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Summary
Because the actin network in active lamellipodia is

continuously assembling at the edge, moving inward and

disassembling, there is a question as to how actin-binding

proteins and other components are transported to the

leading edge and how nascent adhesions are stabilized.

Active transport could play a significant role in these

functions but the components involved are unknown. We

show here that Myosin 1E (a long tailed Myosin 1 isoform)

rapidly moves to the tips of active lamellipodia and to actin-

rich early adhesions, unlike Myosin 1G, 1B or 1C (short

tailed isoforms). Myosin 1E co-localizes with CARMIL,

FHOD1, Arp3 and b3-integrin in those early adhesions. But

these structures precede stable paxillin-rich adhesions.

Myosin 1E movement depends upon actin-binding domains

and the presence of an SH3 oligomerization domain.

Overexpression of a Myosin 1E deletion mutant without

the extreme C-terminal interacting (SH3) domain (Myosin

1EDSH3) increases edge fluctuations and decreases stable

adhesion lifetimes. In contrast, overexpression of Myosin 1E

full tail domain (TH1+TH2+TH3/SH3) decreases edge

fluctuation. In Myosin 1E knockdown cells, and more

prominently in cells treated with Myosin 1 inhibitor, cell–

matrix adhesions are also short-lived and fail to mature. We

suggest that, by moving to actin polymerization sites and

early adhesion sites in active lamellipodia, Myosin 1E might

play important roles in transporting not only important

polymerizing proteins but also proteins involved in adhesion

stabilization.
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the Creative Commons Attribution License (http://

creativecommons.org/licenses/by/3.0), which permits
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attributed.
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Introduction
Myosin 1 proteins are abundant actin-activated ATPases that are

commonly monomeric (single headed) when purified (Pollard

and Korn, 1973). Another feature of these Myosin 1 isoforms is

their association with cell membrane by the Tail Homology 1

(TH1) domain, that contains a lipid-binding, PH like, domain

(Hokanson et al., 2006; Patino-Lopez et al., 2010). Myosin 1s are

further classified as short tailed (e.g. 1B/1C/1G) or long tailed

(e.g. 1E/1F) based on absence or presence of glycine/proline/

alanine rich (TH2) and SH3 domains (TH3) in the tail region

(Fig. 1A) (McConnell and Tyska, 2010). Myosin 1 isoforms

accumulate at the leading edge during cell-spreading or in

migrating cells (Fan et al., 2012; Fukui et al., 1989). They are

linked to a number of aspects of cell motility including

membrane–cytoskeleton adhesion and transport of actin

towards the leading edge during cell migration (Fan et al.,

2012; McConnell and Tyska, 2010). Specialized actin rich

structures like lamellipodia and filopodia are necessary

components of migrating cells (Ridley et al., 2003). These

structures not only need G-actin flow for actin polymerization at

the tip but also need proteins responsible for capping the barbed

end of actin filaments and stabilization of newly formed matrix

adhesions (Borisy and Svitkina, 2000; Mogilner and Keren, 2009;

Schmidt et al., 1993; Small et al., 2002). Myosin 1E is a barbed

end directed motor with a tail that contains actin binding (TH2)

and protein–protein interaction (SH3) domains (Bement et al.,

1994b; Krendel et al., 2007). Also, it is the only such long-tailed

Myosin 1 that is ubiquitously expressed (Bement et al., 1994a;

Kim et al., 2006). Therefore, Myosin 1E could be a major

transporter of proteins involved in actin polymerization and

adhesion stabilization in dynamic lamellipodia. Here, we show,

Myosin 1E dynamically localizes at the very tip of active actin

rich lamellipodia and in stationary actin rich puncta that

transiently appear behind the lamellipodial tip, containing
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FHOD1, Arp3, CARMIL, and b3-integrin. These early structures
turn over before nascent adhesions form (Choi et al., 2008). The

short-tailed Myosin 1 isoforms (1B/1C/1G) do not co-localize at
lamellipodia tips or in puncta. Because expression of Myosin 1E
mutants and knockdown of Myosin 1E decreases the maturation
of cell–matrix adhesions, we suggest that Myosin 1E moves to

actin polymerization sites to support further polymerization and
to stabilize matrix adhesions in lamellipodia.

Results
Myosin 1E uniquely localizes to lamellipodial tips and spots
behind

To determine which Myosin 1s were transported in active
lamellipodia, we developed photo-activatable PAmCherry tagged
long-tailed Myosin 1E and PAmCherry tagged short-tailed
Myosin 1B, 1C, 1G proteins (Fig. 1A). Since the

lamellipodium is only ,200 nm thick (Abercrombie et al.,
1971), we controlled for soluble proteins with PA-GFP and for
non-specific binding to the plasma membrane with PA-GFP-PM.

After transfection in mouse embryonic RPTPa+/+ fibroblast cells
(Su et al., 1999), photo-activation of PA-GFP or PAmCherry
provided high signal to noise (Lukyanov et al., 2005; Subach et

al., 2009). Using confocal microscopy and sections that cover the
entire lamellipodial thickness, we activated fluorescence in
localized regions of activation (ROA) at the back of

lamellipodia and observed distribution of fluorescence after
2 sec (Fig. 1B–F). Upon photoactivation, membrane-anchored
PM-PAGFP spread uniformly from the ROA in lamellipodia

(Fig. 1B). Myosin 1B and Myosin 1G were distributed evenly in

the entire lamellipodia (Fig. 1C,D), indicating a similar diffusive

movement aided by membrane-bound PH-like domains (Komaba
and Coluccio, 2010). Soluble free PA-GFP got spread in both

lamellipodia and cell-body (supplementary material Fig. S1A).

However, in the cases of Myosin 1C (Fig. 1E) and Myosin 1E

(Fig. 1F), the distribution was more biased towards the tips of

lamellipodia (white arrows). Myosin 1C was linked to G-actin
transport (Fan et al., 2012) and its concentration in 1–2 mm

regions at the tips of lamellipodia overlapped with active

polymerization zones of actin (Eiseler et al., 2010). We saw that

Myosin 1E was concentrated in a narrower band than Myosin 1C,

at the tips of lamellipodia (Fig. 1E,F white arrow, Fig. 1G).

