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Abstract

Aim was to elucidate autonomic responses to dynamic and static (isometric) exercise of the lower limbs eliciting the
same moderate heart rate (HR) response. Method: 23 males performed two kinds of voluntary exercise in a supine
position at similar heart rates: static exercise (SE) of the lower limbs (static leg press) and dynamic exercise (DE) of
the lower limbs (cycling). Subjective effort, systolic (SBP) and diastolic blood pressure (DBP), mean arterial pressure
(MAP), rate pressure product (RPP) and the time between consecutive heart beats (RR-intervals) were measured.
Time-domain (SDNN, RMSSD), frequency-domain (power in the low and high frequency band (LFP, HFP)) and
geometric measures (SD1, SD2) as well as non-linear measures of regularity (approximate entropy (ApEn), sample
entropy (SampEn) and correlation dimension D2) were calculated. Results: Although HR was similar during both
exercise conditions (88+10 bpm), subjective effort, SBP, DBP, MAP and RPP were significantly enhanced during SE.
HRYV indicators representing overall variability (SDNN, SD 2) and vagal modulated variability (RMSSD, HFP, SD 1)
were increased. LFP, thought to be modulated by both autonomic branches, tended to be higher during SE. ApEn
and SampEn were decreased whereas D, was enhanced during SE. It can be concluded that autonomic control
processes during SE and DE were qualitatively different despite similar heart rate levels. The differences were
reflected by blood pressure and HRV indices. HRV-measures indicated a stronger vagal cardiac activity during SE,
while blood pressure response indicated a stronger sympathetic efferent activity to the vessels. The elevated vagal
cardiac activity during SE might be a response mechanism, compensating a possible co-activation of sympathetic
cardiac efferents, as HR and LF/HF was similar and LFP tended to be higher. However, this conclusion must be
drawn cautiously as there is no HRV-marker reflecting “pure” sympathetic cardiac activity.
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Introduction

Three mechanisms are thought to be responsible for the
neural cardiovascular modulation during voluntary muscle
contractions: an activation of higher brain centers (“central
command”) as well as reflex activity primarily involving inputs
from chemo- and mechanoreceptor (“muscle metaboreflex”)
and baroreceptor afferents (“baroreflex”) [1-9]. Each
mechanism activates neuronal circuits within the medulla and
thus modulates the sympathetic and parasympathetic outflow
from the cardiovascular control center [1-8]. The influence of
each mechanism on the heart rate and blood pressure
response to exercise depends on factors like recruited muscle
mass, muscle fiber type, exercise intensity and the exercise
mode [10-12]. Early literature that compared the cardiovascular
response to static and dynamic muscular actions indicated a
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strong increase in heart rate (HR) and systolic arterial pressure
(SBP), and minor changes in diastolic arterial pressure (DBP)
during dynamic work, while isometric work is thought to induce
only modest increases of HR but marked increases in SBP and
in particular DBP [13-18]. However, the generality of these
observations is limited, because a) mostly cardiovascular
effects of static (SE) and dynamic exercise (DE) had been
studied separately; b) the quantification and thus the equating
of workload during different exercise modes is difficult [18]; and
c) often the compared muscles were of different size and
location. Static vs. dynamic contractions of identical small
muscles, e. g. during submaximal handgrip exercise, elicited
similar HR and BP response [19], while it was shown that
submaximal isometric contractions of larger muscles (e. g.
knee extensors/flexors) at 40 % of maximum effort can induce
lower HR and BP responses than isokinetic or isotonic
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contractions [20]. During moderate exercise intensity Chapman
and Elliott found a significant increase in HR and SBP during
DE, while DBP was highest during SE [18]. Nevertheless they
concluded that when the same muscle groups are used the
effect of the exercise modes on cardiovascular response is
more similar than frequently stated. Gonzales-Camarena and
colleagues compared DE (cycling) at 30 % VO,max and SE
(isometric exercise of the knee extensors) at 30 % maximal
voluntary contraction force (MCV). While respiratory rate was
similar at the equivalent relative workloads they found different
cardiovascular response pattern: a lower heart rate, a higher
blood pressure response as well as higher effort perception for
SE compared to DE [21]. In addition to the lower HR response
also HRV measures pointed to a stronger vagal modulation
during the SE [21]. Generally, compared to DE, isometric
contractions might elicit a stronger chemoreflex response, as
blood flow within and the release of metabolites from the
muscle is limited. The chemoreflex elevates blood pressure by
a sympathetic vasoconstriction [4], but also seems to affect
sympathetic heart rate modulation [6].

To date, there are only few studies available that compared
the cardiovascular response pattern at similar heart rates.
Lindquist et al. found a stronger increase of SBP and DBP
during isometric handgrip compared to cycling at comparable
heart rates (about 90 bpm) [16]. Leicht and coworkers
compared rating of perceived exertion (RPE) and cardio-
respiratory response to dynamic muscular activity of different
muscle groups at 50 % maximum HR (HR,..,) and 65 % HR.,,
respectively. The investigators found greater heart rate
variability (HRV) and greater ratings of perceived exertion
despite lower oxygen consumption during upper body dynamic
exercise compared to lower or whole body dynamic exercise at
similar heart rates [11]. They concluded that the greater HRV
may represent greater vagal or dual autonomic modulation, but
recommended further investigation of the underlying
mechanisms.

Cottin et al. compared HRV indices during a judo randori vs.
ergometer cycling eliciting the same heart rate level. They
concluded that a) steady-state dynamic exercise or conversely
exercise made of both isometric and irregular dynamic efforts
can be distinguished by HRV analysis and b) based on their
results of a similar spectral energy distribution within the LF
and HF bands, “HR autonomic control during exercise depends
on HR level rather than on exercise type“. Due to the study
design in the Cottin et al. study including intense exercise at an
average heart rate above 180 beats x min?, conclusions
regarding the autonomic mode of heart rate control based on
spectral analyses of HRV are strongly limited. HRV at greater
HR-levels is often almost negligibly and the remaining variance
especially within the high frequency band is probably due to
non-neural mechanisms [22-24]. Furthermore, the different
location and size of the active muscles during cycling and judo
exercises makes interpretation regarding the autonomic mode
of heart rate control difficult.

In their case study of one world class dinghy sailor, Princi et
al. found different autonomic modes of cardiac control based
on HRV-analysis when comparing sailing and cycling at similar
heart rates [25]. Because of higher values of the low frequency
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Table 1. Characteristics of the participants (n = 23).

BMI [kg/ Relative VOamax
Age [yrs] Weight [kg] Height[m] m?] [mI*min-T*kg]
Mean 255 84.0 185.4 24.3 51.1
(SD)  (2.6) (7.7) (5.9) (1.5) (3.5)
72.0 -
Range 21-32 100.0 1.74-1.95 22.3-27.2 43.7-58.3

doi: 10.1371/journal.pone.0083690.t001

power (LFP) and the ratio of low to high frequency heart rate
variance (LF/HF-ratio) in upwind sailing (static exercise) a
different sympatho-vagal modulation of cardiac function — and
therefore a different heart-brain interaction — under different
exercise modes was suggested [25]. However, the
generalizability of this statement is strongly limited, because
only one athlete was subject of investigation and the muscle
groups engaged were not similar during both exercises.

Aim of this laboratory study was to assess the modes of
autonomic control under DE vs. SE at similar, low heart rate
level. HRV, the beat to beat fluctuation of heart rate, and blood
pressure were used as non-invasive measures to elucidate the
autonomic mechanism underlying cardiovascular control under
the different experimental conditions [6,24,26,27]. Provided a
different autonomic response pattern, we hypothesized that
blood pressure and / or heart rate variability measures would
be different during the different exercise modes.

Materials and Methods

Ethics statement

Approval of the local ethics committee at the University of
Rostock was obtained.

Participants

Twenty three healthy males were recruited by personal
invitation and gave their informed written content to take part in
this study. Table 1 shows selected characteristics of the
participants. Aerobic fithess of the participants was estimated
by the use of anthropometric and socio-demographic data, the
self reported physical activity level as well as participant’s
perceived functional ability [28]. All volunteers were physically
active and healthy and none of them took medication. They
abstained from any exhaustive exercise and alcohol for 24 h
prior to the experiment. Further, the consumption of caffeine or
nicotine was not allowed during the night and on the morning of
the experiment [29].

Protocol

Participants underwent exercise testing on two occasions.
Testing was carried out in supine position (Figure 1) at the
same time of day and the same weekday to minimize
confounding effects on the autonomic nervous system
emerging from diurnal influences and daily activity patterns
[30-32]. Each exercise session lasted five minutes and was
carried out after a 5-minute adaptation period in a supine
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Figure 1. Scheme of the experimental setup during isometric leg exercise. Heart rate was monitored continuously using a
wireless chest belt system (Polar® RS800). Blood pressure was measured discontinuously minute by minute.

doi: 10.1371/journal.pone.0083690.g001

position to exclude orthostatic effects on autonomic regulatory
control. All sessions included the measurement of SBP and
DBP using the automatic blood pressure measuring device
Bosotron 2, (boso Inc., Germany) [33]. Mean arterial pressure
(MAP) was calculated by (SBP + 2*DBP)/3. Heartbeat intervals
were measured using the RS800 heart rate monitor (Polar Inc.,
Finland), a chest belt system with an accuracy of 1 millisecond
[34,35]. Isometric leg press had to be performed with a weight
of 20 kg while knee flexion was 90° (Figure 1). This relatively
low weight was chosen because preliminary testing indicated
that this intensity could be maintained for five minutes without
eliciting valsalva manoeuvres and interruptions to rest. Further,
this low intensity resistance exercise allowed the adjustment of
a physiological steady state within one minute. One week after
the SE session DE was carried out. Cycling cadence during DE
was held constant at 60 revolutions per minute and resistance
of the ergometer was individually adjusted to match the
individual heart rate response elicited by SE (Figure 2). Heart
rate was monitored continuously by the investigator using the
RS800 heart rate monitor. Average power output was 46.7 +
19.5 Watts (range: 20 to 75 W). Immediately after each
exercise session participants rated their individual physical
effort on a scale from 0 (unexacting) to 10 (maximal
exhaustion).

Data processing

To ensure steady state conditions only the last three minutes
of each session were analyzed. Blood pressure was measured
minute-by-minute for the last 3 minutes of the exercise
sessions and averaged for statistical analysis. Heart rate was
measured beat-by-beat and averaged for 3 minutes as well. A
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short term HRV-analysis was performed for 3-minute RR-
interval segments during steady-state conditions.

HRV measures

RR-interval series were processed using the free software
Kubios HRV 2.0 (University of Kuopio, Finland). All analyzed
RR-time series exhibited low noise (rate of erroneous RR-
intervals below 5 %). Before the computation, RR-time series
were corrected for artifacts using adaptive filtering and
detrended (detrending method: smoothn priors, A500). Time
domain (SDNN, RMSSD) and Poincaré Plot indices (SD 1, SD
2) were calculated. Frequency domain analysis (LFP, HFP, and
their normalized values LF n.u., HF n.u., LF/HF ratio) were
performed wusing a Fast Fourier Transform (Welch's
periodogram: 256 s window with 50% overlap) [27]. Further,
approximate entropy (ApEn), sample entropy (SampEn) and
correlation dimension D,, nonlinear measures of regularity and
complexity of physiological time series, were calculated
[36-39]. ApEn is a measure of regularity of the RR-interval
series with irregularity resulting in high and regularity in low
values, respectively. It measures the likelihood that runs of
patterns that are close to each other will remain close in the
next incremental comparisons [40]. SampEn is similar to ApEn
but less dependent on record length [41]. Its calculation relies
on counts of m-long templates matching within a tolerance r
that also match at the next point. For SampEn calculation the
value of m was selected to be m = 2, for tolerance r a fraction
of the standard deviation of the RR-data (r = 0.2*SDNN) was
chosen [40]. Low values of SampEn arise from extremely
regular time series, higher values reflect more complexity, and
highest values are typical for stochastic data sets [42-44].
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Figure 2. Scheme of the experimental setup during dynamic leg exercise using a cycle ergometer (Ergoline® ER
900). Pedaling revolutions were set at 60 rpm; resistance was individually adapted to match a heart rate level similar to the

