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Abstract

Population trends, defined as interval-specific proportional changes in population size, are often used to help identify
species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of
population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and
allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical
modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of
temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we
produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird
Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by
providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model
to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which
allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results
with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean
trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in
regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial
component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population
trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.
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Introduction

Questions about the effects of global change, invasive species,

disease effects, and other potential stresses on bird populations or

endangered species are often focused on large spatial and temporal

scales; scales at which few vertebrate data sets exist [1][2][3]. One

such data set is the North American Breeding Bird Survey (BBS), a

survey that has been conducted for more than 45 years across

much of North America [4][5]. Recently, hierarchical models for

estimation of population change have been implemented within

physiographic strata [6]. However, in order to provide analyses

that fully reflect the extent of consequences of spatial and temporal

changes that species are undergoing, we seek approaches to

explicitly account for the spatial structure underlying observed

patterns in abundance.

Population trends are often used to help identify species of

conservation interest (e.g., [7][8][9][10][11][12]). Several conser-

vation organizations use population decline alone as a criterion

for determining whether species need conservation attention [10].

For example, the World Conservation Union (IUCN) considers

a taxon critically endangered if it declines 80% globally over a

10-year period (or three generations, whichever is longer),

endangered if it declines 50–79%, and vulnerable if it declines

20–49% (http://www.iucn.org/themes/ssc/redlists/criteria.htm).

Developing models that specify the associations between individ-

uals and their habitat is essential to increase our understanding of

how species use their environment [13], and for developing models

that allow managers to predict the consequences of management

actions. Conservation-oriented studies of spatio-temporal dynam-

ics are especially timely as the modeling of species distribution

dynamics will be useful in developing predictions about distribu-

tional changes expected to accompany climate changes, land use

changes and active land management. By understanding how

species’ ranges have changed over the last several decades, we can

provide a basis for projections about future range changes in

response to global climate change. Fortunately, a variety of

hierarchical-model based approaches are now available for

determining whether relationships exist between animals and

environmental characteristics (i.e., to identify habitat) as well as

monitor spatial or temporal changes in the populations [6][14].

Since we are primarily interested in large spatial and long

temporal scales, being able to estimate trends in occupancy and

abundance across space and through time is especially relevant.

Modeling trends (i.e., interval-specific proportional changes in

occupancy and/or population size) while incorporating the

correlation of population changes with key spatial and environ-

mental covariates can provide insights into causal mechanisms and

allow spatially explicit summaries at scales that are of interest to
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administrative bodies such as counties, states, parks or forest

service units. We use data from the North American Breeding Bird

Survey (BBS) [4] to develop spatially explicit models of temporal

population change for selected species of birds to assess bird

population variations and develop predictive maps for bird

population trends.

Hierarchical models provide a flexible and rigorous framework

for modeling BBS data [6][15][16]. In such models, observed BBS

counts are modeled by over-dispersed Poisson counts. Over-

dispersion is modeled by random effects such as year, site and

observer effects. While this model accounts for site-specific

dynamics, it does not account for the spatial structure underlying

the abundance patterns except through post-stratification. Current

BBS analyses are based on a stratification scheme defined by the

intersection of states or provinces and large-scale geographic strata

based on Bird Conservation Regions (i.e., BCRs). However, these

can suffer from basic imbalances in spatial sampling even within a

BCR because, BBS sample allocation is currently based on

pseudo-random allocation within longitude/latitude degree blocks.

As a result, for example, if we compare the density of routes

between BCRs, route density is almost 3 times higher in

Appalachian Mountains than in Badlands and Prairies BCRs.

The density of routes is even 5.58 times higher in New-England/

Mid Atlantic coast BCR than in the Badlands and Prairies BCR.

Spatial imbalances in sampling effort might be observed between

urban and rural areas: portions of strata located near urban

centers tending to have more routes than portions located in rural

areas because of observers’ availability. As a result of this, ‘‘simple

averages of route data over the entire stratum would be weighted

toward the parts of the stratum with the larger sample sizes, which

could result in biased estimates of trends and regional relative

abundances’’ [17]. In order to deal with this bias, post-

stratification within strata should be conducted, allowing for

corrected average trends accounting for this spatial imbalance.

Degree blocks represent a natural unit of summary analysis and

weighting for BBS data and this largely motivates the approach we

adopt here. In particular, we develop a spatial model using a

relatively local-scale and spatially regular stratification scheme

based on the basic sample allocation unit of the BBS (degree

blocks). Our model regards the degree blocks as small geographic

strata, and we use a hierarchical model to define trend at the level

of degree blocks, to link the degree-block level parameters using a

model of spatial correlation, and then aggregate the resulting

estimates to arbitrarily large post-strata such as BCRs or states.

Because degree blocks constitute a natural discrete lattice, we

consider the development of models based on the conditional

autoregression (CAR) models. Hierarchical models, including the

use of the CAR model are widely used in many small-area

estimation [18] problems where sampling units (often geographic

strata) contain insufficient sample sizes for estimation of stratum-

specific parameters independently. Hierarchical models for small-

area estimation are widely applied in many disciplines including

health surveys and epidemiology [19], agriculture [20], census

surveys [21] and wildlife [22].

