Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 20;93(17):9235–9240. doi: 10.1073/pnas.93.17.9235

Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.

M Laruelle 1, A Abi-Dargham 1, C H van Dyck 1, R Gil 1, C D D'Souza 1, J Erdos 1, E McCance 1, W Rosenblatt 1, C Fingado 1, S S Zoghbi 1, R M Baldwin 1, J P Seibyl 1, J H Krystal 1, D S Charney 1, R B Innis 1
PMCID: PMC38625  PMID: 8799184

Abstract

The dopamine hypothesis of schizophrenia proposes that hyperactivity of dopaminergic transmission is associated with this illness, but direct observation of abnormalities of dopamine function in schizophrenia has remained elusive. We used a newly developed single photon emission computerized tomography method to measure amphetamine-induced dopamine release in the striatum of fifteen patients with schizophrenia and fifteen healthy controls. Amphetamine-induced dopamine release was estimated by the amphetamine-induced reduction in dopamine D2 receptor availability, measured as the binding potential of the specific D2 receptor radiotracer [123I] (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]benzamide ([123I]IBZM). The amphetamine-induced decrease in [123I]IBZM binding potential was significantly greater in the schizophrenic group (-19.5 +/- 4.1%) compared with the control group (-7.6 +/- 2.1%). In the schizophrenic group, elevated amphetamine effect on [123I]IBZM binding potential was associated with emergence or worsening of positive psychotic symptoms. This result suggests that psychotic symptoms elicited in this experimental setting in schizophrenic patients are associated with exaggerated stimulation of dopaminergic transmission. Such an observation would be compatible with an abnormal responsiveness of dopaminergic neurons in schizophrenia.

