
which AAs such as leucine accumulate within lysosomes in
response to increased extracellular AA supply and 2) the
mechanistic link between AA accumulation into lysosomes and
nutrisome activation upstream of RagA/B GTPases.

NUTRITIONAL IMPLICATIONS

The requirement for sufficiency of LNAAs such as leucine to
achieve full activation of mTORC1 signaling downstream of
insulin links AA transporter function and insulin action in vivo.
This is well illustrated by the observation that SLC6A19-null
mice show reduced insulin responsiveness and impaired body-
weight control (34). Dietary leucine is now being considered
as an adjunct treatment of insulin resistance related to obesity
(eg, references 62 and 63). New opportunities for nutritional
therapy may lie in targeting nutrient-sensing AA transporters (or
mechanisms that upregulate their activity) so as to promote
protein-anabolic signals designed to retain lean tissue mass in
aging or to regain it during rehabilitation from disease or injury.
Postprandial upregulation of expression of AA transporters such
as SLC7A5 in skeletal muscle may provide LNAAs as an energy
source as well as an anabolic signal and substrate, given that it
has recently been shown that administering leucine or carbo-
hydrate supplements after a meal extends the duration of en-
hanced protein synthesis in skeletal muscle by helping maintain
cellular energy status (64). Such maintenance of ATP supply
also reduces the risk of activating “stress” sensors such as
AMPK (adenosine monophosphate activated protein kinase) and
REDD1/2 (regulated in development and DNA damage responses
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1/2), both of which activate TSC1/2 (tuberous sclerosis complex
1/2) and hence repress mTORC1 signaling (65). An improved
understanding of the time course of such events may help further
improve dietary recommendations for the optimal utilization of
protein (64, 66).
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