Here we develop a spatially explicit hierarchical model for

abundance trends and present analysis results for three species

(Carolina wren Thryothorus ludovicianus, Cerulean Warbler Dendroica

cerulea and Red-Bellied Woodpecker Melanerpes carolinus) to evaluate

the application of such models. We also compare trend results

from selected time periods for each species with trend results

obtained for Bird Conservation Regions from the classical

hierarchical approach currently in use for the BBS analyses

[6][15]. This approach provides a statistical framework that

produces a more flexible approach to generating spatial estimates.

Materials and Methods

The North American Breeding Bird Survey
The BBS provides the most extensive historical database for

monitoring avian populations in North America. It was initiated in

the eastern United States and Canada in 1966, and expanded to

provide coverage of the continental United States and southwest-

ern Canada by 1968. Volunteer observers conduct fifty 3-minute

counts along predefined roadside routes. Each route is 39.4 km

long with stops at approximately 0.8-km intervals. During counts,

every bird seen within a 0.4-km radius or heard is recorded. Over

5200 surveyed routes are located across the continental U.S.,

Alaska, and Canada. (BBS website, consulted on 12/09/2008,

www.mbr-pwrc.usgs.gov/bbs/bbs.html). For each year of survey

on a route, data collected include the number of stops on which

individuals of a given species have been detected as well as the

total number of individuals detected of the species. A variety of

ancillary data such as observer names, and weather information

are also collected. Those data are available online on the Breeding

Bird Survey website (www.pwrc.usgs.gov/BBS).

In the non-spatial North-American Breeding Bird Survey

analysis, (e.g., as presented by [6]), observed BBS counts are

modeled by Poisson regression with over-dispersion. Counts for a

survey route are denoted by Yi,j,t (i for route, j for unique

combinations of route and observer, and t for year) and are

independent Poisson random variables with means li,j,t that are

log-linear functions of explanatory variables,

log( li,j,t )~ Si z bi (t{t�)z vj z ci,t zgI(j,t)z ei,j,t

Explanatory variables are stratum-specific intercepts (S) and

slopes (b, t* is the baseline year), observer/route combinations (v),

year (c), start-up (g, with I(j,t) an indicator that takes the value 1 for

an observer’s first year of survey on a route, 0 otherwise), and

overdispersion effects (e) [6]. Strata in Sauer and Link (2011) [6]

are physiographic-region based on BCRs within states or

provinces.Using such a model, the estimation of stratum abun-

dance data ni,t for stratum i and year t is defined in terms of model

components and their variances:

ni,t ~exp Si z bi (t{t�)z ci,t z0:5s2
vz0:5s2

e

� �

Here, trends can easily be estimated as a change in abundance

between two periods of time. While alternative statistical

definitions of trend exist (e.g. [23]), the current way of estimating

trends in the BBS analyses is done using the definition proposed by

Link and Sauer [15][24]. Trend is defined as an interval-specific

geometric mean of yearly changes in population size, expressed as

a percentage. The trend from year ta to year tb for cell i is

100(Bi21)%, where:

Bi ~
ni, tb

ni, ta

� � 1
tb { ta

Conditional Autoregressive Model
We overlay a grid on the BBS survey area and we estimate the

trend for a theoretical route contained within each individual grid

cell. Grid resolution can be adapted to each species-specific range,

Spatially Explicit Approach for Modeling Trends
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but our analyses use a 1-degree block grid because this represents

the basic sample allocation unit of the BBS. Each route that has a

starting point that falls into a cell is considered to belong to that

cell. Using a simple grid that is applied on the area of interest, we

can i) shift from the set of BBS routes with an irregular

geographical repartition to a lattice process; ii) divide the entire

BBS sampling area into patches of equal area; and finally iii) easily

define the underlying spatial structure. A connection matrix based

on distance (using distance between cells’ centroids) or neighboring

relationship can be defined to specify relationships among cells.

This approach facilitates computation: the same statistical model

can be applied at different scales simply by changing the resolution

of the grid (i.e. cell size). Analyses presented here use a 1-degree

block grid, allowing for fast computation and providing good

preliminary results. The spatial effect is modeled via a Gaussian

CAR model [25]. This type of model can be thought of as spatial

analogs of autoregression models in time-series, in the sense that

the model is described by relating values of the state process to

neighboring values (in the case of time-series, preceding values).

Therefore we model the observed count Yi,t on a route i at year t

by a Poisson distribution with mean li,t, which depends on a year-

specific intercept, an observer effect, and a spatial effect at the level

of the cell encompassing the corresponding route:

Yit~Poisson(lit)

with

log(lit) ~ atzbc(i),t zvK(i,t)

where at is the year-specific intercept, and vK(i,t) is the observer

effect for the observer K on the route i during year t. Since

observed patterns of change in counts do not only reflect changes

in population sizes, but also changes in the pool of observers (or

other factors affecting detection), it is necessary to incorporate this

observer effect in the modeling process. The parameter bc(i),t is the

spatial effect for the cell c that encompasses the route i. We decided

to allow the spatial structure to be different for each year, hence

the year index on b.

We used diffuse normal distributions (a customary vague prior)

for the year effect parameters

at~Normal(0,0:01)

The observer effects were assumed to be normal random

variables with mean 0 and variance s2:

vK(i,t)~Normal(0,s2)

with

s~U(0,10)

The spatially correlated random effect bc(i),t is expressed as a

CAR model where the spatial effect of the cell c is based on the

grid cells that share a common boundary with cell c. Specifically,

we use an intrinsic version of the CAR model analogous to that

proposed by Besag et al. (1991) [25]. The Gaussian CAR model

can then be defined as

where M is a CxC diagonal matrix with elements Mcc proportional

to the conditional variance of bc,t|B2c,t and s2
bt

is the conditional

variance parameter. In the intrinsic model, we set Mc = 1/nc.

Essentially, bc,t has a normal distribution with conditional mean

given by the average of its neighbors. We can note that the

conditional variance is inversely proportional to the number of

neighbors of bc,t. We define the CxC symmetric matrix of the

neighborhood weights W. The element wck illustrates the

connectivity between cell c and cell k. In our case, we set wck = 1

if cells c and k are adjacent, and wck = 0 otherwise (we also set

wcc = 0). Row sum is given by wc:~
PJ

k~1 wck: Since the grid

structure is time invariant, and therefore spatial arrangement of

the cells does not change over time, weights are constant over

time. Let Bt be the vector [b1,t…., bC,t], and B2c,t the corresponding

vector that omits bc,t.

Thogmartin et al. (2004) [26] have previously developed a

spatial model for BBS population change that included a CAR

model to account for spatial autocorrelation that occurs between

survey routes. However, in the model they used, the spatial

autocorrelation is constant over time, a more constrained model,

and one that does not accommodate spatial variation in trend.

Moreover, they based their spatial structure on a network of routes

by delineating a spatial neighborhood on an irregular lattice by

tessellating the sample routes. This makes the spatial effect strongly

dependent on the realized sample locations, whereas a lattice grid

would provide estimates independent of the routes and their

repartition. Moreover by using a degree-block grid, several routes

may fall in one cell, leading to estimates reflecting the quality and

basic design of the sampling scheme. Here, we focused on

developing a statistical model that can easily be used as a reporting

tool and therefore had to be operational and applicable to all

species every year, and in which covariables (such as climate

covariates) could be easily added. This practical efficiency is one

key element of this work, since one of the ultimate goals is to

implement this approach as a web-based tool, possibly through a

R-package that would allow managers to conduct their own

analysis.

Trend
Following the current approach in the BBS analysis, trend is

defined as an interval-specific geometric mean of yearly changes in

population size, expressed as a percentage. Therefore, the trend

Dc,a,b from year ta to year tb for cell c is still defined as:

Dc,a,b ~ 100:
nc, tb

nc, ta

� � 1
tb { ta

{1

" #

where nc,t would represent the expected abundance at time t of a

theoretical route in cell c and is specified as:

nc,t ~exp at z bc,t z
1

2
s2

� �

We used a Bayesian analysis (e.g. [6]) to obtain posterior

samples of nc,t for each cell and each year, from which we

computed the trends of interest.

Bird Conservation Regions Post-stratification
Having parameterized the model based on a uniform grid,

obtaining trend estimates for any geographical region in the area

of interest is straightforward, as long as we know the shape of this

region. To illustrate and compare our results with those of current

Spatially Explicit Approach for Modeling Trends
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BBS analyses, we obtained estimates of population trends for the

Bird Conservation Regions (BCR). A map of the different BCRs

can be found online at www.nabci-us.org/map.html.

BCR trends are defined as a weighted average of estimates of

cells belonging to a given BCR depending on how much area of

each cell of those cells is part of the BCR of interest. To estimate

BCR-level trends, we computed for each cell the proportion of the

cell area contained in the BCR and used this as a weight. Then, we

used this weight value in the weighted average of all the cell

estimates to determine the global trend estimates for each BCR.

Therefore, if we have a set of K BCR regions {1,2,…k, …,K},

and of C cells {1,…,c,…C}, the general equation to compute the

trend for BCR k between year a and b will be:

Dk,a,b ~ 100:
nk, tb

nk, ta

� � 1
tb { ta

{1

" #

with

nk, tb
~

PC
c~1

w0ck:nc,tb

PC
c~1

w0ck

and

w0ck~(Ac\Ak)=Ac

where Ac and Ak are the area of the cell c and of the BCR k

respectively.

Moreover, since Earth is not flat but approximately spherical,

and we are using degree blocks of latitude and longitude as our

cells, actual cell area will vary with latitude, and we need to

consider this when averaging theoretical routes representing each

cell. Therefore, when computing BCRs’ trend estimates, we need

to correct the weight of each cell that belongs to this BCR by the

relative area of this cell compared to the other cells in the BCR. If

we have two cells n and s that both covered half-way by a BCR r,

the weights w’nr and w’sr are both equal to 0.5. However if cell n is

close to the North Pole, and cell s is closer to Equator, cell s is

larger than cell n and therefore contributes more to the BCR r. So,

its weight in the computation of the BCR trend should be more

important. To achieve this goal, we simply divide the area of each

cell by the mean area of cells contained in the BCR of interest.

Then, �nnk,tb
becomes:

nk, tb
~

PC
c~1

w0ck:nc,tb
:w00ck

PC
c~1

w0ck

with

w00ck~Ac=�AAcell k

where �AAcell k is the average cell area in BCR k. We note that it

would be straightforward to adopt a model grid based on equal

area units using a standard map projection. However, our

motivation for using the degree-block model grid is that it is the

sample allocation unit of the BBS.

If we take R as the radius of Earth, it is straightforward to show

that the area of a cell c which has for upper left corner coordinate

(long1, lat1) and for lower right coordinates (long2,lat2) can simply

be expressed as:

Ac~2p:R2 sin (lat1){ sin (lat2)j j: long1{long2j j=360

For our comparison, we have decided to focus on population

trends for each species between 1999 and 2009. Results are shown

in table 1.

Implementation in WinBUGS
We implemented this model and conducted the analysis for

each species using the free software WinBUGS 1.4.3 [27] called

from R 2.12.0 [28] using the R library R2WinBUGS [29]. For

each of the three species discussed below, we ran 3 chains using

non informative priors and based our inference on 20,000 samples

from the posterior distribution of parameters, after 5,000

discarded iterations. The WinBUGS code is provided in Appendix

S1, and includes area computations described above. Convergence

was checked using the Rhat statistics obtained from R2WinBUGS,

and from the Gelman-Rubin Diagnotics available in WinBUGS.

Case Studies: the Carolina Wren, the Cerulean Warbler
and the Red-bellied Woodpecker

We present here three different case studies: the Carolina wren,

the cerulean warbler and the red-bellied woodpecker to illustrate

the application of including the spatial component in a trend

analysis model. These three species were chosen because their

population dynamics are well-known which should allow us to

verify if our model provides precise and biologically meaningful

trend estimates. We decided to use climate data to pick the most

biologically relevant intervals for each species in choosing the

appropriate time intervals (i.e., the year between which the trend

must be estimated),. Relevant parameters considered include the

presence of severe winters (with temperature under the average of

winter temperatures), high and low precipitations, and/or periods

of global increase or decrease in temperature.

The Carolina wren is a non-migratory species, present in a wide

range of habitats (from swamps to forest and residential area) in

the eastern United States and around the Gulf of Mexico [30]. It is

especially sensitive to cold weather leading to frequent drops in

population following severe winters, although populations increase

rapidly in years with mild winters [31]. While this species is not

considered to be of conservation concern, the Carolina wren

provides a useful test case for our modeling purposes because of its

relatively reduced range, its large population fluctuations that vary

spatially within this range, and its recognizable and loud song that

make it easily observable along BBS routes. We expect this species

to undergo extreme fluctuations in portions of their ranges

following severe winters when snow cover may prevent them from

foraging effectively on the ground. Therefore, trends for the

Carolina wren were computed from 1966 to 1976, from 1979 to

1983, from 1984 to 1989, and from 1990 to 1999, all time periods

punctuated with severe winter weather events.

The cerulean warbler is a migratory species, and is a specialist of

the upper canopy of extensive mature deciduous woods. It breeds

in the upper Ohio River Valley and Allegheny region, and its

range has expanded into the northeastern USA. Declines in its

breeding range (mainly in the Midwest) have been observed [15].

These reductions are thought to be caused by destruction of

overwintering habitat in northern South America [32]. Facing

Spatially Explicit Approach for Modeling Trends
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continuing habitat loss and fragmentation on its breeding and

wintering areas, the cerulean warbler population has globally

undergone a rapid decline and as such has been assigned a

vulnerable status by the IUCN [15][33]. Because of the generally

consistent but regionally varying declines [15], and the variation in

abundance in the breeding population area, cerulean warblers are

a good model species. We know that this species’ population is

declining, and that rates of decline vary by region. Therefore, we

expect the trend patterns to be spatially less smooth than for the

Carolina wren or the red-bellied woodpecker. We estimated trends

for the cerulean warbler between 1966 and 2001, between 1966

and 1975, between 1977 and 1987, and finally between 1990 and

1999. Since this species is migratory and should not be affected by

winter conditions, time intervals were chosen to provide trends

both over a long time-period (1966–2001), and for shorter regular

intervals not directly related to specific climatic events.

The red-bellied woodpecker is considered a sedentary species,

and is widely distributed throughout the eastern half of the United

States, ranging from the western wooded portions of the Great

Plains(for its western limit range) to the south of Ontario (for its

northern limit range) [34]. Breeding records from Connecticut and

Massachusetts suggest a dynamic breeding range in the north-

eastern USA, likely a function of a warming climate [35][36]. Due

to this widespread and changing distribution within the species

range, the large population size and the generally increasing

populations [37], this species is of value as a model species. We are

expecting this species to increase its range to the North

(presumably due to climate change). Trends estimates for the

red-bellied woodpecker were computed from time periods 1966–

2009, 1966–1976, 1979–1983 and 1990–2002. These intervals

were chosen to provide spatial trends over the period of study, and

more specific time periods based on climatic variations hypoth-

esized to be drivers of the red-bellied woodpecker dynamics.

Results

Spatial Approach vs Current BBS Analysis: How do the
BCR Level Estimates Perform?

Estimates of trend means are consistent between the two

approaches (table 1). Approximately the same number of

significant trend estimates (i.e., that have 95% CI that does not

include 0) are present for the current BBS analyses (20) and the

spatial analysis (17), over the 45 comparisons, and CI’s are smaller

for the non-spatial analysis in 29 out of 45 comparisons (1 tie).

However, when we look deeper into the estimates, we can see a

difference between the two approaches in the width of the 95%

CIs. Although, 95% CIs are on average 10% shorter with the

spatial approach than with the non-spatial model, that shorter

length is primarily a consequence of much smaller CIs in 1–2

regions for each species that are on the edges of the species ranges.

Consequently, although the non-spatial estimates tend to be more

precise in most regions, the lengths of the spatial model-based 95%

CI tends to be more consistent: the global standard deviation for

the mean length of the 95% CI is equal to 15.48 in the case of the

spatial model and is equal to 26.22 for the current BBS analysis.

This difference in precision in edge-of range BCRs conveys some

benefits for analysis, as overall trends are influenced by extremely

imprecise trends in edges of ranges. Average gain in precision for

the Carolina wren is 10%, and this is driven by the Atlantic

Northern Forest BCR (fig. 1). For the cerulean warbler gain is

11% on average, being driven by Southeastern Coastal Plain

(fig. 2). The red-bellied woodpecker gain in precision is only 4%

on average driven primarily by Atlantic Northern Forest and

Edwards Plateau (fig. 3).

With a posterior spatial variance s2
bt

for the Gaussian CAR

prior of 2.27 [2.17; 2.38], 4.76 [4.17; 5.26] and 1.72 [1.67; 1.85]

respectively, the Carolina wren, cerulean warbler, and red-bellied

woodpecker all exhibit spatial dependence. The magnitude of the

conditional variance determines the amount of spatial variation.

As spatial variance gets lower, the spatial dependence between

neighboring spatial units becomes stronger, and therefore

estimates in any given area tend to be more similar to that in

neighboring areas [19][38]. Spatial models have two aspects:

strength of dependence and total amount of spatial dependence. In

the Intrinsic CAR model, both aspects are controlled by a single

parameter. A ‘‘small’’ conditional variance therefore indicates

residual strongly dependent on neighboring values, and lead to a

smoother general spatial structure [39].

Carolina Wren
Carolina wren data were collected over a total of 2,049 routes,

distributed among 349 cells for a total of 449,054 detections,

spread over 44 years and collected by 4,045 observers. Spatial

patterns can be observed for the Carolina wren population trends,

corresponding to four different time periods: from 1966 to 1976

(fig. 4A), from 1979 to 1983 (fig. 4B), from 1984 to 1989 (fig. 4C),

from 1990 to 1999 (fig. 4D). During the first period –from 1966 to

1976– (fig. 4A), a decrease can be seen on the western part of the

species range with decreases up to 20%/year while an increase in

the central and northern parts of the species range is observed with

trends as high as 30%/year. Two prominent areas of increase are

in the center of the range and in the northeast. In the southern

part of its range the Carolina wren population is stable. During the

second period –from 1979 to 1983– (fig. 4B), most Carolina wren

population decreases occurred in the southern portion of its range

with Florida exhibiting the highest decrease (37%/year). During

the same time period, increases as high as 80%/year occurred in

the central portion of the range. The third time period –1984 to

1989– (fig. 4C) presents a distinction between the northern and

southern portions of the range. In the south, the population

decreased at a mean yearly rate of 15%, while the northern

population increased by 20 to 65% per year. Finally, during the

fourth time period –1990 to 1999– (fig. 4D), the Carolina wren

populations in the western part of the range increased around

30%/year, while populations throughout the rest of their range

experienced a moderate decreases (around 3%/year).

Cerulean Warbler
For the cerulean warbler, we have a total of 1101 routes,

distributed among 154 cells for a total of 8,920 detections over a

period of 44 years. These observations were collected by 2,269

individuals. We present four different maps: first, a global map

corresponding to a period going from 1966 to 2001 (fig. 5A), then

three maps demonstrating patterns for the following time periods:

1966 to 1975 (fig. 5B), 1977 to 1987 (fig. 5C) and 1990 to 1999

(fig. 5D). Three different distinct areas of population change can

be identified in the cerulean warbler range, a northwestern spot, a

southwestern spot, and a central eastern spot. Population in the

northwest increased by 10%/year between 1966 and 2001,

experiencing increases around 50%/year between 1966 and

1975, and between 1990 and 1999, while showing a decrease

around 8%/year between 1977 and 1987. Populations in the

southwest area showed a decrease of 10%/year between 1966 and

2001 (fig. 5A), with decreases up to 26%/year during the three

time periods evoked. As for the central and eastern part, during

the same time period, the population has been globally stable.

This is particularly true from 1990 to 1999, while the population

Spatially Explicit Approach for Modeling Trends
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decreased slightly (around 5%/year) from 1966 to 1975, and

increased slightly (around 10%/year) from 1977 to 1987.