isometric exercise.
doi: 10.1371/journal.pone.0083690.g002

Correlation dimension D, is expected to give information on the
minimum number of dynamic variables needed to model the
underlying system [45]. A lower value can be found, when the
analyzed signal provides a higher regularity, higher values are
supposed to reflect higher complexity or randomness [46].
Nonlinear parameters have proven their prognostic value in
clinical settings [47-49] but the physiological background of
their behavior is not very well established. Despite the fact, that
the autonomic nervous system seems to be the main
modulator [50,51], often there is no correlation with traditional
HRV-indices [49,52,53].

T-test analysis for matched pairs was carried out to test for
differences of the means (SPSS 15.0). Further, the effect size
for significant differences between SE and DE were calculated
using G*Power 3.1 (Dusseldorf University, Germany) [54].

Results

Compared to DE, during SE subjective effort, blood pressure
(SPB, DBP and MAP), RPP and the HRV indices SDNN,
RMMSD, HFP, SD 1 and SD 2 were significantly enhanced
(Table 2). Heart rate complexity measures ApEn and SampEn
were significantly reduced, whereas D, was significantly
increased during SE (Table 2). RR-interval and thus, heart rate
did not differ between SE and DE. The 95% CI of the paired
heart rate differences ranged from -0.18 to 0.75 beats/min (p =
0.221).

PLOS ONE | www.plosone.org

Discussion

Aim of this study was to elucidate the mechanisms of
autonomic response during static and dynamic muscular work
of the lower limb at the same heart rate level by analyzing
blood pressure and heart rate variability. Despite eliciting the
same heart rate response subjective effort, blood pressure and
heart rate variability differed significantly between the two
exercise modes. RPP — an indirect measure of myocardial
oxygen consumption — was increased by 13% under SE
[65,56]. Generally, findings of this study suggest that —
provided a similar low heart rate level — autonomic control
processes are qualitatively different during dynamic and static
work of the same large muscles.

Because heart rate was similar, the increased blood
pressure during SE can principally be attributed to an
increased peripheral vasoconstriction and/or changes in stroke
volume. Especially metabolite accumulation in the isometric
working muscle (muscle metaboreflex) but also changes in
central command can lead to the enhanced blood pressure
response observed under SE [4,57-65]. As the sense of effort
and the perception of afferent sensory inputs appear to be
closely related during most exercise — despite being based on
different neurological mechanisms [66] — the stronger
perception of effort during SE can support the conclusion of an
increased metaboreceptor feedback during SE. On the other
hand it cannot be excluded that a change of central command,
mirrored by the increase in subjective effort, might have
contributed to the elevation of blood pressure during SE
[1,2,4,8,66-68]. However, the muscle metaboreflex has been
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Table 2. T-test statistics and effect sizes for pair wise
comparisons of heart rate, blood pressure, heart rate
variability and subjective effort during static (SE) and
dynamic exercise (DE).

