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Abstract

Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials.
Engineered nanoparticles (ENPs) may thus find their way into the soil environment via wastewater, dumpsters and
other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be
hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem
and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by
measuring bacterial community activity, composition and size following exposure to copper oxide (CuO) and
magnetite (Fe;O,) nanosized (<50 nm) particles. Two different soil types were examined: a sandy loam (Bet-Dagan)
and a sandy clay loam (Yatir), under two ENP concentrations (1%, 0.1%). Results indicate that the bacterial
community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil.
More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition
and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a
significant decreased oxidative potential and changes to community composition. Fe;O, changed the hydrolytic
activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community.
Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after
addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO.
Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by
CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore,
it is suggested that the clay fraction and organic matter in different soils interact with the ENPs and reduce their
toxicity.
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Introduction

Materials at the nanometer scale are not new, having been
reported to be found naturally in various environments,
including volcanic dust [1], oceans [2], fresh water [3] and soils
[4,5]. On the other hand, anthropogenic engineered
nanoparticles (ENPs) have appeared relatively recently, with
their manufacturing and use becoming widespread only during
the last decade [6]. ENPs are employed in the cosmetics
industry [7], antimicrobial paints [8], electronic devices, and
textiles [9]. ENPs are often designed to be extremely reactive,
and they have characteristics, unlike some of their natural
counterparts, that may be harmful to different life forms
including microorganisms and animals. The presence of
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anthropogenic ENPs in the environment, particularly TiO,, has
already been reported in streams [8] and wastewater treatment
plants [10]. Indeed, the increase of new ENP-based products
promises a steady increase in ENP production, availability and
ultimately discharge to the environment [11].

ENPs can be classified by size, structure, toxicity and
obviously by their chemical composition. Metal oxide ENPs
(MO-ENPs), which include CuO, TiO,, ZnO, CuZnFe,O,,
Fe;O,, and Fe,0O; among others, are used extensively in a
variety of applications, despite the fact that few studies have
examined their potentially hazardous effects to the environment
[11,12]. MO-ENPs affect the environment differently than their
bulk size or dissolved ion counterparts, because of their high
surface to volume ratio [13,14]; surface characteristics such as
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charge and reactivity are intensified in MO-ENPs, which
therefore make them potentially more dangerous to organisms.
Many other variables are involved in determining MO-ENP
toxicity, including size, oxidative state, exposure time, particle
concentration and the target organism [12-15]. Moreover,
when evaluating the toxicity of MO-ENPs to organisms living in
a habitat such as soil, other variables must be taken into
account, including soil type, soil water content, soil organic
matter and mineral composition [12-17].

Soil microbial communities are responsible for many of the
biogeochemical processes on Earth, such as nutrient
mineralization, nitrogen cycling and organic carbon degradation
[18,19]. Therefore, many ecosystem services, including supply
of clean groundwater, waste degradation and agricultural
production, are dependent on the well-being of the soil
microbial community. Changes in microbial activity and
community composition can result from changes in availability
of nutrients and organic carbon, anthropogenic activity and
introduction of contaminants such as MO-ENPs. Identifying and
characterizing affected groups of microbes and quantifying the
productivity of the community are essential for the
characterization of MO-ENP effects, designing toxicity
detection methods, and as a step toward defining improved
bioremediation practices.

Most of the studies on environmental impacts of MO-ENP
contamination have focused on determination of lethality to
specific organisms, including fish [20,21], crustaceans [22—24]
and the bacteria Vibrio fischeri, Bacillus subtilis and
Escherichia coli [23,25]. Recently, a disruptive effect of 100
ppm CuO ENPs was reported for decomposition of plant litter
by the microbial community in streams [26]. In concurrence
with these findings, disruptive effects to soil bacterial
communities were detected by ZnO and TiO, in a dose-
dependent manner [27]. A negative effect was also detected in
arctic soil microbial communities by the addition of 0.066%
(w/w) silver (Ag) ENPs, but surprisingly, not for copper or silica
[28]. Similarly, Shah and Belozerova [29] found no effects of a
variety of metallic ENPs on a soil microbial community in the
presence of relatively high nutrient levels. Collins et al. [30]
described the effect of Cu and ZnO ENPs on different soil
horizons over a 160 day period and showed that different
bacterial orders are affected differently by these contaminants.
For example, Flavobacteriales and Sphingomonadales were
affected negatively by ENPs, whereas Rhizobiales were much
more resilient to both contaminants. Ge et al. [27] found similar
responses of Sphingomonadales and Rhizobiales to ZnO to
those of Collins et al. [30]. Overall, it appears that there are
contradictory findings regarding the environmental toxicity of
MO-ENPs at the community level. In contrast, some consistent
trends were found regarding the effect these materials have on
specific bacterial groups. Further research is needed to
understand the effect of MO-ENPs on the microbial
communities under different conditions, especially for different
soil types.