Full text

PDF
9235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angrist B. M., Gershon S. The phenomenology of experimentally induced amphetamine psychosis--preliminary observations. Biol Psychiatry. 1970 Apr;2(2):95–107. [PubMed] [Google Scholar]
  2. Azzaro A. J., Rutledge C. O. Selectivity of release of norepinephrine, dopamine and 5-hydroxytryptamine by amphetamine in various regions of rat brain. Biochem Pharmacol. 1973 Nov 15;22(22):2801–2813. doi: 10.1016/0006-2952(73)90147-0. [DOI] [PubMed] [Google Scholar]
  3. Benes F. M., McSparren J., Bird E. D., SanGiovanni J. P., Vincent S. L. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991 Nov;48(11):996–1001. doi: 10.1001/archpsyc.1991.01810350036005. [DOI] [PubMed] [Google Scholar]
  4. Burt D. R., Creese I., Snyder S. H. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science. 1977 Apr 15;196(4287):326–328. doi: 10.1126/science.847477. [DOI] [PubMed] [Google Scholar]
  5. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1988 Sep;1(3):179–186. doi: 10.1016/0893-133x(88)90012-7. [DOI] [PubMed] [Google Scholar]
  6. Cross A. J., Crow T. J., Ferrier I. N., Johnstone E. C., McCreadie R. M., Owen F., Owens D. G., Poulter M. Dopamine receptor changes in schizophrenia in relation to the disease process and movement disorder. J Neural Transm Suppl. 1983;18:265–272. [PubMed] [Google Scholar]
  7. Davis K. L., Kahn R. S., Ko G., Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991 Nov;148(11):1474–1486. doi: 10.1176/ajp.148.11.1474. [DOI] [PubMed] [Google Scholar]
  8. Deutch A. Y. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson's disease. J Neural Transm Gen Sect. 1993;91(2-3):197–221. doi: 10.1007/BF01245232. [DOI] [PubMed] [Google Scholar]
  9. Dewey S. L., Smith G. S., Logan J., Brodie J. D. Modulation of central cholinergic activity by GABA and serotonin: PET studies with 11C-benztropine in primates. Neuropsychopharmacology. 1993 Jun;8(4):371–376. doi: 10.1038/npp.1993.37. [DOI] [PubMed] [Google Scholar]
  10. Farde L., Nordström A. L., Wiesel F. A., Pauli S., Halldin C., Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992 Jul;49(7):538–544. doi: 10.1001/archpsyc.1992.01820070032005. [DOI] [PubMed] [Google Scholar]
  11. Farde L., Wiesel F. A., Stone-Elander S., Halldin C., Nordström A. L., Hall H., Sedvall G. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry. 1990 Mar;47(3):213–219. doi: 10.1001/archpsyc.1990.01810150013003. [DOI] [PubMed] [Google Scholar]
  12. Gandelman M. S., Baldwin R. M., Zoghbi S. S., Zea-Ponce Y., Innis R. B. Evaluation of ultrafiltration for the free-fraction determination of single photon emission computed tomography (SPECT) radiotracers: beta-CIT, IBF, and iomazenil. J Pharm Sci. 1994 Jul;83(7):1014–1019. doi: 10.1002/jps.2600830718. [DOI] [PubMed] [Google Scholar]
  13. Green A. L., el Hait M. A. Inhibition of mouse brain monoamine oxidase by (+)-amphetamine in vivo. J Pharm Pharmacol. 1978 Apr;30(4):262–263. doi: 10.1111/j.2042-7158.1978.tb13223.x. [DOI] [PubMed] [Google Scholar]
  14. Hietala J., Syvälahti E., Vuorio K., Någren K., Lehikoinen P., Ruotsalainen U., Räkköläinen V., Lehtinen V., Wegelius U. Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch Gen Psychiatry. 1994 Feb;51(2):116–123. doi: 10.1001/archpsyc.1994.03950020040004. [DOI] [PubMed] [Google Scholar]
  15. Horn A. S., Coyle J. T., Snyder S. H. Catecholamine uptake by synaptosomes from rat brain. Structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Mol Pharmacol. 1971 Jan;7(1):66–80. [PubMed] [Google Scholar]
  16. Ichikawa J., Meltzer H. Y. The effect of chronic atypical antipsychotic drugs and haloperidol on amphetamine-induced dopamine release in vivo. Brain Res. 1992 Mar 6;574(1-2):98–104. doi: 10.1016/0006-8993(92)90805-j. [DOI] [PubMed] [Google Scholar]
  17. Innis R. B., Malison R. T., al-Tikriti M., Hoffer P. B., Sybirska E. H., Seibyl J. P., Zoghbi S. S., Baldwin R. M., Laruelle M., Smith E. O. Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse. 1992 Mar;10(3):177–184. doi: 10.1002/syn.890100302. [DOI] [PubMed] [Google Scholar]
  18. Karreman M., Moghaddam B. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem. 1996 Feb;66(2):589–598. doi: 10.1046/j.1471-4159.1996.66020589.x. [DOI] [PubMed] [Google Scholar]
  19. Kay S. R., Fiszbein A., Opler L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–276. doi: 10.1093/schbul/13.2.261. [DOI] [PubMed] [Google Scholar]
  20. Kung H. F., Kasliwal R., Pan S. G., Kung M. P., Mach R. H., Guo Y. Z. Dopamine D-2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling, and in vitro binding of (R)-(+)- and (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N- [(1-ethyl-2-pyrrolidinyl)methyl]benzamide. J Med Chem. 1988 May;31(5):1039–1043. doi: 10.1021/jm00400a027. [DOI] [PubMed] [Google Scholar]
  21. Köhler C., Fuxe K., Ross S. B. Regional in vivo binding of [3H]N-propylnorapomorphine in the mouse brain. Evidence for labelling of central dopamine receptors. Eur J Pharmacol. 1981 Jul 10;72(4):397–402. doi: 10.1016/0014-2999(81)90584-7. [DOI] [PubMed] [Google Scholar]
  22. Laruelle M., Abi-Dargham A., van Dyck C. H., Rosenblatt W., Zea-Ponce Y., Zoghbi S. S., Baldwin R. M., Charney D. S., Hoffer P. B., Kung H. F. SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med. 1995 Jul;36(7):1182–1190. [PubMed] [Google Scholar]
  23. Lee T., Seeman P., Tourtellotte W. W., Farley I. J., Hornykeiwicz O. Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature. 1978 Aug 31;274(5674):897–900. doi: 10.1038/274897a0. [DOI] [PubMed] [Google Scholar]
  24. Lidow M. S., Goldman-Rakic P. S., Rakic P., Innis R. B. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6412–6416. doi: 10.1073/pnas.86.16.6412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lidsky T. I. Reevaluation of the mesolimbic hypothesis of antipsychotic drug action. Schizophr Bull. 1995;21(1):67–74. doi: 10.1093/schbul/21.1.67. [DOI] [PubMed] [Google Scholar]