Red-bellied Woodpecker
For the red-bellied woodpecker, reports concern a total of 2,267

routes, over an area of 410 cells and represent a total of 314,381

detections, during a 44 years period. Those observations involved

4,549 observers. We present four maps for the red-bellied

woodpecker. The first one shows the global trends from 1966 to

2009 (fig. 6A), the three subsequent ones offers a more time-

detailed view for 1966–1976 (fig. 6B), 1979–1983 (fig. 6C) and

1990–2002 (fig. 6D) periods. The trend map over the whole time

period shows a clear spatial pattern, with a steady population in

the central area, and a high increasing front in the northern range,

while at the most western limit of its distribution we observe a

decrease (fig.6A). When we take a closer look at this pattern, we

see that the acceleration of northern expansion occurred in the last

20 years. From 1966 to 1976, the species shows a global increase

with yearly trends around 8–9%, while the western limit of the

range presents negative trends around 215%/year (fig. 6B). For

the time period 1979–1983 (fig. 6C) however, we have globally

negative trends going as low as 230%/year. Finally, between

1990 and 2002 (fig. 6D) trends vary from negative trends in the

south to positive trends in the northern part of the species range.

Discussion

We have shown that incorporating a spatial component in the

BBS analysis framework allows us to obtain relevant and

biologically meaningful estimates for population trends. It also

provides a flexible framework for obtaining trend estimates for

any area, and with the beneficial effects of increasing precision

in marginal BCRs relative to those estimated from the current

approach used in the BBS analyses. Moreover, our model

accurately reflects spatial sampling imbalance due to the manner

in which BBS sample routes are allocated. The model effectively

uses sample allocation units (degree blocks) as small geographic

strata, and models spatial dependence among the units. We use a

Figure 1. Carolina wren’s range and BCRs where trend estimates were improved by spatial approach. Green squares: cells where the
species has been detected at least once between 1966 and 2009. Red areas: Bird Conservation Regions where trend estimates’ credible intervals were
more precise due to the use of a spatial approach, compared to the current BBS analysis. Bright red indicates the BCRs where the improvement in
precision is the greatest.
doi:10.1371/journal.pone.0081867.g001
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hierarchical model to model within-stratum variation and to

model variation among strata in space and time.

A practical benefit of this model is that it tends to produce more

precise estimates of trend in regions with very limited information.

As the total amount of available data decreases, the importance of

considering the spatial structure present in the dataset becomes

more and more prominent to obtain more precise estimates. When

available data are scarce, all supplementary information becomes

relatively more important. Information arising from the spatial

structure can be one of those. This could be the reason why in

our analysis the increase in precision was specifically observed at

the edge of species range. As the CAR model accommodates

spatial dependence via a conditional specification, it allows for

a ‘‘borrowing’’ of information across nearby units. This, thereby,

effectively boosts the local sample size upon which trend estima-

tion is based. In the complete absence of spatial dependence in

abundance, then deriving stratum-based trend estimates from

the underlying degree-block grid (and random effects model)

should be basically equivalent to the non-spatial model based on

‘‘stratified random sampling’’ using a post-stratification scheme.

Therefore, when abundance is correlated in space at a scale finer

than the post-stratification scheme for which estimates are desired,

we expect that the explicit spatial model should yield an

improvement in precision in most cases.

A conceptual benefit of this model is that it allows producing

estimates for arbitrary post-stratification schemes including even

very small areas without having to rerun the analysis. This is

because trend is a derived parameter from fundamental param-

eters that are defined by the design of the survey. As a result of

this, there is complete consistency with respect to the model

among any set of estimates based on different post-stratification

schemes. Stratum-specific trends for different schemes are all

simply reparameterizations of the basic underlying model param-

eters (see ‘Trend’ section above where we define a trend in terms

of degree block quantities). Under our model, the grid-cell

‘‘effects’’ can be made available to the community and any

arbitrary analysis (for different stratification schemes) based on

those will retain consistency with the original analysis.

Figure 2. Cerulean warbler’s range and BCRs where trend estimates were improved by spatial approach. Green squares: cells where the
species has been detected at least once between 1966 and 2009. Red areas: Bird Conservation Regions where trend estimates’ credible intervals were
more precise due to the use of a spatial approach, compared to the current BBS analysis. Bright red indicates the BCRs where the improvement in
precision is the greatest.
doi:10.1371/journal.pone.0081867.g002
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Importance of Spatially Explicit Trends Models
In conservation biology, knowledge of the actual or potential

distribution of a species is indispensable for threatened and

endangered species management and protected area planning

[40]. However, knowledge and a complete understanding of

population trends appear to be equally essential and historically

has been a key element for determining which species needs a

particular management attention. This knowledge can only

be achieved by a realistic approach of trends modeling that

encompasses the complexity of spatial patterns.

More importantly, models that incorporate both spatial

associations and associations of habitat and other factors

influencing populations are critical for developing predictive

models used in assessing the consequences of stressors such as

habitat and climate change on bird populations. The models

presented here achieve this goal, and should be useful in future

modeling for management of bird populations.

Incorporating spatial autocorrelation in our model allowed us to

obtain more precise results in regions where little information was

available; this can be decisive in the management process. Surer

information can help managers make more objective decisions.

The use of spatial autocorrelation helps to improve the overall

quality of trend estimates by explicitly accounting for underlying

geographic variation in the data. In order to account for this

spatial autocorrelation, and properly identify spatial patterns of

trends, we used a CAR model. While the normal assumption

for the CAR can be susceptible to outliers, potentially leading to

local oversmoothing of avian counts [26][41], Best et al. (1999)

[41] found that the particular treatment of the spatial effects

had little consequences on final model inferences, suggesting

that the model framework is robust to such errors. We note that

CAR models are widely-used for many applications of so-called

‘‘small-area estimation’’ [19][20][21][22] in conventional survey

situations such as arise in agricultural, epidemiology and census

surveys. The conditional variance parameter s2
bt

that controls the

amount of variability in the spatial effect, and is ‘‘a measure of the

local variability conditional on the values of neighboring random effects’’ [42].

It is common to incorporate both unstructured and spatially

Figure 3. Red-bellied woodpecker’s range and BCRs where trend estimates were improved by spatial approach. Green squares: cells
where the species has been detected at least once between 1966 and 2009. Red areas: Bird Conservation Regions where trend estimates’ credible
intervals were more precise due to the use of a spatial approach, compared to the current BBS analysis. Bright red indicates the BCRs where the
improvement in precision is the greatest.
doi:10.1371/journal.pone.0081867.g003
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structured random effect to determine the importance of the

spatial dependency. By determining if the spatially structured

random effect is dominating the unstructured random effect, then

estimates will display spatial structure. If it’s the opposite, the

unstructured random effect will ‘‘shrink the estimates towards the overall

mean’’ [25].

A benefit of including autocorrelation in a model is not only that

the statistical assumptions are better met, but also that the

predictive power of a model is improved by incorporating

additional information or predictors, such as the values at

neighboring locations [43][44]. Bahn et al. (2006) [44] pointed

out that not explicitly including spatial location in distribution

models is based on the implicit assumption that species’ locations

are independent in space and time. However, such an assumption

could easily be violated if the conditions defining the species niche

were autocorrelated; or if species’ locations were connected

through dispersal or other behaviors that lead to spatial patterning

such as aggregation or regular spacing. Interestingly, it should also

be noted that spatial models can also improve variable selection

[45][46]. Non-spatial models cannot account for autocorrelation

and thus may incorrectly select variables purely because they have

a similar autocorrelation as the dependent variable and not

because they are good predictors [45][46][47]. Therefore, the use

of a spatially meaningful component in conjunction with other

spatially varying covariates can help to determine exactly what

part of a spatial pattern is due to the said covariates and what part

is only due to spatial autocorrelation.

Spatial Structures of Our Study Cases
The results obtained with our model coincide with what we

know of the biology of the studied species, and allows us to obtain

reliable maps and estimates of population trends.

Space-time population dynamics of the Carolina wren is a well-

studied topic [48]. The observed trends in the most northern part

of the species range correspond to the descriptions commonly

applied to Carolina wren population dynamics. Explanations for

those dynamics rely on several factors. The most evoked factor is

the species sensitivity to cold weather: decimation of populations

by severe winter conditions is well known [4][49][50]. The

frequency of severe winters alternating with milder periods is the

prominent reason for the constant regressions and expansions of

the species Northern limit [51]. The effects of winter temperature,

snow and ice on the Carolina wren abundance have been

extensively studied [52][53][54][55][56]. For example, Bystrak

(1979) [57], Graber and Graber (1979) [58] and Bohlen (1989)

[55] have shown that populations size increases when winter

temperatures are average but undergoes a significant drop during

harsh winters (such as what happened between 1976 and 1977),

possibly because in those periods food resources are not available,

leading to starvation [4]. Those hypotheses are consistent with

what we observed in this study. In our case, positive trends in the

Figure 4. Map of the trends for the Carolina wren. Four times intervals are presented corresponding to yearly trends between A/1966 and
1976, B/1979 and 1983, C/1984 and 1989, and D/1990 and 1999. Trend is expressed as a percentage reflecting the yearly variation of abundance
during the corresponding period.
doi:10.1371/journal.pone.0081867.g004
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northern part of the species range during the periods 1979–1983

and 1984–1989 coincide with low winter precipitations. On the

other hand, at the western part of the species’ range, the negative

trends observed between 1966 and 1976 correspond to periods of

low winter temperatures and high winter precipitations, while the

positive trends between 1990 and 1999 match mild winters (Peter

Blank, pers. comm.).

As expected, we saw that trends for the cerulean warbler greatly

varied depending on the area with no specific regular pattern, and

local variation of the population. For this species, it is known that

conditions of both the breeding-season area and the winter habitat

explain the changes in populations. While winter habitat could

explain global variations of trends during the breeding season,

local conditions appearing in the breeding season range are more

likely to explain the observed spatial structure of trends during the

time of the year data were collected. While the overall geographic

limits of the breeding range have changed little during recent

history, the relative abundance of the species within the range has

experienced considerable change (mostly declined) since the early

1900s [59][60]. This global decline in the species abundance

and local variations of trends can be attributed to land-use

changes emerging from increasing human populations in the

breeding, migratory, and winter ranges [15][59]. Humans have

cleared habitats for other land uses and forest fragmentation is

obvious in western and southwestern parts of the breeding range

[61][62]. It is also noted that the cerulean warbler has reoccupied

areas when suitable habitat structure develops. Our model was

able to detect those local changes in trends without oversmoothing

the estimates which would have produced homogeneous maps.