These experiments were repeated at least 10 times
(supplementary material Fig. S2A–C) and showed a dramatic

concentration of PAmcherry-Myo1E two sec after photo-activa-

tion (Fig. 1G). To get further insight into the tip accumulation,

we transfected cells with mApple-Myosin1E and followed the

distribution during spreading on fibronectin-coated glass surfaces

(supplementary material Movie 1; Fig. 1H,K). Tip accumulation
of Myosin 1E increased as the lamellipodia moved forward in the

contractile spreading phase and peaked at the end of active

spreading (supplementary material Movie 1; Fig. 1H,I white

arrows). The increase in accumulation of Myosin 1E at the tips of

lamellipodia (Fig. 1J, absolute intensity plot, corresponding to
the Kymograph) dissipated when lamellipodia subsequently

retracted. This increase was not due to a membrane geometry

artifact, since co-transfected Plasma-Membrane bound GFP

Fig. 1. Myosin 1E localizes to tip of spreading lamellipodia. (A) Domain organization of Myosin 1 isoform. (B–F) Photoactivation by 405 nm laser in the ROA

(white circle) and observation by 561 nm laser after 2 sec, of (B) Plasma membrane-PAGFP membrane diffusion control, (C) PAmcherry-Myosin 1B, (D) 1G,
(E) 1C, (F) 1E. Bar 2 mm, B–F is in same scale. (G) Normalized (against the intensity at ROA) average intensity perpendicular to the long axis of the 2 sec figure
panels in Myosin 1C and Myosin 1E. (H) Profile and (I) kymograph of mApple-Myosin 1E and plasma membrane GFP (PM-GFP) in spreading cell. Arrows
indicate Myosin 1E accumulation. (J) Quantitation of absolute intensity in Myosin 1E channel in (H) (supplementary material Movie 1). Bar 5 mm. (K) Enlarged view
of the boxed region in (H), showing spots in Myosin channel behind the lamellipodial tip.
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(Teruel et al., 1999) did not show any such increase over time

(Fig. 1H,I; supplementary material Movie 1). Thus, the accumu-

lation of Myosin 1E at the edges of active lamellipodia correlated

with the production of an edge extension complex (Bretschneider

et al., 2009). Another type of Myosin 1E accumulations were the

dot like structures behind the lamellipodial tips that were absent

in PM-GFP (Fig. 1K, corresponding to the boxed region of

Fig. 1H; supplementary material Movie 1). We further investi-

gated presence of actin and adhesion/polymerization proteins in

those spots.

Myosin 1E localizes to actin-polymerization sites in lamellipodia

Several studies have shown that the upper layer lamellipodial

actin was distinct from the lower layer and was more rapidly

transported inward (Gardel et al., 2010; Giannone et al., 2007;

Ponti et al., 2004). Dorsal actin filaments were aligned with the

barbed ends roughly pointing to the edge and would support the

movement of the Myosin 1 isoforms to the edge (Pollard and

Borisy, 2003). In order to determine the relative distribution of

actin and Myosin 1E, cells were transfected with EGFP-lifeAct

(Fig. 2A bottom) along with mApple-Myosin 1E (Fig. 2A top)

and observed by both epifluorescence and TIRF microscopy

simultaneously. We observed periodic appearance and

disappearance of Myosin 1E in TIRF at the leading edge

(Fig. 2A right; supplementary material Movie 2), correlating with

similar periodic behavior of f-actin (lifeact) in the TIRF layer

(Giannone et al., 2004; Giannone et al., 2007) (Fig. 2A right;

supplementary material Movie 2). In epifluorescence, Myosin 1E

showed a gradual accumulation at the tip of lamellipodia over

time, crowning the sites of actin polymerization (Fig. 2A left).

The overall actin distribution was more similar to the Myosin 1C

distribution than Myosin 1E, in agreement with role of Myosin

1C in g-actin transport for polymerization in lamellipodia (Fan et

al., 2012). Long tailed Myosin 1s, like Myosin 1E, were proposed

as carriers of CARMIL to the lamellipodial tip (Jung et al., 2001).

CARMIL1, the negative regulator of actin capping protein, has

identical localization pattern at the tip of lamellipodia (Yang et

al., 2005).

Recent findings indicated that actin polymerized at integrin

clusters back from the leading edge in lamellipodia (Galbraith

et al., 2002; Ghassemi et al., 2012) and that could have

corresponded with the dot-like concentrations of Myosin1E in

a similar region. In the TIRF microscope as the lamellipodia

spread forward (Fig. 2A right panels), we found ,1 mm diameter

actin spots where Myosin 1E was concentrated (Fig. 2A,B;

supplementary material Fig. S1B–D white arrows; supplementary

material Movie 2). Short tailed Myosin 1G had no co-localization

with these actin spots (supplementary material Fig. S1E). Myosin

1C was involved in active g-actin transport (Fan et al., 2012), but

was also not found in this type of punctuate structures (Bose et

al., 2004; Hokanson et al., 2006). These spots had greater contrast

in TIRF than in epifluorescence of both channels (Fig. 2A).

Because these spots were stationary, actin rich, and in the TIRF

field, they appeared similar to sites of actin polymerization at

integrin clusters observed previously (Yu et al., 2011). These

stationary spots were fibronectin substrate dependent. In cells

spread on a poly-L-Lys substrate, similar spots were more

dynamic and had comet like structures (Ryan et al., 2012). They

were not linked to clathrin mediated endocytic pathways as these

actin rich puncta temporally preceded clathrin rich spots on

ventral surfaces of lamellipodia (supplementary material Fig.

S3A,B) (Cheng et al., 2012).

To better understand the origin of the spots that were back

from the leading edge, we co-transfected mApple-Myosin 1E

with several components of early adhesions at sites of integrin

clustering. Because of its involvement in early adhesions, we

initially co-transfected GFP-b3-integrin (supplementary material

Movie 3) with mApple-Myosin 1E. There was an overlap

between Myosin 1E and b3-integrin at the tip of lamellipodia and

at the spots behind tip of lamellipodia (Fig. 2C white solid arrow;

supplementary material Movie 3; Fig. S4A light blue circles).

Although Myosin 1E and b3-integrin were aligned in spots, their

intensities did not vary in unison, especially during the

contractile phase of spreading (P2) (Fardin et al., 2010)

(supplementary material Movie 3; Fig. 2C white dotted arrow),

when, Myosin 1E intensity gradually deceased, but a constant

Fig. 2. b3-integrin, FHOD and CARMIL co-localize with Myosin 1E in

actin rich early adhesion. Paxillin shows partial overlap. (A) Simultaneous
observation (kymograph) of Myosin 1E and actin (lifeact) in EPI and TIRF
channels (supplementary material Movie 2). Time is along vertical axis along

the green arrow, length is along horizontal axis. Bar 5 mm. (B) Co-localization
of Myosin 1E with actin rich spots (white arrow). Bar 2 mm. Comparative co-
localization of (C) EGFP-b3-integrin, (D) FHOD1, (E) CARMIL1a and
(F) Paxillin with mApple-Myosin 1E at the tip and early adhesion structures in
spreading lamellipodia (by kymograph, time as vertical and length as horizontal
axis). Bar 5 mm, C–F is in same scale, time bar 30 sec. (G–J) Quantification of

such overlap of Myosin 1E with b3-integrin/FHOD1/CARMIL1/paxillin by
Pearson coefficients (starting point or zero sec is indicated in the kymograph as
the starting point of downward green arrows in C–F) (associated supplementary
material Movies 3–6).
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staining of b3-integrin was observed in patches. These
differences might be due to longer lived adhesion formation

containing b3-integrin (supplementary material Movie 3; Fig. 2C
white dotted arrow).