  26. Lieberman J. A., Kane J. M., Alvir J. Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 1987;91(4):415–433. doi: 10.1007/BF00216006. [DOI] [PubMed] [Google Scholar]
  27. Lieberman J. A., Kinon B. J., Loebel A. D. Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull. 1990;16(1):97–110. doi: 10.1093/schbul/16.1.97. [DOI] [PubMed] [Google Scholar]
  28. Logan J., Dewey S. L., Wolf A. P., Fowler J. S., Brodie J. D., Angrist B., Volkow N. D., Gatley S. J. Effects of endogenous dopamine on measures of [18F]N-methylspiroperidol binding in the basal ganglia: comparison of simulations and experimental results from PET studies in baboons. Synapse. 1991 Nov;9(3):195–207. doi: 10.1002/syn.890090306. [DOI] [PubMed] [Google Scholar]
  29. Martinot J. L., Paillère-Martinot M. L., Loc'h C., Hardy P., Poirier M. F., Mazoyer B., Beaufils B., Mazière B., Allilaire J. F., Syrota A. The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br-bromolisuride. Br J Psychiatry. 1991 Mar;158:346–350. doi: 10.1192/bjp.158.3.346. [DOI] [PubMed] [Google Scholar]
  30. Meltzer H. Y. Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology (Berl) 1989;99 (Suppl):S18–S27. doi: 10.1007/BF00442554. [DOI] [PubMed] [Google Scholar]
  31. Nordström A. L., Farde L., Eriksson L., Halldin C. No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone. Psychiatry Res. 1995 Aug 8;61(2):67–83. doi: 10.1016/0925-4927(95)02732-d. [DOI] [PubMed] [Google Scholar]
  32. Pilowsky L. S., Costa D. C., Ell P. J., Verhoeff N. P., Murray R. M., Kerwin R. W. D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. An 123I-IBZM single photon emission computerised tomography study. Br J Psychiatry. 1994 Jan;164(1):16–26. doi: 10.1192/bjp.164.1.16. [DOI] [PubMed] [Google Scholar]
  33. Reith J., Benkelfat C., Sherwin A., Yasuhara Y., Kuwabara H., Andermann F., Bachneff S., Cumming P., Diksic M., Dyve S. E. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11651–11654. doi: 10.1073/pnas.91.24.11651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Retaux S., Besson M. J., Penit-Soria J. Synergism between D1 and D2 dopamine receptors in the inhibition of the evoked release of [3H]GABA in the rat prefrontal cortex. Neuroscience. 1991;43(2-3):323–329. doi: 10.1016/0306-4522(91)90296-z. [DOI] [PubMed] [Google Scholar]
  35. Roberts A. C., De Salvia M. A., Wilkinson L. S., Collins P., Muir J. L., Everitt B. J., Robbins T. W. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci. 1994 May;14(5 Pt 1):2531–2544. doi: 10.1523/JNEUROSCI.14-05-02531.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ross S. B., Jackson D. M. Kinetic properties of the accumulation of 3H-raclopride in the mouse brain in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jul;340(1):6–12. doi: 10.1007/BF00169199. [DOI] [PubMed] [Google Scholar]
  37. Schwarz R. D., Uretsky N. J., Bianchine J. R. The relationship between the stimulation of dopamine synthesis and release produced by amphetamine and high potassium in striatal slices. J Neurochem. 1980 Nov;35(5):1120–1127. doi: 10.1111/j.1471-4159.1980.tb07867.x. [DOI] [PubMed] [Google Scholar]
  38. Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse. 1987;1(2):133–152. doi: 10.1002/syn.890010203. [DOI] [PubMed] [Google Scholar]
  39. Seibyl J. P., Woods S. W., Zoghbi S. S., Baldwin R. M., Dey H. M., Goddard A. W., Zea-Ponce Y., Zubal G., Germine M., Smith E. O. Dynamic SPECT imaging of dopamine D2 receptors in human subjects with iodine-123-IBZM. J Nucl Med. 1992 Nov;33(11):1964–1971. [PubMed] [Google Scholar]
  40. Sulzer D., Chen T. K., Lau Y. Y., Kristensen H., Rayport S., Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995 May;15(5 Pt 2):4102–4108. doi: 10.1523/JNEUROSCI.15-05-04102.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tune L. E., Wong D. F., Pearlson G., Strauss M., Young T., Shaya E. K., Dannals R. F., Wilson A. A., Ravert H. T., Sapp J. Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone. Psychiatry Res. 1993 Dec;49(3):219–237. doi: 10.1016/0165-1781(93)90063-m. [DOI] [PubMed] [Google Scholar]
  42. Uretsky N. J., Snodgrass S. R. Studies on the mechanism of stimulation of dopamine synthesis by amphetamine in striatal slices. J Pharmacol Exp Ther. 1977 Sep;202(3):565–580. [PubMed] [Google Scholar]
  43. Van Kammen D. P., Murphy D. L. Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia. 1975 Nov 21;44(3):215–224. doi: 10.1007/BF00428897. [DOI] [PubMed] [Google Scholar]
  44. Volkow N. D., Wang G. J., Fowler J. S., Logan J., Schlyer D., Hitzemann R., Lieberman J., Angrist B., Pappas N., MacGregor R. Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse. 1994 Apr;16(4):255–262. doi: 10.1002/syn.890160402. [DOI] [PubMed] [Google Scholar]
  45. Weinberger D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987 Jul;44(7):660–669. doi: 10.1001/archpsyc.1987.01800190080012. [DOI] [PubMed] [Google Scholar]
  46. Wong D. F., Wagner H. N., Jr, Tune L. E., Dannals R. F., Pearlson G. D., Links J. M., Tamminga C. A., Broussolle E. P., Ravert H. T., Wilson A. A. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science. 1986 Dec 19;234(4783):1558–1563. doi: 10.1126/science.2878495. [DOI] [PubMed] [Google Scholar]
  47. van Rossum J. M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966 Apr;160(2):492–494. [PubMed] [Google Scholar]
  48. van der Werf J. F., Sebens J. B., Vaalburg W., Korf J. In vivo binding of N-n-propylnorapomorphine in the rat brain: regional localization, quantification in striatum and lack of correlation with dopamine metabolism. Eur J Pharmacol. 1983 Feb 18;87(2-3):259–270. doi: 10.1016/0014-2999(83)90336-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES