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The aim of this paper is to analyse sunitinib malate in vitro ability to enhance cisplatin cytotoxicity in T24, 5637, and HT1376
human urinary bladder-cancer cell lines. Cells were treated with cisplatin (3, 6, 13, and 18𝜇M) and sunitinib malate (1, 2, 4, 6,
and 20𝜇M), either in isolation or combined, over the course of 72 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide assay, acridine orange, and monodansylcadaverine staining and flow cytometry were performed. The combination index
(CI) was calculated based on the Chou and Talalay method. In isolation, cisplatin and sunitinib malate statistically (𝑃 < 0.05)
decrease cell viability in all cell lines in a dose-dependent manner, with the presence of autophagic vacuoles. A cell cycle arrest
in early S-phase and in G

0
/G
1
-phase was also found after exposure to cisplatin and sunitinib malate, in isolation, respectively.

Treatment of urinary bladder-cancer cells with a combination of cisplatin and sunitinib malate showed a synergistic effect (CI < 1).
Autophagy and apoptosis studies showed a greater incidence when the combined treatment was put into use. This hints at the
possibility of a new combined therapeutic approach. If confirmed in vivo, this conjugationmay provide ameans of new perspectives
in muscle-invasive urinary bladder cancer treatment.

1. Introduction

Urinary bladder cancer is a common malignancy of the
urinary tract, being four times higher in men than in
women [1]. Remarkable differences can be found in its inci-
dence worldwide, while being predominately higher in devel-
oped countries such as North America and Western and
Southern Europe [2]. At diagnosis, approximately 70% are
nonmuscle invasive tumors [3], while the remaining 30%
are muscle invasive and of these tumors about 10% of cases
has a tendency to metastasize, with a poor prognosis [4].
The standard approach for muscle-invasive urinary bladder
cancer treatment is based on a radical cystectomy with

bilateral pelvic lymph node dissection. However, this treat-
ment only offers 5-year survival in about 68% of patients [5].
Cisplatin-based chemotherapy is widely used. Gemcitabine
plus cisplatin exert comparable activity and a lower toxicity
profile when compared to the methotrexate, vinblastine,
doxorubicin, and cisplatin (MVAC) regimen [6]. However,
chemotherapy courses continue to produce unsatisfactory
rates of recurrence and death. Thus, the simultaneously
application of cisplatinwith other anticancer drugs that target
new signalling pathways has been investigated [7].

Sunitinib malate is an orally bioavailable molecule with
the ability to block the intracellular tyrosine kinase domain of
tyrosine kinase receptors. It is also responsible for inhibition
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of vascular endothelial growth factors receptors, platelet-
derived growth factor receptors, and stem cell factor receptor
[8, 9]. Its therapeutic effects on urinary bladder cancer have
already been assessed in two clinical studies of phase II
cancers and showed clinical benefits [10, 11]. Nonetheless,
there is a scarce of data available about the combination of
sunitinib malate and cisplatin on urinary bladder cancer.

This investigation aims to analyse the in vitro effects of cis-
platin and sunitinib malate in isolation and in combination,
on one human nonmuscle invasive urinary bladder-cancer
cell line (5637) and on two human muscle-invasive urinary
bladder-cancer cell lines (T24 and HT1376).

2. Materials and Methods

2.1. Urinary Bladder-Cancer Cell Lines and Culture Condi-
tions. Thestudywas performedon the 5637, T24, andHT1376
urinary bladder-cancer cell lines. T24 cell line was provided
by DSMZ, Düsseldorf, Germany; 5637 and HT1376 cell lines
were kindly provided by Dr. Paula Videira of the Universi-
dade Nova de Lisboa, Lisboa, Portugal. Monolayer cultures
of the three cell lines were maintained in RPMI 1640medium
(PAA, Pasching, Austria), supplemented with 10% heat inac-
tivated fetal bovine serum (Biological Industries, Kibbutz
Beit Haemek, Israel), 100𝜇g/mL streptomycin (Biological
Industries), 100U/mL penicillin (Biological Industries), and
2mML-Glutamine (SigmaAldrich, St. Louis,MO,USA).The
cultures were maintained in a humidified 5% CO

2
incubator

at 37∘C.