Formins were implicated in actin polymerization at these
integrin clusters (Yu et al., 2011; Thomas Iskratsch and

colleagues, personal communication); therefore, we next
co-transfected GFP-FHOD1 with mApple-Myosin 1E
(supplementary material Movie 4). There was co-localization of

Myosin 1E and FHOD1 at spots in motile lamellipodia (Fig. 2D
white arrow; supplementary material Movie 4; Fig. S4B dark
blue circle). However, FHOD1 was not found at lamellipodial

tips and was primarily cytosolic (supplementary material Movie
4; Fig. 2D). The intensities of FHOD1 and Myosin 1E were
found to change in unison during the protrusive and contractile
phases of lamellipodia spreading (supplementary material Movie

4). Logically, the cargo of Myosin 1E, CARMIL (Jung et al.,
2001; Liang et al., 2009; Yang et al., 2005) should also have been
concentrated at the spots if Myosin 1E was actively transporting

material to the spots. Indeed, CARMIL and Myosin 1E were co-
localized in the spots, as well as at the tip of lamellipodia
(Fig. 2A,E arrows; supplementary material Fig. S4C dark

blue circle; supplementary material Movie 5). Changes of
fluorescence intensities in both channels were also correlated
(supplementary material Movie 5). Thus, there was a strong

correlation in time and space between the actin-polymerizing
protein FHOD1 and Myosin 1E concentration at the spots as well
as CARMIL, the logical cargo of Myosin 1E.

If the spots were at sites of integrin concentration, then there

may have been other integrin-associated adhesion proteins at
these sites. To test this hypothesis, GFP-paxillin was co-
transfected with mApple-Myosin 1E. As reported previously

(Choi et al., 2008), GFP-paxillin was not seen initially at the tip
(Fig. 2F initial spreading; supplementary material Fig. S4D;
Movie 6), but appeared strongly with the onset of contractile

spreading phase (Fig. 2F white dotted arrow; supplementary
material Movie 6). Further, changes in paxillin intensity at the
lamellipodial tip did not change in unison with that of Myosin 1E
(supplementary material Movie 6; Fig. 2F). As a spreading

lamellipodium moved forward, stopped and constricted back,
Myosin 1E intensity at lamellipodial edge increased, reaching a
maximum and decreased during the periodic contractile cycle. On

the other hand, paxillin maintained a constant intensity, behind
the lamellipodia tip until the contractile phase and then it started
to mature behind Myosin 1E. Paxillin was present in nascent

adhesions behind the tip but these only overlapped partially with
the spots of Myosin 1E (Fig. 2F; supplementary material Movie
6). As paxillin intensity stabilized, Myosin 1E intensity went

down (supplementary material Movie 6; Fig. 2F). All spots of
Myosin 1E turned over before maturation of paxillin at the edge
(supplementary material Movie 6; Fig. 2F).

To quantify the level of co-localization of the various

components in the spots, we calculated the variance of Pearson
coefficient between Myosin 1E and other proteins in
lamellipodial region for one minute of spreading (Fig. 2G–J).

Since the cytosolic fluorescence intensity levels of these proteins
were high, all gave Manders overlap ,90% all places (data not
shown). We focused on whether the Pearson coefficient stayed

above 0.7, which indicated that the intensity variations of both
channels were in unison. For Paxillin, the initial Pearson
coefficient indicated overlap (0.7) (Fig. 2J; supplementary

material Movie 6), but soon fell below that value. For FHOD1
and CARMIL, the Pearson coefficient of overlap was .0.7

during the entire course of movie, supporting the observation
that these proteins were bound in the same regions (Fig. 2H–I).
For b3-integrin, initially there was good overlap, but within
20–30 sec from the start of the movie sequence it dropped

below 0.7 (Fig. 2G). The degrees of co-localization from low
to high (as can be seen from the movies and Fig. 2)
in lamellipodia were: Myosin1E.paxillin,Myosin1E.b3-

integrin,Myosin 1E.CARMIL,Myosin 1E.FHOD. It was possible
that Myosin 1E transported CARMIL on actin filaments
polymerized from FHOD1 clusters at early adhesion sites and

that supported further adhesion formation. CARMIL’s interacting
partner was Arp2/3 (Jung et al., 2001). We found that Arp3 co-
localized with these actin rich transient spots (supplementary
material Fig. S5A,B) and may have been involved in polymerization

of actin from these spots. Since Myosin1E was concentrated rapidly
at the sites of actin filament assembly, then it may have been
actively transported to those sites on the actin filaments that

assembled there.

Myosin 1E aggregates move actively in lamellipodia but not
Myosin 1G

To determine if Myosin 1E was actively transported in the
lamellipodia, we tracked the path of movement of the Myosin 1E
molecules. Because Myosin 1s have a low duty ratio and are

loosely bound to actin, they are unsuitable for processive
movement (De La Cruz and Ostap, 2004; McConnell and
Tyska, 2010; Pollard and Ostap, 1996). Based on the, prior

studies of long-tailed Myosin 1A/1B from Acanthamoeba, it has
been suggested that aggregates need to be formed for actin-based
motility (Pollard and Ostap, 1996). From plots of the step-

bleaching of puncta of Myosin 1E and 1G fluorescence with time
(Fig. 3Ai,Bi), it was evident that the puncta contained multiple
Myosin 1E and 1G molecules (Fig. 3Aii–iv,Bii–iv) (Pollard and

Ostap, 1996). The maximum number of steps observed was 3 and
many examples of 2 were seen. When we analyzed the
movements of the puncta (supplementary material Movies 7, 8)
using a mean-squared displacement versus time plot, we found

that the around 1/3 of the Myosin 1E tracks (N2 group) deviated
positively from linearity indicating that a fraction of Myosin 1E
was actively moving (Fig. 3Ci,iii) and there was another

population (N1) that had linear MSD vs time plots and those
were considered diffusive. Deviation from positivity of N2 group
was marked by the fact that the linear fit of average data-points

taken at time t?0 sec, did not pass through origin (light red
dotted line, Fig. 3Ciii) In contrast, Myosin 1G puncta movements
generated linear MSD vs time plots that showed no deviation in
the majority of tracks (Fig. 3Cii,iii). Both Myosin 1E (N1 group)

and Myosin 1G diffusive tracks linear fits, taken identically as
before, pass through the origin (dark red and green dotted lines
respectively, Fig. 3Ciii). Using the equation MSD54Dt+(vt)2

(Schmidt et al., 1993) for the Myosin 1E N2 group and plotting
various average MSD/t values, given rise to quadratic
y55.14471x2+1.74578x20.00758071. From here, we calculate

that the velocity of active movement of the Myosin 1E puncta
was ,2.26 mm/s and diffusion coefficient D50.436 mm2/s,
ignoring the constant (20.00758071). Subdiffusive N1 group

had D50.16 mm2/s (Based on fitting equation
y50.666126x+0.0004). The Myosin 1G particles had average
diffusion coefficient of 0.34 mm2/s that was close to the average
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diffusion coefficient of PAGFP-PM protein (Fig. 1B) fluorescent

puncta (0.42 mm2/s). Active movement of Myosin 1E was further

supported comparing the distribution of alpha values of these

tracks with Myosin 1G and PAGFP-PM (using equation

logMSD5log4D+alogt, we plotted logMSD/logt for each

individual track. From the slope of each of the lines, we calculated

alpha values). We found that Myosin 1G alpha value (Fig. 3Di)

distribution had a single peak similar to freely diffusing PAGFP-

PM (Fig. 3Dii) (Arbuzova et al., 1998), whereas Myosin 1E alpha

values had two peaks, one in subdiffusive range (,1) and one

higher than that of Myosin 1G and PAGFP-PM, indicating active

motion (Fig. 3Di). Thus, although both Myosin 1E and 1G formed

aggregates of 3 or more molecules, only Myosin 1E moved

actively in the TIRF field of active lamellipodia. A limitation of

above assay is the time duration of observable Myo1E and 1G

particles are ,0.7 sec on TIRF field (data not shown). Therefore,

even with 20–30 fps capture rate, dataset for M.S.D. is of small

size. To avoid any artifact due to small dataset, a comparative

analysis of Myo1E and 1G is made. Rare unusually long tracks

were avoided as those are artifacts.

Myosin 1E requires multiple domains to localize at the tips of

lamellipodia

To determine which domains of Myosin 1E were involved in

lamellipodial tip localization, we designed series of Myosin 1E

constructs with both C- and N-terminal deletion mutants (Fig. 4A).

We compared tip localization of full-length Myosin 1E (Fig. 4Bi

blue arrow) with localizations of each of the deletion mutants in

early spreading (0 sec), at the end of fast spreading (50 sec) and in

late spreading (100 sec) (Fig. 4B,C). Only Myosin 1EDTH2+3

(Fig. 4Bii) and Myosin 1EDTH2 (Fig. 4Biii) failed to localize at

the lamellipodia tip. On the other hand, Myosin 1EDTH3 (Fig. 4A)

localized at lamellipodial tip (Fig. 4Biv) as did the tail portion of

the molecule TH1+TH2+TH3 (Fig. 4Ci). Myosin 1EDTH3 and

TH1+TH2+TH3 were also found at actin rich early adhesion spots

behind the tip of spreading lamellipodia (supplementary material

Fig. S6A,B). Because we observed that Myosin 1E formed

multimeric complexes, endogenous Myosin 1E SH3 could

complex with proline rich TH2 domain of all the constructs that

moved to the edge. However, TH2 domain by itself, along with

membrane targeting TH1 (TH1+TH2, Fig. 4A), failed to localize

Fig. 3. Single particle analysis of Myosin 1E and

Myosin 1G oligomers. (A) Bleaching of mApple-Myosin
1E (Ai–Aiv)/EGFP-Myosin1G (Bi–Biv) particles observed
in TIRF (formaldehyde–glutaraldehyde fixed sample).
Examples shown have two or three bleaching steps (black
bars, intensity were normalized to the original

observations). (Ci) Summary of all MSD/time plots of
Myosin 1E tracks in lamellipodial regions as selected in
supplementary material Movie 7. Myosin 1E has two
distinct group of tracks, N1522, N2512, total 34 tracks
screened. (Cii) Summary of all MSD/time plot of Myosin
1G tracks in lamellipodial regions as selected in
supplementary material Movie 8, total 59 tracks screened.

(Ciii) Comparative average MSD/time plots of Myosin 1E,
Myosin 1G and membrane diffusion control PAGFP-PM.
Two groups of Myosin 1E tracks have significantly
different average MSD values (P53.68E209, at 0.15 sec
**). (D) Distribution of alpha-values (as calculated in
Materials and Methods by first four time points in logMSD/

logtime) of Myosin 1E (red, Di) and Myosin 1G (green, Di)
tracks during early spreading. (Dii) PAGFP-PM value
distribution is shown as membrane diffusion control.
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at the tip of lamellipodia (Fig. 4Cii). Since TH1+2+3 localized to

lamellipodial tip and TH1+2 did not, we investigated role of TH3

domain in tip accumulation. Membrane anchored TH3 (PLCdPH-

TH3) or free TH3 domain did not localize to the lamellipodial tip

(Fig. 4Ciii,iv). Based upon these findings, we suggest that the

oligomerization, of Myosin 1E deletion constructs could enable the

aggregates to move to the edge and to bind to F-actin there.

Expression of Myosin 1EDTH3 causes lamellipodia to fluctuate

in size and orientation

To relate Myosin 1E localization with function, we expressed

TH1+2+3 and Myo1EDTH3 in cells. Since 1E deletions

accumulated at the tip but were potentially not functional, they

may have caused changes in the cell/lamellipodia spread-area.

We transfected Paxillin-GFP, TH1+2+3 of Myosin 1E, Myosin

1EDTH3 and full length Myosin 1E, in cells and followed

spreading on Fibronectin-coated glass (206 magnification,

supplementary material Movies 9–12; Fig. 5). Moderate

expression of GFP-Paxillin does not affect lamellipodia

(Laukaitis et al., 2001). Paxillin transfected cells polarized after

fast spreading and showed very little fluctuation in size thereafter

(supplementary material Movie 9). TH1+2+3 transfected cells

also behaved like Paxillin cells, but polarization was affected in

some cases and cells constricted (supplementary material Movie

10). Myosin 1EDTH3 transfected cells formed lamellipodia,

which constantly fluctuated in length and orientation

(supplementary material Movie 11). Fluctuations were not

observed in full-length Myosin 1E expressing cells

(supplementary material Movie 12), which behaved like control

cells. To quantify the fluctuations, time series of mean square

fluctuations of the cell radius (M.S.R. fluctuations)

[,(dr)2.5S(dri)2/N] were computed over all angles from the

centroid position, using a custom LabVIEW program (Gupta et

al., 2012). Myosin 1EDTH3, TH1+2+3, full-length Myosin 1E

and EGFP-lifeact transfected cells were monitored under

identical incubation conditions. At the end of the fast spreading

phase (approx. 30 min after spreading), M.S.R. fluctuation data

was collected for cells, starting at similar time points. When

fluctuations in radius were compared between EGFP-paxillin

(Fig. 5A), EGFP-TH1+2+3 (Fig. 5B), EGFP-Myosin 1EDTH3

(Fig. 5C) and mApple-Myosin 1E (Fig. 5D), we found that

Myosin 1EDTH3 traces showed average M.S.R. fluctuation/

frame (16.54 mm2) significantly higher than control cells

(8.45 mm2, P50.026, n58). Whereas expression of TH1+2+3

transfected cells lowered the M.S.R. fluctuation from control

cells (5.49 mm2, P50.043, n58, Fig. 5D), which could be

explained as an effect on adhesion formation. Expression of

full-length Myosin 1E (5.73 mm2 Fig. 5D), also showed a

reduced M.S.R. fluctuation close to TH1+2+3, but cells showed

less constriction at longer times (data not shown). Therefore, the

results indicated that there were almost antagonistic roles of the

two Myosin 1E deletions in lamellipodia dynamics.

To determine if Myosin 1E localization might some way be

related to cell adhesion formation, we followed paxillin staining

in adhesions of cells expressing Myosin 1E constructs (Fig. 6).

We found that in cells expressing Myosin 1E tail or Myosin 1E-

DSH3 (Fig. 6A,B), the paxillin adhesions were shorter than in

control cells expressing paxillin alone (Fig. 6C) or with full-

length Myosin 1E (Fig. 6D). We followed adhesions in cells co-

expressing paxillin and Myosin 1EDTH3 or (TH1+TH3+TH3)

Fig. 4. Requirement of multiple

domains of Myosin 1E in lamellipodial

tip accumulation. (A) Domain map of
various myosin 1E deletion (C-terminal

and N-terminal) mutants and summary of
their lamellipodia tip accumulation during
cell spreading process. (B) Edge
accumulation of C-terminal deletions.
(Bi) Myosin 1E (full length) at the tip of
spreading lamellipodia (yellow arrow). No

such accumulation in (Bii)
Myo1EDTH2+3 and (Biii) Myo1EDTH2.
Such accumulation was present in (Biv)
Myo1EDTH3 (white arrow). (C) Edge
accumulation of N-terminal deletions.
(Ci) (TH1+2+3) at the tip of spreading

lamellipodia (white arrow). No such
accumulation in (Cii) (TH1+2),
(Ciii) PlcdPH-TH3 and (Civ) TH3. Bar
5 mm.
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and compared with control cells expressing paxillin alone. We

measured how much movement occurred after adhesion

formation (Fig. 6E) and what was the probability they

stabilized into a 1 mm radius region around their point of origin

(Fig. 6F). In cells expressing Myosin 1EDTH3, which caused

greater fluctuations in cell radius, paxillin adhesions failed to

mature and moved dramatically in the dynamic lamellipodia,

(Fig. 6E,F; supplementary material Movie 13). The shorter

paxillin staining adhesions in those lamellipodia never matured

and the lamellipodia retracted. In cells co-expressing

(TH1+TH3+TH3), we saw gradual appearance of stable

adhesions, similar to cells transfected with paxillin alone

Fig. 5. Overexpression of Myosin 1E deletion

mutants Myo1EDTH3 and TH1+TH2+TH3

has opposite effect on lamellipodia dynamics.

Tracks of Mean-square radius (M.S.R.)

fluctuations between timepoints and one
representative cell each for expression of
(A) EGFP-Paxillin, (B) EGFP-(TH1+2+3) of
Myosin 1E, (C) EGFP-Myosin 1EDTH3 and
(D) mApple-Myosin 1E full length. (E) Average
change in M.S.R. per frame (2 sec) of all four
constructs (n58, each). Fluctuation of Myosin

1EDTH3 is significantly higher from control
(P50.26) and (TH1+2+3) (P50.0168), were as
fluctuation of (TH1+2+3) is lower than control
(P50.046) (supplementary material Movies 9–
12). Bar 10 mm.

Fig. 6. Adhesion formation by paxillin

fluorescence: between cells co-expressing full

or deletion mutants of Myosin 1E and control

cell expressing paxillin alone, showing

dominant negative effects of deletion mutants.

Dot-like structures of expressed paxillin in
lamellipodia of cells co-expressing
(A) (Th1+2+3) or (B) Myo1EDSH3. In
(B) newly formed adhesions showed instability
in lamellipodia (supplementary material Movie

13). Elongated paxillin structures in active
lamellipodia denoting stable control cells
expressing paxillin only (C) or co expressing full
length Myosin 1E (D). Bar 5 mm. (E) Movement
of nascent adhesions in dynamic lamellipodia, as
observed by RFP-paxillin spots; observed in

cells co-expressing Myo1EDSH3/(Th1+2+3)
and control cells expressing paxillin alone.
(F) Probability of finding a paxillin spot within
1 mm radius from where it first appeared in
dynamic lamellipodia with time. These nascent
adhesions (paxillin-spots) were compared from
three cells each (per construct) co-expressing

Myo1EDSH3, (TH1+2+3) or control cells
expressing paxillin alone.
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(Fig. 6E,F; supplementary material Movie 13). However, adhesions

were shorter and more circular. Thus, expression of Myosin 1E

domains appeared to affect focal adhesion formation by preventing

Myosin 1E interaction with various proteins as proposed above

(Fig. 2).

Myosin 1E knockdown destabilized matrix–lamellipodia

interaction

To determine whether Myosin 1E depletion affected adhesion

formation, we depleted Myosin 1E in HUVEC cells (Fig. 7A).

HUVEC cells were chosen because siRNA against human

Myosin 1E knocks down .80% Myosin 1E (Cheng et al.,

2012). Also, like RPTP, HUVEC generated large lamellipodia

when spread on glass and Myosin 1E accumulated at the tips

(Fig. 7B white arrow) (Kopp et al., 2010). When Myosin 1E

levels were reduced .80%, three days after first siRNA

transfection (Fig. 7A), we found no difference in overall or

total movement in next 24 hrs of cells transfected with control or

Myosin 1E siRNA (data not shown). By expressing GFP-paxillin

in Myosin 1E knockdown cells, we followed focal adhesions

during spreading and migration. GFP-paxillin in mature focal

adhesions was distributed in rod-like structures (Turner et al.,

1990; Zaidel-Bar et al., 2003) and those structures were found in

two rounds of control siRNA transfected HUVEC cells (Fig. 7C;

supplementary material Movie 14). In Myosin 1E knockdown

cells, although no visible difference was observed in single round

of Myosin 1E siRNA transfection, a second transfection by

Myosin 1E siRNA lead to GFP-paxillin concentration in nearly

circular bead like structures that were quite dynamic (Fig. 7D;

supplementary material Movie 14). There was a significant

difference in circularity of the paxillin distributions (across three

cells each, Fig. 7E). The lamellipodia of knockdown cells

retracted, while those of controls were stable (Fig. 7C,D;

supplementary material Movie 14). A similar but more profound

effect on adhesion was found after treating the stable paxillin-

GFP transfected REF52 cells with global Myosin 1 inhibitor

Pentachloropseudilin (PCIP, specific to all isoforms of Myosin

1 only) (Fig. 7F–J; supplementary material Movies 15, 16)

(Chinthalapudi et al., 2011). Both control and drug treated

cells initially spread-out in a similar way and adhesions were

observed in both by paxillin staining (Fig. 7F–G; Movie 15). As

time progressed, adhesions of PCIP treated cells remained

circular whereas in control cells they elongated (Fig. 7F–G;

supplementary material Movie 15). There was a significant

difference in circularity in paxillin staining between drug treated

and untreated cells, in parallel with knockdown cells (Fig. 7H).

The lamellipodia of PCIP treated cells also retracted in similar

ways to knockdown cells (Fig. 7F,G; supplementary material

Fig. 7. Myosin 1E knockdown has destabilizing effect on cell–matrix adhesions. Similar distablization observed in Myosin 1 inhibitor treated cell.

(A) HUVEC cells expressing Myosin 1E, showing edge accumulation (arrow). (B) Knockdown of Myosin 1E in HUVEC cells, (C) Control and (D) Myosin 1E
siRNA transfected HUVEC cells (after two consecutive transfections) show difference in circularity of paxillin staining at adhesions (white arrows, supplementary
material Movie 14). (E) Myosin 1E siRNA transfected cells have significantly higher circularity than control cells. (F) Control and (G) PCIP treated REF
52-paxillin-GFP cells show difference in circularity of paxillin staining at adhesions (white arrows, supplementary material Movie 15). (H) PCIP treated cells have
significantly higher circularity than control cells. (I) Cell area constriction of actively spreading RPTP cells upon addition of PCIP (supplementary material Movie
16). Washout led to re-spreading to same cell area. (J) Kymographic representation of constriction of lamellipodia the cell shown in (I) upon addition of PCIP.

Washout led to re-spreading of lamellipodia. Bar 10 mm in A, 5 mm in J, 2 mm in the rest.
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Movie 15). The drug treatment was reversible. While addition of
the drug constricted the lamellipodia of RPTP cells and reduced

cell area, washout restored normal surface area and lamellipodia
spreading (Fig. 7I,J; supplementary material Movie 16).
Although, a single transfection of Myosin 1E siRNA lowered
the protein level by 80%, a second transfection of siRNA was

required for an effect on adhesions, which indicated that very low
levels of Myosin 1E were needed to see an effect (Fig. 7A).
Therefore, global absence in Myosin1 function, might have led to

the stronger phenotype such as in PCIP treated cases (Fig. 7F–J).
Further, other complementing Myo1 isotypes were also inhibited
(Fig. 7F–J).

Discussion
Based upon these findings there appears to be a major role for
Myosin 1E in cell migration and early adhesion formation.

Specifically, we find that Myosin 1E accumulates at the tips and
at actin-rich sites near early adhesions in actively protruding
lamellipodia unlike the short-tailed Myosin 1s (1G, 1B and 1C).

Myosin 1E appears to move actively and could transport
CARMIL and Arp2/3 complex to sites of actin barbed-end
polymerization at the edges of lamellipodia and at very early

adhesions with clusters of FHOD1/b3-integrin because a fraction
of Myosin 1E actively moves on actin in the TIRF field. Based
upon the expression of deletion mutants, accumulation of Myosin
1E at lamellipodial edges requires the membrane binding, TH1

domain with either the head and TH3 domains or the TH2 and
TH3 domains. Thus, Myosin 1EDTH3 and the full tail
(TH1+TH2+TH3) constructs localize with Myosin 1E but

overexpression of these proteins alters cell function in different
ways. Cells expressing Myosin 1EDTH3 have large lamellipodia
that fluctuate rapidly in size and direction. In contrast, cells

expressing the full tail have reduced lamellipodial fluctuations.
Cells depleted of Myosin 1E still spread lamellipodia rapidly but
adhere poorly as evidenced by rapid retraction of lamellipodia

and poorly formed dynamic adhesions. A similar phenotype is
observed after addition of the global Myosin 1 inhibitor PCIP.
Because Myosin 1E could transport CARMIL to FHOD1/b3-
integrin sites as well as active leading edges, we suggest that it

plays a major role in the transport of components involved in the
maturation of adhesions.

Previous studies of Myosin 1E have defined the binding sites

for cargo such as, CARMIL and have characterized the motility
and membrane binding domains (Feeser et al., 2010; Jung et al.,
2001; Krendel et al., 2007; El Mezgueldi et al., 2002). Our

finding of multimeric complexes of motile Myosin 1E fits with
earlier observations of the aggregation of long tailed Myosin 1E
homologs in multimeric complexes (Pollard and Ostap, 1996).
The velocity of movement calculated from tracking the actively

moving particles was significantly greater than the velocities
reported in vitro (,2.26 mm/s in vivo vs 0.05 mm/s in vitro for rat
Myosin 1, (Williams and Coluccio, 1994) and the velocity of

actin polymerization from the leading edge (0.1 mm/s from
(Giannone et al., 2004). The in vivo difference could be due to
aggregation and cargo binding that activates Myosin movement

(Stöffler and Bähler, 1998). Since Myosin 1E moves toward the
barbed end of the actin filaments that would be directed toward
active lamellipodial edges and concentrations of the formin,

FHOD1, it is logical that Myosin 1E would localize more closely
to leading edges and early adhesions (FHOD1 with b3-integrin
clusters, (Kiosses et al., 2001)). Similarly, there is a concentration

of Myosin 1E at sites of clathrin-dependent endocytosis (Cheng
et al., 2012) but these early adhesion structures are not linked to

clathrin dependent endocytosis, as they turn-over before clathrin
accumulation. Thus, we suggest that Myosin 1E plays an active
role in early spreading and motility processes that involve rapid
concentration of components at sites of actin polymerization.

The most difficult results to explain relate to the behavior of
the mutant forms of Myosin 1E upon overexpression.
Localization of the mutant forms can be explained as a result

of the oligomerization of proline rich TH2 domain constructs
with endogenous Myosin 1E and the loss of oligomerization in
the absence of TH2 (Soldati and Kistler, 2004; Stöffler and

Bähler, 1998). Oligomerization is a key step for movement and
potentially for the binding of cargo. Thus, hetero-oligomers of
endogenous 1E with the Myosin 1EDTH3 should have different
properties from those with the full tail (TH1, TH2 and TH3). In

the case of Myosin 1EDTH3 overexpression, there could
logically be a deficiency in one of the cargo components that is
involved in stabilization of the adhesions and that would result in

rapid retractions of the edge, similar to the behavior of Myosin
1E depleted cells. Greater fluctuations with 1EDTH3
overexpression could result from the motor activity that could

support new extensions (unlike the case with 1E depletion) that
again would not form stable adhesions. They cannot be due to
inhibition of Myosin II driven contraction, since Myosin 1 heads
do not bind to tropomyosin decorated actin, where Myosin II

binds (Tang and Ostap, 2001). However, the decrease in overall
motility with full tail expression could be the result of a
decreased activation of Myosin II as well as the decreased

motility of the Myosin 1E hetero-oligomers. Actin
polymerization at the edge could be compromised by decreased
transport and a relative increase in the cargo domain. There are

other potential roles for Myosin 1E that could further explain
these findings but they are still consistent with a general model
that Myosin 1E is transporting important components to the sites

of actin polymerization that are involved in stimulating actin
polymerization and/or adhesion formation at integrin sites.

In the absence of Myosin 1E, mice are viable as are their
fibroblasts; however, the animals have severe loss of podocytes

in their kidneys with concomitant loss of kidney function. Since
there is another long Myosin isoform, 1F, it may be upregulated
to improve cell function. This might be the reason behind weaker

phenotype of Myosin 1E knockdown compared to overexpression
phenotype of deletion mutants or global Myosin 1 inhibition by
PCIP. The loss of podocytes is consistent with a compromise in

adhesion formation since podocytes are thin actin-based
protrusions that must be stabilized on basement membrane
sites. Generally, Myosin 1s have the ability to diffuse as
monomers and to move as oligomers. The unusual role of

Myosin 1E in concentrating to sites of actin polymerization in
early spreading cells indicates that it is particularly active in that
cell environment. Other Myosin 1s may be upregulated for

transport when adhesions are stabilized or under steady state
conditions. Upregulation of Myosin 1F or other form of Myosin 1
isotypes in absence of Myosin 1E might lead to survival of

knockout mice. This hypothesis is supported by the fact that
inhibition of all Myosin 1 isotypes by PCIP had a more profound
effect on cell matrix adhesion than Myosin 1E depletion alone.

Taken together, we propose that Myosin 1E is involved in actin
organization in active lamellipodia and that leads to formation of
early adhesions.
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Materials and Methods
DNA constructs and antibody
The constructs for pEGFPC1-Myosin1G (Olety et al., 2010) was kind gifts of Prof.
Martin Bähler. pUHD10-3-Myosin 1E (RAT) was a gift from Prof. Ed Manser.
Human EGFP-CARMIL1a was a gift from Prof J. Cooper (Yang et al., 2005).
GFP-tagged Myosin 1E tail construct (TH1+TH3+TH3) was previously described
(Krendel et al., 2007). PM-GFP (GFP-pcDNA3-LYN with membrane targeting
Lyn (MGCIKSKRKD) was generated by Prof. Tobias Meyer and was purchased
from ADDgene. Other GFP-tagged Myosin 1E deletion constructs were generated
using In-Fusion HD PCR cloning (Clontech). pYFPC1-Myosin1C was a kind gift
of from Prof. Michael Czech (Bose et al., 2002). pmApple-Myosin 1E (Taylor et
al., 2011) was obtained from the authors via ADDGENE. DNA construct
containing Myosin1F (ATCC clone MGC-40199, I.M.A.G. clone id-5213035) and
Myosin 1B (ATCC No-10699052, I.M.A.G. clone id-6821232 and ATCC No-
10469400, I.M.A.G. clone id-6487332) were purchased from BioRev/BioGenH.
For making Myosin 1E deletion, we followed the domain map as previously
described (Krendel et al., 2007). All Myosin 1 (full-length or deletion) open
reading frames that are mobilized to PAmcherryC1 (Subach et al., 2009) were
cloned using circular PCR method. PAGFP-PM is (MARCKS, 1–40 residues that
contained membrane insertion palmytoylation sites at residue 3 and 4) (De Paola et
al., 2003). Myosin 1E antibody was identically used as described (Skowron et al.,
1998).

Cell cultures and Myosin 1 inhibitor
RPTPa+/+ cells (Sap et al., 1990; Su et al., 1999) were cultured in GIBCO DMEM
high glucose (11965, includes phenol red), with 10% fetal bovine serum, 100 U/ml
penicillin, 100 mg/ml streptomycin and 1 mM sodium pyruvate. For imaging,
DMEM high glucose (21041, without phenol red) was used with all above
mentioned additives.

HUVEC cells (Yamada et al., 1992) were cultured in fully supplemented EGM
media (Invitogen), following media instructions.

Ref52-YFP paxillin cells (Zaidel-Bar et al., 2007) were available as lab stock
and treated in the same way as RPTP cells above.

Myosin 1 inhibitor PCIP (Pentachloropseudilin) (Martin et al., 2009;
Chinthalapudi et al., 2011) was dissolved in DMSO in a 25 mM stock and
added at a final concentration of 10 mm at the beginning or in between timepoints
as given in figure captions.