Static Exercise Dynamic Effect
Parameter’ (SE) Exercise (DE) T df p-value size
Heart Rate

88.0+£9.7 87.7+9.5 1.261 22 0.221 0.261
[bpm]
SBP [nmHg] 158.0 £12.1 140.2+£15.3 7.794 22 0.000 1.63
DBP [mnmHg] 95.3%6.3 68.5+8.2 15.671 22 0.000 3.27
MAP [mmHg] 116.2%6.1 92.4+8.38 15.491 22 0.000 3.21
RPP [mmHg/  13932.1 % 12340.5

8.763 22 0.000 1.83

min] 2100.8 2126.3
RR-interval

691.8 + 80.4 692.8 +77.9 -0.511 22 0614 0.10
[ms]
SDNN [ms] 23.1£6.6 16.7 £ 6.1 3.826 22 0.003 0.75
RMSSD [ms] 16.9+8.5 13.1+6.9 2966 22 0.021 0.62
HFP [ms?] 142.8 £145.0 52.4%45.0 3.080 22 0.005 0.65
LFP [ms?] 414.1+256.2 251.8+339.5 1.921 22 0.068 0.40
HF n.u. 25.1+£16.5 20.6 £ 15.9 1.064 22 0.299 0.22
LF n.u. 749+ 16.5 79.4 £15.9 -1.064 22 0.299 -0.22
LF/HF 58+5.7 6.6+4.7 -0.549 22 0.588 0.00
SD1 12.1+6.0 9.4+49 2977 22 0.007 0.50
SD 2 42.9 +29.1 29.1£10.8 4770 22 0.000 0.99
ApEn 0.90 +0.14 0.99 +0.10 -3.501 22 0.002 -0.73
SampEn 1.18 £0.36 1.43£0.31 -4.997 22 0.000 -1.04
D2 1.28 £1.06 0.44 £0.83 4.570 22 0.000 1.00
Subjective

P 44%1.6 23%11 5.786 22 0.000 1.208

effort

# Parameters showing significant differences between the means of the two
exercise modes are indicated by bold letters

## Effort was rated on a scale from 0 (= minimal) to 10 (= maximal)

doi: 10.1371/journal.pone.0083690.t002

suggested to be the dominant mechanism responsible for the
vasculature response (blood pressure increase), whereas the
central command is supposed to be the main modulator of the
cardiac response (heart rate increase) during SE [4]. There are
several human studies which showed stroke volume to be
unchanged or even decreased during mild to moderate
exercise during both exercise modes [62,63,69]. Thus, the
change in vasomotor tone and not stroke volume seems to be
the main modulator of the different blood pressure response
observed during SE and DE. Most likely the muscle
metaboreflex overrides the baroreflex, leading to a stronger
sympathetic efferent activity to the vessels during SE
[4,58,64,70-74].

While the blood pressure response seems to evidence
increased sympathetic efferent drive to the vessels during SE,
the vagally related HRV-measures RMSSD, HFP and SD 1
were significantly increased, speaking for an elevated vagal
cardiac modulation. At the same time the LF/HF ratio — a
measure thought to reflect sympathovagal balance [27] — and
heart rate were unchanged. Also SDNN, SD 2 and LFP - all
influenced by sympathetic and parasympathetic efferent activity
— were higher or tended to be higher, respectively. These
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results partly suggest an increase in sympathetic heart rate
modulation under SE as well. Other studies have supported the
view of an increased dual autonomic modulation during SE
compared to DE at similar relative work or heart rate. By
studying heart rate variability during post-exercise ischemia
(metaboreflex model), Nishiyasu et al. concluded that
parasympathetic cardiac tone is enhanced, and thus HRV was
increased, to balance enhanced sympathetic cardiac activity
[75]. Also Gonzalez-Camarena and colleagues suggest an
increased vagal outflow due to the baroreflex following a
sympathetic activation [21]. Further, recent animal studies
suggest, that even at the start of exercise physiological
response is not exclusively elicited by vagal withdrawal, but
also by increased sympathetic activity [7]. According to the idea
of an autonomic space, a reciprocal behavior, e. g. vagal
withdrawal and a concomitant sympathetic activation, is only
one of many autonomic modes, potentially modifying heart rate
during exercise. Sympathetic-parasympathetic co-activation,
sole vagal withdrawal or sympathetic enhancement can have
the same net-effect on heart rate as reciprocal relations of the
autonomic branches as well [64,75-77]. Taken together the
results of the HRV time and frequency domain analysis clearly
indicated enhanced parasympathetic heart rate modulation
during SE compared to DE. Although some observations
indirectly support the assumption of an increased sympathetic
cardiac activity, such conclusion must be drawn cautiously, as
there is no HRV-marker reflecting “pure” sympathetic cardiac
nerve traffic [78-81].