2.2. Cisplatin and Sunitinib Malate Exposure. T24, 5637, and
HT1376 urinary bladder-cancer cells were exposed to 3, 6, 13,
and 18 𝜇M cisplatin (Teva Pharma, Portugal) and 1, 2, 4, 6,
and 20𝜇M sunitinib malate (Sigma Aldrich, St. Louis, Mo,
USA), in isolation and over the course of 72 hours to assess
dose-response profiles. For the cell viability combined assay,
3, 6, and 13 𝜇M cisplatin was used with each concentration
of sunitinib malate (1, 2, and 4 𝜇M). For morphological
analysis, acridine orange, andmonodansylcadaverine (MDC)
staining, the lowest concentration of cisplatin (3 𝜇M) was
used simultaneously with 1𝜇M of sunitinib malate. For flow
cytometry assay, 3 𝜇M cisplatin was combined with 1, 2, and
4 𝜇M of sunitinib malate.

Cells growing in the complete medium alone were pro-
cessed in the same way as the treated cells, in the case of
all the methodologies, and cytotoxic effects were analyzed
immediately after drug exposure was ceased.

2.3. Morphological Analysis. Urinary bladder-cancer cell
lines (2 × 104 cells/mL) were cultured in the presence of the
lowest concentrations of cisplatin and sunitinib malate, in
isolation or combined. A light invertedmicroscope (Axiovert
25, Carl Zeiss, Germany) was used to observe the cells in
culture, in order to detect cells confluence and differences in
their appearance.

2.4. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl Tetrazolium
Bromide (MTT) Assay. The effect of both drugs was evalu-
ated based on the MTT assay. Cells were seeded into each

well of a 96-well flat-bottom microtiter (Sarstedt, Newton,
NC, USA) at a density of 2 × 104 cells/mL and allowed to
adhere overnight. Cells were treated with cisplatin (3, 6,
13, and 18 𝜇M) and sunitinib malate (1, 2, 4, 6, and 20𝜇M),
in isolation or combined. At the end of the treatment,
the MTT (Sigma Aldrich, St. Louis, USA) dye working
solution (10 𝜇L/well at 5mg/mL) was added to each well and
plates were incubated for 4 additional hours. The medium
was removed and the formazan crystals generated were
solubilized by adding 100𝜇L/well of dimethylsulfoxide
(Sigma Aldrich) for 5 minutes. Absorbance values at 492 nm
were determined using an automatic ELISA plate reader
(Multiskan EX, Labsystems). The percentage of cell viability
was calculated as (absorbance of treated cells/absorbance of
untreated cells) ×100.

2.5. Drug Combination Studies. For the study of synergism
between cisplatin and sunitinib malate on cell growth inhi-
bition of T24, 5637, and HT1376 cells, a combination index
(CI) was performed using the data obtained fromMTT assay.
Drug combination studies were based on concentration-
effect curves generated as a plot of the fraction of unaffected
cells versus drug concentration, in accordance to the Chou
and Talalay (1984) method [12], using the following CI equa-
tion: CI = (D)

1
/(Dx)

1
+ (D)
2
/(Dx)

2
+ (D)
1
(D)
2
/(Dx)

1
(Dx)
2
,

where (D)
1
and (D)

2
are the concentrations of sunitinib

malate and meloxicam that exhibit a determined effect when
applied simultaneously to the cells and (Dx)

1
and (Dx)

2
are

the concentrations of the same drugs that exhibit the same
determined effect when used in isolation. The CI values
indicate a synergistic effect when <1, an antagonistic effect
when >1, and an additive effect when equal to 1.

2.6. Acridine Orange Staining. Acridine orange is a fluores-
cent dye which stains cytoplasm and nucleus by bright green,
while acidic compartments (such as lysosomes and autolyso-
somes) stain bright red. Cells (2 × 104 cells/mL) were seeded
on sterilized glass coverslip (8mm), cultured for 24 hours,
and treatedwith drugs, in isolation or combined, for 72 hours.
The medium was removed and acridine orange (Sigma,
Karlsruhe, Germany) was added to the cells at 1𝜇g/mL, at
37∘Cand for 10minutes. Subsequently, cells werewashedwith
phosphate-buffered saline (PBS) and immediately analysed
using a fluorescencemicroscope (Nikon Eclipse E400, Tokyo,
Japan).