In this study, we assessed soil microbial activity and
composition of soil bacterial communities following exposure to
two MO-ENPs, copper oxide (CuO) and magnetite (Fe;O,), in
two soil types (sandy loam and sandy clay loam). We
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hypothesized that soil type is a deterministic factor dictating the
vulnerability of soil organisms to MO-ENP pollutants. The
selected soil types are representative of two different soil
textures and characteristics, which are common in Israel and
other regions in the world. Furthermore, we explored the effect
of concentration of these MO-ENPs by comparing two different
contaminant doses, 0.1% and 1% w/w. The lower
concentration is in the range often tested in different habitats
and with different MO-ENPs [28,29,31,32]. The higher
concentration, on the other hand, is in a range estimated to be
found in cases of spills from industrial sources. We
hypothesized that a 0.1% dose would cause a slight change in
the community function and structure, while a 1% dose would
affect these parameters more significantly. We further
attempted to identify bacterial populations with specific
sensitivity or, on the other hand, robustness in the presence of
the contaminants.

Materials and Methods

Experimental design

This study was conducted at the Agricultural Research
Organization, Bet-Dagan, Israel. Two types of soil, sandy loam
from Bet-Dagan, Israel (pH 7.7, clay: 16.2%, silt: 6.3%, sand:
77.5% collected from a site located at 31°59'N34°49'E) and
sandy clay loam from Yatir, Israel (pH 7.5; clay 36.9%; silt
14.8%; sand 48.3%, located at 31°21'N35°1'E), were chosen
for the experiments. The authorization to collect the samples
from Bet-Dagan soil was given by the Agricultural Research
Organization and for the Yatir soil from Keren Kayemeth
Lelsrael — Jewish National Fund. The samples were taken from
the upper layer (0-10 cm) of the soil and sieved through a 60
mesh (approximately 250 um pore size) strainer. Nanoparticles
at doses of 0.1% or 1% (W/Wy; 4ieq) Of CuO or Fe;O, (Aldrich,
<50 nm) were used. The experiments were performed with 80
g of air dried (water content of 0.67% and 1.1%, for Bet-Dagan
and Yatir soil, respectively) soil in 100 mL sterilized glass
bottles. The contaminants were mixed overnight by mechanical
shaking (MRC shaker SOH 3030) with dry and sieved soil until
achieving a homogeneous texture. Deionized water was added
to control and contaminated soil samples to reach a final water
content of 30% (w/w), which were then incubated at 30 °C for
48 h as described previously [17]. All treatments, including the
unexposed controls, were replicated 5 times and placed in an
incubator. The samples were fully characterized in terms of
their chemical composition (mineral concentrations, organic
matter and pH) and physical properties (porosity, hydraulic
conductivity, FTIR and fluorescence analysis, scanning
electron microscopy (SEM), energy dispersive X-ray
spectroscopy (EDS) and the amount of nanoparticles deposited
on the soil), as previously described [17].

A control experiment was set up for the evaluation of non-
biological CO, emission and interference with fluorescein di-
acetate (FDA) and dehydrogenase (DEH) enzymatic assays.
This included a sterilization procedure and was done for the
Yatir soil only, as results of the main experiment showed Yatir
soil to be robust to the effect of ENPs. This experiment
included (i) uncontaminated, unsterilized control, (i)
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uncontaminated, sterilized control, (iii) unsterilized samples
contaminated with 1% of either ENP, and (iv) sterilized
samples contaminated with 1% of either ENP, all with three
repetitions. The sterilized controls of uncontaminated and 1%
w/w ENP-exposed soils were autoclaved at 121 °C for 55 min
three consecutive times, with a 24 h period between each
autoclave treatment. In all samples the different ENPs were
added after the soils were sterilized. The incubation procedure
in this control experiment was identical to the main experiment.
At the end of the incubation, in both experiments, a portion
(65-90 g wet weight) of each sample was oven dried at 105 °C
for 24 h to calculate water loss during the experiment and to
normalize the different assays (enzymatic activities and 16S
rRNA gene copies) to dry weight.