We expected to detect an overall expansion of the red-bellied

woodpecker population towards the northern part of its range, and

our model was able to fully reflect that. While this species is a

currently not a species of conservation concern, its dynamics still

provide an interesting case study for trend modeling. Several

factors have been presented in order to explain the different local

patterns of spatial trends. Maturing forests in the Northeast and an

increase in backyard bird feeders are thought to have contributed

to the northern expansion of this species [63][64]. Shackelford

et al. (2000) [34] proposed that the range expansion towards the

northwest was facilitated by following wooded river bottoms into

the Great Plains where planted trees have matured in urban lots.

Climate has also been cited as being responsible for some

population declines, such as in Pennsylvania where the cold and

wet breeding season of 1990 may have contributed to poor

reproductive success [65]. Emlen et al. (1986) [66] have also

concluded that the main explanatory variable for the red-bellied

woodpecker range expansion was the latitude (while in the same

study they failed to detect the effect of any environmental factors

or latitude on the cerulean warbler and on the Carolina wren

range expansions). By considering spatial autocorrelation in our

model, we were able to take into account this effect of the purely

spatial pattern (based on latitude), and an interesting element

Figure 5. Map of the trends for the cerulean warbler. Four times intervals are presented corresponding to yearly trends between A/1966 and
2001, B/1966 and 1975, C/1977 and 1987, and D/1990 and 1999. Trend is expressed as a percentage reflecting the yearly variation of abundance
during the corresponding period.
doi:10.1371/journal.pone.0081867.g005
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would be to add climate covariates to this model in order to

determine which part of the trend structure is only due to the

latitude and which part is due to climatic factors.

Among the common factors used to try to explain the bird

population trends are habitat loss/changes, migratory status of

the concerned species, climate/weather and other variables

affecting reproduction and mortality (e.g., predation or parasitism,

pollution).

Not surprisingly, most of the time, variation in abundance is the

result of several different causes. Climate is an important variable

that can affect species distribution and trends. DesGranges and

Morneau (2010) [67] showed that for Quebec’s breeding birds

after correcting for the effect of land cover variables, climatic

variables explained 11.4% of the variation in the species

distribution. Accounting for the effect of climate on population

can be difficult because a very large portion of the variance that is

explained by climate variables can be shared with spatial variables,

reflecting the relationships among latitude, longitude, elevation,

and climate [67]. However, identifying the direct effects of climate

on bird distributions and the effects of habitat structure can be

done by recognizing the distinctive distributional patterns of the

two categories: smooth latitudinal (or altitudinal) gradients for

climate, patchy mosaics for habitat structure [66]. Using our

approach and by including climate covariates and possibly other

spatially varying covariates, it would become possible to identify

individually the parts of the species spatial pattern that are due to

each covariates or simply to the spatial structure. The spatial

random effect would indeed capture the spatial variation that is

not related to other parameters.

Because all those variables can be responsible for variations in

bird abundance, and because they can vary differently depending

on the spatial location, continental trends may not reflect

population trends at a more local level [68]. Consequently, as

Peterjohn and Sauer (1994) [69] and Herkert (1995) [68] point

out, managers should view the BBS data as indicators of the

overall health of regional bird communities. A better understand-

ing of current population trends and status is needed for managers

to be most effective in conserving species.

On a statistical aspect, Thogmartin et al. (2004) [26] highlighted

three challenges encountered when trying to model and map avian

counts over space: extra-Poisson dispersion, nuisance effects

associated with count data collection, and spatial autocorrelation.

They noted that even if each of these challenges can be

individually handled successfully with standard (i.e., frequentist)

statistical approaches, there is currently no means for considering

these challenges conjointly. We can also add that when modeling

ecological dynamics on such a large scale on both time and space

dimension, one issue that one will necessary encounter is the

computational effort required to obtain estimates at a meaningful

scale. When seen jointly with the even more important (and almost

Figure 6. Map of the trends for the red-bellied woodpecker. Four times intervals are presented corresponding to yearly trends between A/
1966 and 2009, B/1966 and 1976, C/1979 and 1983, and D/1990 and 2002. Trend is expressed as a percentage reflecting the yearly variation of
abundance during the corresponding period.
doi:10.1371/journal.pone.0081867.g006
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inevitable on such scales) issue of spatially imbalanced sampling,

the accurate estimation of parameters and quantities such as

trends becomes a juggling act. A trade-off between i) the spatial

resolution of the grid, ii) the computation effort that can be

invested in the study, and iii) the amount of data available for each

stratum depending on the sampling design must be made in order

to get ecologically meaningful and precise-enough estimates. Here,

those issues were accounted for using a Bayesian approach. We

were able to incorporate a spatial dimension into the existing

framework used for trends assessment with BBS data. The next

step is to provide a space model of bird population trends

with covariates that could ultimately be used to provide predic-

tive trend maps depending on expected climate changes. With

such an approach, we will be able to help conservation efforts

by determining how species will react to climate changes and

ultimately to make BBS more useful to the conservation

community.

Supporting Information

Appendix S1 WinBUGS code, including direct computa-
tion of BCR trend estimates.
(DOCX)
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