2.7. Monodansylcadaverine (MDC) Staining. Autophagy
induced by cisplatin and sunitinib malate, in isolation or
combined, was observed with the autofluorescent substance
MDC (Sigma, Karlsruhe, Germany). MDC moves freely to
cross-biological membranes and accumulates in autophagic
vacuoles [13]. Cells (2 × 104 cells/mL) were seeded in sterile
coverslips (8mm), incubated for 24 hours, and then treated
with the both drugs, as single agents or in combination, for
72 hours. Autophagic vacuoles were labelled with MDC by
incubating cells with 25𝜇M MDC for 1 hour at 37∘C. The
cells were washed three times with PBS and immediately
analysed using a fluorescence microscope (Nikon Eclipse
E400, Tokyo, Japan).
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2.8. Flow-Cytometry Analysis. Cells (1 × 106 cells/mL) were
seeded in 6-well plates and allowed to adhere overnight.
Subsequently, the medium was removed and 3𝜇M cisplatin,
in isolation or in combination with sunitinib malate (1, 2,
and 4 𝜇M) was applied. Cell-cycle distribution and apoptosis
were analyzed by flow cytometry as previously reported [14].
DNA-content histograms were analysed with CXP software
(BeckmanCoulter). Cells with a lowerDNAcontent than that
of G
0
/G
1
phase cells were considered to be apoptotic (sub-

G
0
/G
1
) [15]. Each independent experiment was performed in

triplicate.

2.9. Statistical Methods. Statistical analysis was carried out
using the SPSS 17.0 statistical software (SPSS Inc., USA).
The equality of variances was tested by the Levene 𝐹 test
and the statistical significance of differences between the
treatment and control groups was determined by Dunnett’s
multiple comparison post hoc test for the MTT assay. The
Pearson product-moment correlation coefficient was used to
evaluate the correlation (linear dependence) of the cell-cycle
and drugs concentration. Data obtained fromMTT assay and
used to evaluate the interaction between cisplatin and suni-
tinibmalate were analyzed using theMATLAB software (ver-
sion 7.9, R2009b). Statistical significance was set at 𝑃 < 0.05.

3. Results

3.1. Morphological Alterations. Cisplatin and sunitinib
malate, in isolation, induced a decrease cell population when
compared to untreated cells. In combined treatment, a slight
decrease of cell confluence with an increase number of gran-
ulated cells was observed, when compared with the other
culture flasks with isolated drugs. These features were more
visible on T24 and 5637 cell lines. The surface in control flask
was confluent with visible undergoing division cells (Figure
1).

3.2. Isolated Effects of Cisplatin and Sunitinib Malate on Uri-
nary Bladder-Cancer Cell Viability. T24, 5637, and HT1376
cell lines in the exponential growth phases were exposed to
different concentrations of cisplatin and sunitinib malate, in
isolation or combined, and the effect on cell viability was
examined after 72 hours of culture.

Cisplatin decreased cell viability in all the three cell
lines in a dose-dependent manner. The 5637 cell line was
the most sensitive, with only 8% of cell viability at the
highest concentration tested (18 𝜇M). In the three cell lines,
statistically significances (𝑃 < 0.05) were found in all the
concentrations tested when compared with untreated cells
(Figure 2(a)).

Sunitinib malate induced a concentration-dependent
inhibitory effect on cell viability, with a very similar pattern
response between the three cell lines. However, the 5637 cell
linewas themost resistant at the higher concentration applied
(20𝜇M). In all the cell lines, statistically significant values
were found when compared with untreated cells (𝑃 < 0.05),
with the exception at the lowest concentration in the HT1376
cell line (𝑃 = 0.171) (Figure 2(b)).

3.3. Combined Effects of Cisplatin and SunitinibMalate onUri-
nary Bladder-Cancer Cell Viability. The simultaneous treat-
ment of urinary bladder-cancer cells to cisplatin (3, 6, and
13 𝜇M) and sunitinib malate (1, 2, and 4𝜇M) decreased the
cell viability rate in the three cell lines when compared with
each drug in isolation (Figure 3). The 5637 cell line was the
most sensitive to drugs used in association, even at the lower
cisplatin concentration tested (3𝜇M) with 1, 2, and 4𝜇M
concentration of sunitinib malate. The 5637 survival rates
for this combination were averaged as 53.2%, 33.1%, and
29.7%, followed by the T24 (60.9%, 63.9%, and 45.2%) and
HT1376 (76.2%, 67.4%, and 59.1%) cell lines, respectively. All
the combinations are statistically significant when compared
with the control group (𝑃 < 0.05).