Enzymatic assays

Respiration rates were measured for three of the five
replicates using an acid-titration technique [33]. Briefly, a
sample of 40 g of sail in a closed jar was incubated for 24 h at
30 °C with 2 mL of 1 N NaOH trap, followed by acid titration to
quantify the CO, evolution. Soil oxidative potential was
estimated by measuring DEH activity [34] using 2,3,5-
triphenyltetrazolium chloride as substrate. The resulting
formazan was measured by spectrophotometry at 494 nm with
a DMS100 UV visible spectrophotometer (Varian Inc., San
Fernando, USA). Hydrolytic activity was measured by FDA
hydrolysis assay as described by Schmidt and Belser [35]. The
amount of hydrolyzed FDA was measured by a
spectrophotometer at 494 nm. The results of these
measurements are described as percentage from the average
measured activity in the control samples, although the
statistical analyses were performed on the raw data.

DNA extraction

DNA was extracted from 0.5 g soil samples via bead beating
(Fast Prep FP 120, Bio101; Savant Instruments Inc., Holbrook,
NY) in extraction buffer [100 mM Tris HCI, pH 8.0; 100 mM
potassium phosphate buffer pH 8.0; 1%
cetyltrimethylammonium bromide (CTAB)] [36]. The crude
extracts were mixed with KCI to a final concentration of 0.5 M,
incubated for 5 min, and centrifuged. The nucleic acids were
then precipitated by centrifugation using an equal volume of
isopropanol. The pellet was washed with ice-cooled 80%
ethanol and centrifuged. The pellet was eluted using 10 mM
Tris-EDTA (TE) at pH 8.0 (Amresco Inc., Solon, OH). DNA
present in the solution was then bound to “glassmilk” 0.5 to 10
pum silica particles (Sigma-Aldrich, St. Louis) with Nal, as
described by Reference 37. The “glassmilk” was transferred to
a Spin-X® 0.22 um filter tube (Corning, NY) and washed with an
ethanol-based wash buffer solution [37]. DNA attached to the
silica was eluted with TE into a sterile tube and stored at -20° C
prior to use. Prior to any downstream applications, the DNA
concentration and purity was measured by optical density using
a NanoDrop ND1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA) to account for any
treatment-related bias in extraction yield.
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454 high throughput sequencing and quantitative PCR

Sequencing using 454 tag-encoded FLX 16S rRNA gene
amplicon pyrosequencing (bTEFAP) was performed at the
Research and Testing Laboratories (Lubbock, TX, USA). PCR
targeting the 16S rRNA gene was done using the 16S rRNA
gene bacterial primers, 530F, GTG CCA GCM GCN GCG G
and 1100R, GGG TTN CGN TCG TTG as described previously
[38]. Two replicates were sequenced for all of the treatments
except for treatments of 1% CuO and 0.1% Fe;O, where three
replicates were performed. The data were submitted to the
Sequence Read Archive public repository under the study
accession ERP001973. In addition, the evaluation of total
bacteria in soil samples was performed by quantitative PCR
with Absolute Blue SYBR green ROX mix (Thermo Fisher
Scientific, Surrey, United Kingdom), as described previously
[39]. We used a general bacterial primer pair targeted at the
16S rRNA gene, Eub515F, GTG CCA GCM GCC GCG GTA A
and 907R, CCG TCA ATT CMT TTG AGT TT [40]. Four
replicates were done in this method including three pseudo-
replicates for each biological sample. A plasmid standard
containing the 16s rRNA gene target region was generated and
its concentration was determined with the Nano-Drop ND1000
spectrophotometer. Real-time PCR assays were conducted in
polypropylene 96-well plates in a Mx3000P QPCR system
(Stratagene, La Jolla, CA) and the results were normalized to
soil weight.

Sequence preparation and analysis

Sequences preparation, including trimming of tags and
primers, quality assurance and chimeric sequence removal for
454 data analysis were done using MOTHUR 1.23.1 [41]
software under the guidelines of the standard operation
procedure [42]. The sequences were first trimmed of primer
and tag sequences, and then selected by quality (using
“average window”, average quality>30, window size=50 bp)
and length (length>200 bp). The sequences were aligned using
a reference database (Silva database) and then filtered to 624
aligned characters. Chimera detection was performed with the
“chimera.uchime” command, using the most common
sequences of each soil sample as references. The remaining
sequences were clustered to unique (0.999% similarity) and
the “pre.cluster” function was applied (1 mismatch for each 100
bp). A distance matrix was calculated and the sequences were
clustered into operational taxonomic units (OTUs) on a 97%
sequence similarity basis. As the sequence number was
different among samples, a “sub.sample” command was used
and 752 sequences were randomly selected from each sample,
number that equals to that of sequences in the sample with the
lowest yield.

Statistical analyses

The community composition was described using two
methods. First, denaturing gradient gel electrophoresis (DGGE)
fingerprinting and its interpretation (see supplementary
material) enable a simple but robust visualization of the
bacterial community composition. The same samples were
further analyzed using high-throughput sequencing of 16S
rRNA gene fragments. The sequencing data enable both
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recognition of the bacterial genera affected by MO-ENP
application and use of statistical hypothesis testing methods to
confirm these changes. The results of the two methods are
reported and discussed here concurrently, but the statistics are
relevant only to the sequencing data. OTU analysis included
calculation of richness, sampling coverage and between-group
differences based on the weighted UniFrac pairwise distance
matrix. The observed richness was calculated by the number of
OTUs detected in a sample and the coverage was calculated
using Good’s coverage estimator [43]. The similarities between
the bacterial communities were ordinated using PCoA plots.
These plots were based on weighted UniFrac pairwise distance
matrix [44] of all samples and separately for each soil type, and
calculated from a neighbor joining tree of all sequences.
Hypothesis testing statistical analysis of molecular variance
(AMOVA) [41,42,45] was performed on the samples in the
weighted UniFrac pairwise distance matrix grouped by
treatments (2 or 3 replicates) and results were corrected using
the Bonfferoni correction method for multiple comparisons.
Phylogenetic classification was done using the Silva taxonomy
reference file available on the MOTHUR website. Sequences
were then clustered to class level phylogeny. Finally, all
samples were compared using the “Metastats” function which
determines whether which of the OTUs are differentially
represented (in terms of relative abundance) between the
treatments in a significant manner (p<0.05) [46] within each soil
type.

Two-way analysis of variance (ANOVA) was applied to test
for the effects of MO-ENP concentration and soil type on
bacterial activity, abundance and OTU richness. Data were
analyzed for each MO-ENP type separately. ANOVA analyses
were done with SPSS for Windows statistical software (SPSS
Inc., Chicago, IL). Post-hoc analysis was performed using a
Tukey HSD test on the different concentrations in each soil
only if the ANOVA analysis yielded significant results. In the
control experiment, a two-way ANOVA was applied using two
independent variables; contaminant type and sterilization
procedure. Furthermore, two independent t-test analyses were
performed between the different contaminants and control
within the sterile and non-sterile groups, and between the
sterile and non-sterile group but within the same contaminant

type.
Results

Microbial community function

The soil microbial communities in the two soil types showed
a general trend of decrease in dehydrogenase oxidative
potential (DEH) and hydrolytic activites (FDA) following
exposure to CuO (Figure 1a and 1b). The most affected
samples were those subjected to 1% of CuO in sandy loam
(Bet-Dagan) soil (Figure 1a), with a significant (p<0.05)
reduction of up to 90% in microbial activity, but the reduction
was also significant for the 0.1% CuO samples (p<0.05). Sandy
clay loam (Yatir) soil microbial communities showed a
reduction in mean activities, although to a lower extent than
Bet-Dagan soil samples (Figure 1b); the greatest reduction was
only to 50% in DEH activity (p<0.05) and an insignificant
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decrease in FDA activity relative to the activity in the control
soil. Fe;0, addition led to a reduction in FDA activity only in
Bet-Dagan soil. A mean ~25% increase in DEH activity was
measured in Yatir soil samples after the addition of 1% Fe;O,
with respect to the control (p=0.077). Measurement of
ammonia oxidation potential showed similar results to the FDA
and DEH assays (data not shown).

CO, emission (Figure 1a and 1b), an indicator of microbial
respiration, was not significantly different between the control
and treatments. These results were unexpected because other
activities showed different, mostly decreasing, trends. To
understand whether these results are methodological artifacts
or an authentic biological/chemical phenomenon, a control
experiment using sterilized soils was conducted. Examination
of sterilized soil subjected to these MO-ENPs suggests the CO,
emission to be non-biological, driven by chemical reactions
with the MO-ENPs. These results are evident by the amount of
CO, evolution measured in sterilized soils with MO-ENPs,
compared to their sterilized control MO-ENPs (Figure 2).
Furthermore, FDA and DEH enzymatic assay measurements in
sterilized soil were also higher when MO-ENPs were present
(Figure 2). For example, DEH assay results, indicative of soil
oxidative potential, in sterilized soil exposed to Fe;O, exceeded
by more than 50% the DEH results in unexposed sterilized soil.
FDA assay results changed from undetectable in the sterilized
control to approximately 5 mg/kg in the Fe;O, exposed soil. In
this study, the water added to the sterilized soil was not
sterilized and therefore modest biological activity was viewed in
the sterilized controls without MO-ENPs. The activity in the
sterilized control was significantly (p<0.05) lower than in the
unsterilized control, showing 80%-100% decrease in all three
assays.

Bacterial community composition and size

The DGGE results showed high consistency with the high-
throughput sequencing results and were therefore used as
support. Both DGGE fingerprinting and sequencing data
indicated that the bacterial communities in the Bet-Dagan and
Yatir soils were distinct, regardless of the treatment. This was
manifested by low similarity between the bacterial communities
of the two soil types, seen in the community fingerprints
obtained by DGGE (Figure S1), highly pronounced in the PCoA
(Figure 3) ordination of the sequencing data, and confirmed
statistically (p<0.05) by AMOVA. Each soil clustered separately
on the first factor (contributing 53% of the variance) of the
PCoA.

Analysis of Bet-Dagan soil demonstrated that Fe;O,, and
even more so, CuO application, caused a substantial shift in
community composition. PCoA analysis of the sequence data
(Figures 3 and S2) revealed that MO-ENP application changed
the community composition significantly (p<0.05). Samples of
Bet-Dagan soil contaminated with CuO 1% showed high
variance in their bacterial community composition. This
variance within replicates of the bacterial communities sampled
in CuO 1% treatments prevented recognition of a significant
difference from the control. However, community composition
of this soil contaminated by 0.1% CuO clustered significantly
away from the control samples. Despite the little change in
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Figure 1. Effect of MO-ENPs on microbial activities in soil. Enzymatic assays of Bet-Dagan (A) and Yatir (B) soil exposed to
two MO-ENPs, CuO and Fe;0,, in two concentrations, 0.1 and 1% w/w. White: FDA assay(n=5); light gray: DEH assay(n=5); dark
gray: CO, emission(n=3). All results are described as the percent of activity relative to the average activity of unexposed controls. +,

treatments that differ significantly from unexposed control (p<0.05).

doi: 10.1371/journal.pone.0084441.g001

activity, community composition of both samples exposed to
Fe;O, (0.1% and 1%) in Bet-Dagan soil differed significantly
from the control community (p<0.05). Samples that were
exposed to 0.1% Fe;O, showed higher deviation from the
control than those exposed to 1% Fe;O,. Yatir soil bacterial
community did not yield significant differences between
treatments due to MO-ENPs exposure of both types. Thus, in
contrast to the susceptibility to change of the community in Bet-
Dagan soil, samples of Yatir soil showed relatively high
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resistance to change. Despite the overall resistance, 1% CuO
did cause some shift in the Yatir community, detected by the
DGGE fingerprint (Figure S1b).

Quantification of total bacteria in soil samples, measured by
the amount of 16S rRNA gene targets per 1 g of dry soil, as
revealed by quantitative PCR (Table 1), showed changes in
bacterial population size of Bet-Dagan soil as a result of MO-
ENPs exposure but not in Yatir soil. A significant decrease in
total bacteria of approximately one fourth of the control

December 2013 | Volume 8 | Issue 12 | e84441



Nanoparticle Effects on Soil Microbial Community

50 n
40 B
+
5.0 | | [
[
°
2 20
-1+
3 ¥
* *
10 - + T . T T %
+
* *
O T T T T
control CuO 1% Fes04 1% sterile control sterile CuO 1%  sterile Fes0,4 1%
O Hydrolytic activity (FDA) @ Soil oxidative potential (DEH) W Respiration (CO,)
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community size was found in Bet-Dagan soil samples exposed
to 0.1% and 1% CuO (p<0.05). However, only an insignificant
decrease in population size can be attributed to the exposure
to Fe;O, in both concentrations. Furthermore, results showed
higher richness values, as well as lower coverage values in
Yatir soil, relative to Bet-Dagan soil, in both untreated soils and
in MO-ENP exposed soils (Table 1). These results support the
data indicating litle changes in activity and community
composition compared to the control in Yatir soil.

Phylogenetic distribution of OTUs in Bet-Dagan soil showed
significant shifts at the class level community composition due
to the different treatments, when compared to the control. A
major change caused by the treatments in this soil was an
increase in relative abundance of Actinobacteria in soil treated
with 0.1% CuO (Figure 4). A decrease in Alphaproteobacteria
class members was seen within all treatments of this soil,
except in 1% Fe;0,. Further changes included an increase in
abundance of Bacilli class member in treatments CuO 1% and
Fe;O, 0.1% and an increase in abundance of
Betaproteobacteria in CuO 1% treated soils. Unlike Bet-Dagan,
Yatir soil did not change significantly in any class abundance
except for a decrease in the Bacilli relative abundance in this
soil treated with 1% CuO (Figure 5). In order to receive the
actual abundance of Bacilli class in soil, their relative
abundance was multiplied by the quantitative PCR data.
Results suggest that the Bacilli abundance in Bet-Dagan soil
exposed to 0.1% CuO decreased to 10% of the control while
the total bacterial population decreased to only 20% of the
control. On the other hand, in samples exposed to 1% CuO,
the Bacilli class abundance decreased to 38% of the control
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while the total population decreased to 15% of the control
population size. In Yatir soil, after exposure t01% CuO, the
Bacilli class abundance was eliminated while the total
population did not change significantly.

Metastats results show that in both soil types, specific OTUs
reacted to treatments by changing in abundance; some of
these OTUs reacted to the treatments differently depending on
soil type. Bet-Dagan samples (Figure S3 and Table S1) had
many OTUs that showed different abundance in treatments;
OTUs 1-Bacillales and 584-Bacillales showed a significant
increase in relative abundance after the addition of 1% CuO
and together comprised 20% of the bacterial community in this
soil. 1-Bacillales showed also a significant decrease after the
addition of 0.1% CuO to Bet-Dagan soil and contributed only
about 3% of the community. 45-Chitinophaga, 43-Rubrobacter
and 153-Clostridium showed high abundance in 0.1% CuO
contaminated samples. 3-Sphingobacteriaceae and 16-
Sphingomonas had low abundance in 0.1%, 1% CuO and 0.1%
Fe;O, Bet-Dagan contaminated samples but significantly
higher abundance in 1% Fe;O, contaminated samples. 2-
Rhizobiales abundance was significantly reduced in 1% CuO
samples. 11-Oxalobacteraceae showed high abundance in 1%
CuO contaminated Bet-Dagan soils but was relatively low at
0.1% CuO, compared to the control samples. On the other
hand, in the Yatir soil, only three OTUs were affected by CuO
1% treatment; two of them were Bacilli related (1-Bacillales and
4-Bacillus), which decreased in abundance. The third affected
OTU was 35-Oxalobacteraceae of the Betaproteobacteria
class, which increased in abundance as a result of 1% CuO
addition (Figure S4 and table S2).
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Discussion

In the current study, addition of CuO and Fe;O, ENPs was
found to lower soil microbial activities and change bacterial
community composition in Bet-Dagan soil, which is low in
organic matter and soil clay fraction. On the other hand, Yatir
soil, which has higher organic matter content as well as higher
clay fraction, showed only slight changes in the activity and
composition of the bacterial community. A recent review [13]
discussed and presented different studies that showed MO-
ENP reactivity to be dependent on both soil type and
nanoparticle size. ENPs in a range under ~10 nm (depending
on type) are much more reactive, but as a result could lose
reactivity more quickly. For both CuO and Fe;O,, a mixture of
particle sizes (<50 nm) was used in both soil types of this
study, leaving the soil type as the only major factor of influence.
Soil characteristics such as organic carbon content, grain size
fractionation and mineral composition were shown to have a
clear, but complex effect on the toxicity of such contaminants
[17]. For example, interactions of metallic compounds with clay
particles are known for many metallic elements, including Ni,
Cd, Co and Pb, and in many cases determine the fate,
transport and toxicity of these metals in the environment [47].
These interactions include ENP transformations, such as

PLOS ONE | www.plosone.org

Table 1. Diversity indices of the two different soils (Bet-
Dagan and Yatir) with the different ENPs CuO and Fe;O, as
measured by 454 sequencing (n=2 or 3).

Observed Sampling Bacterial 16S targets
Treatments richness (+SD) coverage (¥SD) (+SD) Per 1 gr soil
Bet-Dagan control 279 (29)2 0.77 (0.03) 4.05E6 (7.55E5)
Bet-Dagan CuO 0.1% 277 (12)3 0.78 (0.02) 1.47E6 (8.34E5)*>
Bet-Dagan CuO 1% 242 (18)2 0.79 (0.02) 1.06E6 (4.45E5)*
Bet-Dagan Fe3O4

237 (22)2 0.82 (0.03) 2.36E6 (1.23E6)
0.1%
Bet-Dagan Fe3O4 1% 214 (77)2 0.84 (0.08) 4.65E6(4.03E6)
Yatir control 350 (14)P 0.69 (0.03) 9E5 (8.45E5)
Yatir CuO 0.1% 362 (21)P 0.70 (0.04) 9.7E5 (5.2E5)
Yatir CuO 1% 344 (0)° 0.69 (0.001) 4.6E5 (3.37E5)
Yatir Fe304 0.1% 384 (8)° 0.66 (0.001) 4.23E5 (2.37E5)
Yatir Fe304 1% 365 (3.5)° 0.68 (0.01) 2.11E5(2.25E5)

Statistical differences are marked as: samples marked by (a) are significantly
different than samples marked by (b). Further, the total bacterial community size as
measured by gqPCR (n=5): +, treatments that differ significantly from unexposed
control (p<0.05).

doi: 10.1371/journal.pone.0084441.t001
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crystal growth, dissolution, aggregation and aging, which
change the micro- or nano-environment surrounding the ENPs
[13]. Soils in which the MO-ENPs more readily aggregate could
retain MO-ENPs longer, but in a less reactive state. The
microbial community in Yatir soil with higher organic matter
concentration and larger clay fraction compared to Bet-Dagan
soil was also more resistant to the effect of these MO-ENPs,
probably due to interactions such as mentioned above. High
diversity and richness are good estimators for functional
stability in any ecological system, including soil encountering
perturbations [48]. Higher richness, as seen in Yatir soil, may
support several species holding the same traits (functional
redundancy), and in case of disturbance followed by loss of
species, there would be minor change in the community activity
level. Furthermore, high initial species diversity and richness
help soil bacterial communities return to normal function after a
disturbance [49]; these parameters further support the relative
stability of Yatir soil.

The two soil types had different community compositions,
which the MO-ENPs affected differently. Results described
high abundance of the class Bacilli in contaminated Bet-Dagan
soil, which may indicate this class’ resistance to CuO at
concentrations of 1%. The resistance of members of the Bacilli
class, namely OTUs 1- Bacillales and 584-Bacillales to 1%

PLOS ONE | www.plosone.org

CuO ENPs concurs with results of previous studies showing
high abundance of Lactobacillales in Cu exposed soil [30] and
after exposure to silver NPs [28]. Despite the phylogenetic
differences between the Lactobacillales and Bacillales, they
hold one important common characteristic, namely the ability to
sporulate. Members of the Bacilli class have been reported to
persist in heavy metal polluted soils [50-52] and specifically in
copper polluted soils [51]. Copper ion resistance mechanisms
are known for many bacterial groups, including gram positive
bacteria such as Actinobacteria and Firmicutes [53,54]. Thus,
by possessing resistance mechanisms that enable these
bacteria to reproduce in the presence of MO-ENPs, together
with spore formation abilities that enable them to survive acute
exposures, Bacilli may have a considerable advantage at high
CuO concentrations.

Other bacterial populations were affected by the
contaminants in this study, including OTUs from
Sphingobacteriaceae, Sphingomonas and Rhizobiale genera.
Apart from the report on Lactobacillales, Collins et al. [30] also
described high sensitivity of Sphingomonadales to Cu and
ZnO, which is in agreement with the present results. In
contrast, they reported that members of the Rhizobiales
showed low sensitivity to Cu and ZnO, whereas here we
observed a decrease in relative abundance of an OTU
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identified as Rhizobiales, as a result of CuO exposure at both
concentrations. Despite the consistencies that were found with
previous studies, a deeper phylogenetic resolution is needed to
determine which genera have specific tolerance or sensitivity to
these contaminants. This is due mainly to the fact that each of
these bacterial groups - Rhizobiales, Sphingomonadales and
Bacillales - include many species that do not react similarly to
the discussed compounds.

The result of this study show that relative abundance of
OTUs of the Bacilli class more than doubled in Bet-Dagan soil
with 1% CuO, compared to the control, despite the actual lower
number of 16S rRNA gene copies measured. Hence, spore
formation was the major strategy of survival for the Bacilli
members, rather than resistance mechanisms that enable
reproduction. Surprisingly, the Bacilli in Yatir samples exposed
to 1% CuO and in Bet-Dagan exposed to 0.1% CuO decreased
in abundance relative to the total bacterial population. At lower
CuO stress levels, as seen after exposure concentrations of
0.1% in Bet-Dagan and 1% in Yatir, there was an increase in
abundance of Oxalobacteraceae, in Yatir and Bet-Dagan soils,
and of Rubrobacter, Clostridium and Chitinophaga, only in Bet-
Dagan soil. These groups may possess some resistance

PLOS ONE | www.plosone.org

mechanisms, possibly other than sporulation, that enable them
to survive in the contaminated soils. These groups were also
reported to succeed in soils contaminated by metals and heavy
metals [54-56]. Also, it is possible that in the low CuO
concentration, the Bacilli did not initiate sporulation processes,
which may have been a reason for survival in the high CuO
concentration. These differences between relative abundance
of the discussed populations illustrate the differences between
moderate to acute exposure and the role of soil type in
mitigating these effects. When an acute dosage of CuO (i.e.,
1% for Bet-Dagan) was present in soil, bacteria annotated to
Bacilli OTUs increased in relative abundance. This increase
was due to a more dramatic decrease in the total bacterial
population than that seen for Bacilli. On the other hand, when a
similar dosage was given in the Yatir soil, which did not reach
acute levels due to soil characteristics, the same OTUs did not
have any advantage.

The two MO-ENPs affected soil microbial activities and
bacterial populations differently, with Fe;O, having very little
negative effect. It is suggested that this low toxicity of Fe;O, is
partly because it can be found naturally, in both bulk and
nanoparticle sizes, in many soil types [4], and is also described
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as a byproduct in bacterial anaerobic and aerobic metabolism
[57,58]. Previous study on the effect of this ENP on soil
microbial activities showed an increase in microbial activity as
a result of its addition [32]. In the current study, although a
reduction in hydrolytic activity was detected as a response to
the addition of 1% Fe;O, to the Bet-Dagan soil, none of the
other activities was affected.

Chemical reactions were the main cause of increased CO,
emission in sterile soil contaminated with ENPs, relative to
control soil. Such reactions can include changes to the soil
organic matter [17] or changes in mineral adsorption/desorption
in soils that could affect carbon dioxide release [13]. The
measurements of FDA and DEH enzymatic assay in sterile soil,
along with a recent report by Ben-Moshe et al. [17] describing
changes in soil organic matter profile when applying CuO and
Fe;O, ENPs, support the hypothesis that MO-ENPs interacted
with soil organic matter. Thus, chemical reactions between the
ENPs and the organic matter may have led to high CO,
evolution and enzymatic-like activity measurements, even while
the actual biological activity was low. These interactions
suggest that the negative effect of the MO-ENPs on microbial
activity could be higher than was actually measured and
previously described, i.e., the actual microbial enzymatic
activity in exposed samples was lower than that found in the
measurements. It is therefore important for future studies to
include a sterile control for assessing non-biological
interactions between the MO-ENPs and the soil minerals and
organic matter. Soil sterilization using autoclaving changes
many soil properties, including pH level and free amino acid
content [59,60]; this may, in turn, affect measured MO-ENP
reactivity. Because of the bias that the sterilization processes
could cause, calculation or normalization of the non-biological
effect for our samples was not possible.

In conclusion, soil type is a key component dictating MO-
ENP toxicity to the microbial community it hosts, determining
both the bacterial community composition dwelling in the soil
and the activity of this community. It is clear from this work that
the Yatir soil was more resistant to the applied MO-ENPs,
possibly due to the higher organic matter concentrations, clay
fraction of the soil and higher native community richness and
diversity. The bacterial populations reacting to a MO-ENP,
especially CuO, are highly dependent on the concentration of
the MO-ENPs applied to soil. We speculate that several
different survival strategies are involved in CuO resistance.
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