Complementary to traditional HRV-measures, which give
information on the magnitude of the variability or important
rhythms, non-linear indices are able to identify complex
patterns of the analyzed time series. In our experiment the non-
linear parameters differed significantly between the two
exercise modes, according to the traditional vagal HRV-indices.
D, was significantly higher during SE, indicating higher
complexity of the RR-time series compared to DE. Some
researchers suppose that higher D, values represent a
stronger, interplay between the autonomic branches, e. g. in
healthy vs. unhealthy cardiac states [37,82]. It can be
speculated that an increased sympathetic-parasympathetic
interaction and / or co-activation during SE, caused by afferent
feedback from chemo- and baroreceptors, contributes to a
more complex autonomic heart rate modulation. During DE
heart rate might be modulated in a more reciprocal fashion
leading to lower D, values [76,77]. However, the decrease of
ApEn and SampEn during SE seems to contradict the
interpretation of the D, values, as these results indicate higher
complexity / lower regularity under DE. There is some evidence
from other studies analyzing RR-data, showing only weak to
medium or even no correlation between entropy measures and
correlation dimension D, [46,83]. Results of our experiment
support the view that beyond their distinct mathematical
calculation also the physiological background of the calculated
regularity measures is different. The cause for ApEn and
SampEn values being significantly higher during DE remains
speculative. Méakikallio et al. compared ApEn and other HRV
indices of patients with a previous myocardial infarction and
healthy controls and found enhanced ApEn in the patients.
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They suggested a more irregular breathing pattern as a
possible cause for enhanced values of ApEn [53]. Pentilla and
coworkers found that vagal blockade largely and slow
breathing slightly decreases ApEn [50]. Further, during
incremental dynamic exercise ApEn increased from the start to
the end with and without parasympathetic blockade, indicating
that non-vagal influences contribute to changes in ApEn
[84,85]. Whether the significant differences of HRV complexity /
regularity in our experiment are caused by different breathing
patterns, changes in the sympathetic-parasympathetic
interaction, or other causes remains to be investigated. Based
on the finding of significant differences of the traditional vagally
related HRV indices, a contribution of the cardiac vagal efferent
activity to the distinct non-linear HRV characteristics during DE
and SE is rather likely.

Limitations of this study

The lack of controlled breathing conditions can be seen as a
limitation of this study. Although HF-Power and other vagally
related HRV-measures might be confounded by different
breathing patterns [86], some researchers question significant
effects of breathing especially on RMSSD [87,88]. Nishiyasu
and colleagues found similar effects on HRV during controlled
vs. uncontrolled breathing when investigating the effects of the
metaboreflex after static exercise [75]. To minimize effects of
breathing pattern in our experiment, participants were
instructed to breath as normal as possible during the exercises.
Furthermore, all participants were trained, active male students
and could sustain the load for 5 minutes without indicating
exhaustion. Thus, the applied resistance of 20 kg can be
considered as low to moderate at best [13,89,90]. This low
weight should have prevented or at least limited the occurrence
of valsalva manoeuvres or other irregular breathing patterns.

Cycling per se might have affected heart rate variability by
cardio-locomotor coupling; however, the contribution of cardio-
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