3.4. Combination Index. In order to analyse the type of
interaction (synergic, additive, or antagonistic) between the
cisplatin and sunitinib malate in combination at 72 hours
on T24, 5637, and HT1376 cell lines, we implemented on
MATLAB the method developed by Chou and Talalay (1984)
[12]. The CI

50
values computed for HT1376, T24, and 5637

cell lines were 0.96, 0.96, and 0.89, respectively (Table 1).
Therefore, the combined use of cisplatin and sunitinib malate
was synergistic on the growth inhibition of the three cell lines.
Dose reduction index

50
(DRI
50
) represents the magnitude of

dose reduction obtained for the 50% growth inhibitory effect
in combination setting as compared to each drug alone. In
our experiments, DRI

50
of cisplatin and sunitinibmalate were

equal to 5.51 and 1.5 in HT1376, 2.86, and 2.19 in T24, and 1.25
and 20 in 5637 cells, respectively, when the two drugs were
used in combination (Table 1). These results demonstrate
that a synergistic interaction can be verified on cell viability
when the two drugs are used in a concomitant sched-
ule.

3.5. Detection of Autophagy by Acridine Orange Staining. In
untreated cells acidic vesicular organelles were not observed.
In isolation, the acidic vesicular organelles were observed
in the three cell lines, after incubation with cisplatin (3𝜇M)
and sunitinib malate (1 𝜇M). However, this effect was more
evident on sunitinib malate treated cells. Upon exposure to
combined treatment, increased acidic vesicular organelles
was detected in the three cell lines. Moreover, with this
staining it was possible to observe that cells exposed to
cisplatin, in isolation, showed the formation of membrane
blebbing, which are morphological alterations consistent
with apoptosis. This detection had a higher incidence on T24
and 5637 cell lines and markedly increased in the combined
treatment (Figure 4).

3.6. Detection of Autophagy byMDC Staining. MDC staining
allows us to visualize the mature autophagic vacuoles. In
untreated cells, autophagic vacuoles were inexistent. MDC-
labelled vacuoles were detected after 72 hours of treatment
with cisplatin and sunitinib malate, in isolation, in the
three urinary bladder-cancer cell lines. In the simultaneous
treatment, an increased number of MDC-labelled vesicles
(fluorescent particles) was observed in cytoplasm and perin-
uclear regions (Figure 5).
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Control Control Control

HT1376 T24 5637

Cisplatin (3𝜇M) Cisplatin (3𝜇M) Cisplatin (3𝜇M)

Sunitinib malate (1𝜇M) Sunitinib malate (1𝜇M) Sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Figure 1: HT1376, T24, and 5637 urinary bladder-cancer cell lines culture, in the absence (control) or in the presence of cisplatin and sunitinib
malate, in isolation or combined, under a light inverted microscope. Original magnification 10x.

3.7. Cell-Cycle Distribution and Sub-G
0
/G
1
-Fraction. Thepat-

tern of cell distribution through the several phases of the
cell cycle was different in the three cell lines depending on
the drug treatment applied (Table 2). Untreated cells were
predominantly at G

0
/G
1
-phase, with 75.9%, 91.6%, and 81.1%,

on HT1376, T24, and 5637 cell lines, respectively. With 3 𝜇M
cisplatin the percentage of cells in G

0
/G
1
-phase decreased to

45.9% (HT1376), 71.5% (T24), and 24.1% (5637).This decrease
was accompanied by an early S-phase and sub-G