Transfection of DNA and siRNA
Approximately 0.56106 RPTP cells were transfected with 5 mg PAmcherry/
mApple-Myosin 1 constructs+0.5 mg EGFP-lifeact, using 100 ml electroporation
tips by a NeonTM electroporator, following manufacturer’s instructions (1700V,
20 ms, 1 pulse). For siRNA transfection to HUVEC cells, 10 ml electroporation
tips and 1 mg siRNA (Dharmacon smart pool) was used (1200v, 40 ms, 1 pulse).
For GFP-paxillin observation in knockdown cells, a second transfection with 1 mg
siRNA+1 mg DNA was done and incubated for additional two days.

Confocal microscopy
Photoactivation
After overnight incubation of transfected cells at 37 C̊+5% CO2, cells were freshly
split into a GreinerTM 35 mm glass bottom dish (fibronectin coated) in imaging
medium and visualized in a PerkinElmerTM Spinning Disk confocal (Built on
Olympus IX inverted microscope, 1006PL FL oil lenses of N.A. 1.4, Hamamatsu
C9100-13 5126512 pixel back illuminated EMCCD camera). Imaging media was
DMEM(2) phenol red(2) serum, imaging was done in 37 C̊+5% CO2. EGFP-
lifeAct fluorescence was used to find transfected cells and see the actin structure.
Photo-activation of PAmcherry in region of activation (ROA) and observation of
the active molecules were carried out using the UltraVIEWPhotoKinesisTM

module, set with the following protocol: Pre-bleach images were captured by
561 nm laser excitation for 2 seconds. Photo-activation was by 405 nm laser using
UltraVIEW PK Device as a bleaching device for 0.2 to 1.0 s. Post-activation
images were recorded for 5 seconds at the maximum rate. Shutters wereset for
maximum speed. The 405 nm activation laser was set at maximum power, 561
laser at 50% of the maximum power.

Time course confocal observation
For observing mApple-Myosin 1E and/or EGFP-deletion constructs custom made
spinning disk microscope built on Nikon Eclipse Ti was used. Images were
captures every 2 sec in a photometrics Cascade II EMCCD camera by 606 oil
lance (N.A. 1.4) until required.

TIRF microscopy
Cells were identically processed as before for microscopy and visualized in an
Olympus TIRF microscope (Olympus IX inverted microscope, 1006PL FL TIRF
oil lenses (N.A. 1.45), Photometrics Cascade II 102461024 EMCC camera). The

561/488 nm (in epi and TIRF) visualization were done using single camera every
1/2 sec. 100 nm red/green beads were used to align multi-channel data.

Bleaching of EGFP-Myosin1G/mApple-Myosin 1E in TIRF
RPTP cells were transfected with 2 mg EGFP-Myosin1G/2 mg mApple-Myosin 1E
DNA by NeonTM electroporator, following manufacturer’s instructions. Before
observation, cells were fixed in 4% paraformaldehyde+0.1% glutaraldehyde.
Sample processing methods were the same as used in the photo-activation
experiments. Cells were observed in the Zeiss Elyra microscope under 60–100% of
488 nm laser power in TIRF and with maximum EM gain for 200 ms exposure
time (1006TIRF lenses).

Tracking Myosin 1E/1G clusters in TIRF layer of lamellipodia
For tracking Myosin 1E and Myosin 1G as moving clusters, maximum-power of
lasers was applied to make them visible. One general observation was made that
most of the Myosin 1E particles stays in about 5 mm from the cell edge during P1
spreading, roughly covering the width of lamellipodia from cell edge. Therefore,
given the thickness of lamellipodia (100–200 nm, (Atilgan et al., 2005)) is
negligible, we considered 2D motions only. For particle tracking, boxed regions
covering lamellipodia (as shown in supplementary material Movies 3–6) are
selected and cropped out of the main movie. It was rotated (clockwise in this case)
so that lamellipodial edge remains horizontal and parallel to the top edge of the
box. Then it was fed into imaris software and origin of reference was chosen at the
bottom left corner of the box. To make comparison uniform, similar regions were
cropped out for Myosin 1G and PAGFP-PM particle also. Although in these cases,
distributions of particles were more uniform in TIRF layer. For particle tracking,
connected components were only considered to avoid false tracking. Diameters of
these particles were approx. 0.5 mm and movie speed was 20 (Myosin 1E) or 30
(Myosin 1E) fps. Therefore any particles having instantaneous speed .10 mm/s
was not considered. Also track-length of .10 timepoints were only considered
as smaller tracks would not be useful in MSD calculations. To eliminate frame
to frame noise, particles that have total displacement of at least their
diameter length were considered. x, y coordinates of each point in tracks was
exported and MSD/time plotted. D of particles was calculated from first three time
points using linear fit, http://people.hofstra.edu/Stefan_Waner/RealWorld/
newgraph/regressionframes.html. Only the slope of the average linear fits were
considered for calculating D and used for close linear fits of Myosin 1G and
PAGFP-PM. For nonlinear fits, quadratic equation was used, as described
(Schmidt et al., 1993).

To investigate presence of super diffusive nature in Myosin 1G or 1E tracks, the
following formula was used.

MSD~4Dta

LogMSD~log4Dzalogt a~1, dif fusive, av1, subdiffusive, aw1, superdif fusiveð Þ

Individual alpha values of each track was calculated from logMSD vs logt plot and
plotted as histogram.

DIC/phase contrast/fluorescence observation of Myosin 1E
knockdown and Myosin 1E deletion overexpressing cells
HUVEC cells were resuspended in 16 Ringer medium and spread on 10 mg/ml
fibronectin coated glass slides. Observation was on an Olympus Live microscope
by 206 PL FL objective for four hours (N.A. 0.45), every 2 min interval.

Spreading of EGFP-Myosin 1E deletion constructs were carried out on on
10 mg/ml fibronectin coated plastic dish in Nikon Biostation IMQ microscope, by
206 air lenses (N.A. 0.5). Transfected cells were spread at identically maintained
Biostation IMQ microscope and allowed them to undergo spreading. When the fast
spreading was visually over (approx. 30 min after spreading), data were collected
for cells, starting at similar time points.

Image processing
Volocity (Spinning disk confocal) and MetaMorph (Olympus TIRF and Elyra)
softwares were used with respective microscopes. Image processing was carried
out by ImageJ (NIH, USA), aided by various plugins.

Data analysis was carried out by Microsoft Excel, Origin and in Matlab. For
measuring Mean Square cell radius (M.S.R.) fluctuations, cell area measurement
was done thresholding the fluorescence of overexpressing constructs. Cell boundary
then obtained by ‘‘analyze particle’’ plug-in of ImagJ. Cell boundary information
then input into published programs for M.S.R. fluctuations (Bhattacharya et al.,
2009; Gupta et al., 2012). Other programs were custom written.
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