0
/G
1
arrest,

particularly for 5637 and T24 cell lines. Regarding sunitinib
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Figure 2: Isolated effects of cisplatin (a) and sunitinib malate (b) on urinary bladder-cancer cell lines viability, assessed by using the MTT
assay. The data shown and bars represent the mean values ± SD (SD: standard deviation). ∗𝑃 < 0.05 versus untreated cells.
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Figure 3: Combined effects of cisplatin (3, 6, and 13𝜇M) and sunitinib malate (1, 2, and 4 𝜇M) on HT1376, T24, and 5637 urinary bladder-
cancer cell lines viability, assessed by using theMTT assay.The data shown and bars represent themean values ± SD (SD: standard deviation).
∗

𝑃 < 0.05 versus untreated cells.
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Control Control Control

HT1376 T24 5637

Cisplatin (3𝜇M) Cisplatin (3𝜇M) Cisplatin (3𝜇M)

Sunitinib malate (1𝜇M) Sunitinib malate (1𝜇M) Sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Figure 4: Fluorescence images obtained from cells exposed to cisplatin and sunitinib malate (green: cytoplasm and nucleus cells; red: acidic
compartments; white arrow: membrane blebbing). Original magnification 400x.

malate treatment, two cell cycle effects were observed for
all the cell lines. First the cells in interphase were mainly in
G
0
/G
1
-phase (Table 2) and second an increase in sub-G

0
/G
1
-

fraction was observed.
The effect of the drug combination is also concentration

dependent as shown by the increase sub-G
0
/G
1
-fraction,

which is considered to be amarker of apoptotic cell death. On
HT1376 and T24 cell lines, a positive correlation was found
between combined treatment and the increase of cells in the
sub-G

0
/G
1
-fraction, with statistically significant results ((𝑟 =

0.947; 𝑃 = 0.015) and (𝑟 = 0.959; 𝑃 = 0.010)), respectively,
(Table 3).
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Control Control Control

HT1376 T24 5637

Cisplatin (3𝜇M) Cisplatin (3𝜇M) Cisplatin (3𝜇M)

Sunitinib malate (1𝜇M) Sunitinib malate (1𝜇M) Sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Cisplatin (3𝜇M) +
sunitinib malate (1𝜇M)

Figure 5: Fluorescence images obtained from cells exposed to cisplatin and sunitinibmalate. Autophagosomes are pictured as distinct dot-like
fluorescent structures (DAPI). Original magnification 400x.

4. Discussion

Urinary bladder cancer is a commonmalignancy and remains
a challenge despite significant therapeutic advances [16].
Thus, novel targeted therapies are sorely required to fur-
ther improve the effectiveness of urinary bladder cancer

chemotherapy. Preclinical models play a crucial role in this
setting [17] and urinary bladder-cancer cell lines have been
invaluable research tools to evaluate the efficacy of new
drugs [18–20]. In the present study, we investigated if sunit-
inib malate could strengthen cisplatin cytotoxicity, using as
in vitro models three human urinary bladder-cancer cell



8 BioMed Research International

Table 1: Combination indexa (CI) and dose reduction index (DRI) values for cisplatin and sunitinib malate combination.

Cell lines Cisplatin
(IC50 𝜇M)

Sunitinib malate
(IC50 𝜇M) CI50 DRI50 Interpretation

HT1376 18.2 6 0.96 Cisplatin: 5.51
Sunitinib malate: 1.5 Synergism

T24 9.44 6 0.96 Cisplatin: 2.86
Sunitinib malate: 2.19 Synergism

5637 4.12 20 0.89 Cisplatin: 1.25
Sunitinib malate: 20 Synergism

aCI50 is a combination index for 50% effect, used for quantifying synergism, additivity, and antagonism.

Table 2: Cell-cycle distribution ofHT1376, T24, and 5637 urinary bladder-cancer cell lines, after treatmentwith cisplatin and sunitinibmalate,
in isolation or combined. G

0
/G
1
, S, and G2/M values are mean ± SD of the three independent experiments.

HT1376 T24 5637
G
0
/G
1

S G2/M G
0
/G
1

S G2/M G
0
/G
1

S G2/M
Control 75.9 ± 5.8 10.4 ± 0.5 13.6 ± 1.2 91.6 ± 2.3 2.7 ± 0.2 5.8 ± 1.8 81.1 ± 3.9 7.4 ± 0.7 11.6 ± 1.1

Cisplatin (3𝜇M) 45.9 ± 5.7 39.2 ± 1.6 14.8 ± 4 71.5 ± 2 18.2 ± 1.5 10.2 ± 1 24.1 ± 1.2 63.9 ± 2.4 11.9 ± 0.9

Sunitinib malate (1 𝜇M) 77 ± 4.5 11.7 ± 0.8 11.2 ± 1.7 93.7 ± 1.1 2.2 ± 0.1 4 ± 0.1 72.1 ± 2.4 11.6 ± 0.6 16.3 ± 1.6

Sunitinib malate (2𝜇M) 78.7 ± 3.8 10.9 ± 1.4 10.1 ± 1.3 93.7 ± 2.2 2.4 ± 0.2 4.2 ± 0.5 71.6 ± 0.8 13.2 ± 0.2 15.1 ± 0.5

Sunitinib malate (4 𝜇M) 78.2 ± 3.3 12.5 ± 0.9 9.2 ± 1.2 93.9 ± 3.5 2.5 ± 0.2 3.5 ± 0.1 69.7 ± 2.7 14.5 ± 0.1 15.8 ± 1.1

Cisplatin (3𝜇M) +
Sunitinib malate (1 𝜇M) 52.4 ± 0.4 35.6 ± 0.7 11.9 ± 0.4 72 ± 3.2 18.6 ± 1.4 9.4 ± 1.5 32.1 ± 0.3 61.5 ± 3.4 6.4 ± 0.7

Cisplatin (3𝜇M) +
Sunitinib malate (2𝜇M) 56.4 ± 2.9 34.4 ± 3.2 9.1 ± 0.5 74.6 ± 3.6 17.1 ± 1.3 8.3 ± 0.8 39.7 ± 3.2 54.2 ± 6.1 6.1 ± 0.4

Cisplatin (3𝜇M) +
Sunitinib malate (4 𝜇M) 56.8 ± 1.8 34.3 ± 1.2 8.8 ± 0.3 74.9 ± 2.7 12.2 ± 1 7.8 ± 2 38.8 ± 5.1 54.9 ± 2.9 6.2 ± 0.7

SD: standard deviation.

lines representative of human urinary bladder tumors: one
nonmuscle invasive cell line (5637) and two muscle-invasive
cell lines (T24 and HT1376).

The treatment of HT1376, T24, and 5637 urinary bladder-
cancer cell lines with cisplatin and sunitinib malate, in isola-
tion, significantly (𝑃 < 0.05) reduced cell viability in a dose-
dependent manner as already reported in our previous stud-
ies [7, 20]. Similar results were described on 5637, J82,HT1197,
and 253J urinary bladder-cancer cell lines [21], as well as on
A2780 and OVCAR3 ovarian cancer cells [22] when exposed
to cisplatin in isolation. Concerning sunitinib malate, its
effect was already reported on 5637 [23], TCC-SUP, HTB5,
HTB9, T24, UMUC14, SW1710, and J82 urinary bladder-
cancer cell lines [24]. Comparable results were reported for
other neoplastic cells, such asmedullary and papillary thyroid
[25], pancreatic adenocarcinoma [26], and non-small-lung
cancer cell lines [27]. Also in in vivo studies, sunitinib malate
was effective in mouse with small cell lung cancer [28] and in
a mouse orthotopic urinary bladder tumor model [29].

We further investigated if the cytotoxic activity of cis-
platin and sunitinib malate is mediated by autophagy and
apoptosis. A rapid approach to testing whether autophagy
may be occurring is to measure cellular acidification by
using acridine orange and MDC staining. Both methods
revealed an increased presence of acidic vesicles organelles
and autophagosomes in cells treated with both drugs in isola-
tion, when compared with untreated cells. This suggests that

cisplatin and sunitinib malate may exert its effects through
autophagy. In fact, the autophagic effect induced by sunitinib
malate alone was previously reported on muscle cardiac
cell lines [30]. Associated with autophagy induction is cell
accumulation in G

0
/G
1
-phase of the cell cycle [31, 32]. Flow

cytometry was used to evaluate the cell cycle kinetics and we
detected a cell cycle arrest in early S-phase and in G

0
/G
1
-

phase, in exposed cells to cisplatin and sunitinib malate,
respectively. Concerning the isolated cisplatin treatment, our
finding is consistent with previously published results on
HeLa cells [33]. However, a cell cycle arrest in G

2
-phase

phase was described in breast, testicular, head, and neck cell
lines [34, 35]. In our study, the treatment of cells with sunit-
inib malate leads to an accumulation of cells in G

0
/G
1
-

phase, an effect that was reported onA549 human non-small-
cell lung cancer cells [27]. Moreover, for both drugs in iso-
lation, we obtained an increase percentage of cells in sub-
G
0
/G
1
-fraction in the three cell lines, suggesting that both

agents induce apoptosis. This apoptotic effect was already
reported on urinary bladder [7, 36, 37] and ovarian cancer
cells [38] after exposure to cisplatin. Apoptosis induced by
sunitinib malate was previously reported on 5637 [23] and
T24 [39], on serous papillary epithelial ovarian cells [38], and
on nasopharyngeal cancer cell lines [40].

Concerning the simultaneous treatment of both drugs, to
our best knowledge, there are no data available on muscle-
invasive urinary bladder-cancer cell lines (HT1376 and T24).
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Table 3: Sub-G
0
/G
1
-fraction of HT1376, T24, and 5637 urinary bladder-cancer cell lines, after treatment with cisplatin and sunitinib malate,

in isolation or combined. Sub-G
0
/G
1
values are mean ± SD of the three independent experiments.

Sub-G
0
/G
1
-fraction

HT1376 T24 5637
Control 13.1 ± 4.8 13.5 ± 4 8.6 ± 4.1

Cisplatin (3𝜇M) 13.7 ± 1.1 22.6 ± 3.3 26.4 ± 2.1

Sunitinib malate (1 𝜇M) 35.9 ± 7.4 12.9 ± 1.2 46.4 ± 5.2

Sunitinib malate (2𝜇M) 36.5 ± 3.2 13.6 ± 2.4 44.2 ± 1.8

Sunitinib malate (4 𝜇M) 44.2 ± 5.4 18.2 ± 3.4 35.3 ± 3.6

Cisplatin (3𝜇M) + sunitinib malate (1 𝜇M) 24.5 ± 0.8 22.8 ± 6 33.4 ± 4.4

Cisplatin (3𝜇M) + sunitinib malate (2 𝜇M) 47.4 ± 6.6 28.8 ± 5.2 34.5 ± 3.6

Cisplatin (3𝜇M) + sunitinib malate (4𝜇M) 49.3 ± 2.9 31.2 ± 5.7 34 ± 2.2

SD: standard deviation.

Sonpavde and collaborators (2009) [23] have already tested
this approach on the 5637 nonmuscle invasive urinary
bladder-cancer cell line, with encouraging results. We also
used this cell line in our study and furthermore we tested
on to muscle-invasive cell lines and analyze the synergistic
effect based on Chou and Talalay method [12]. A synergistic
interaction (CI < 1) with a combined schedule of cisplatin
and sunitinibmalate was obtained in the three cell lines,more
pronounced in the 5637 cell line, with lower cell viability
when compared with each drug in isolation, as demonstrated
by MTT assay. This synergistic effect can be explained by
the similar effects of both drugs, as verified by the cell cycle
arrest in the G

0
/G
1
and early S-phase, after treatments. Fur-

thermore, the sub-G
0
/G
1
-fraction of the three cell lines

showed a higher apoptotic index, which is consistent with a
concomitant increase of autophagy observed by the acridine
orange and the MDC staining. This conjugation of cisplatin
and sunitinib malate was described in gastric cells, with also
beneficial effect [41].

The different response obtained on the three cell lines,
being the nonmuscle invasive urinary bladder-cancer cell line
themost sensitive, may be explained by the different origin of
the cell lines. Nevertheless, the two muscle-invasive urinary
bladder-cancer cell lines presented a similar and improved
pattern response, when comparedwith each drug in isolation.

In conclusion, and although this is a preliminary study,
this is the first report that provides valid results concerning
the combination of cisplatin and sunitinibmalate, onmuscle-
invasive urinary bladder-cancer cell lines. This synergistic
interaction leads to a reduced cell viability, increased auto-
phagy, and apoptosis. Future molecular in vitro and in vivo
studies are required to confirm these results.The present data
opens a new possible approach in the treatment of muscle-
invasive urinary bladder cancer.
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