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Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-
stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for
obesity-associated kidney disease is available. In the present study, we explored the therapeutic potential of a magnolia extract
(BL153) for treating obesity-associated kidney damage in a high fat diet- (HFD-) induced mouse model. The results showed
that inflammation markers (tumor necrosis factor-𝛼 and plasminogen activator inhibitor-1) and oxidative stress markers (3-
nitrotyrosine and 4-hydroxy-2-nonenal) were all significantly increased in the kidney of HFD-fed mice compared to mice fed
with a low fat diet (LFD). Additionally, proteinuria and renal structure changes in HFD-fed mice were much more severe than that
in LFD-fed mice. However, all these alterations were attenuated by BL153 treatment, accompanied by upregulation of peroxisome
proliferator-activated receptor-𝛾 coactivator-1𝛼 (PGC-1𝛼) and hexokinase II (HK II) expression in the kidney. The present study
indicates that BL153 administration may be a novel approach for renoprotection in obese individuals by antiinflammation and
anti-oxidative stress most likely via upregulation of PGC-1𝛼 and HK II signal in the kidney.

1. Introduction

The International Obesity Task Force has determined that the
global numbers of adults and school-aged children consid-
ered obese in 2010 were 600 million and 50 million, respec-
tively. As the worldwide prevalence of obesity is increasing,
more attention has been given to obesity-related complica-
tions, including kidney disease. The causative relationship
between obesity and proteinuria was first reported in 1974 [1].
After that, accumulating evidence supported that obesity is
an independent risk factor for renal structural and functional
changes, leading to end-stage renal disease which brings the
society a heavy economic burden [2, 3]. However, no effective
medicine treating this disease is available.

Insulin resistance and compensatory hyperinsulinemia
are hallmarks of obesity. Several distinct pathways through
which insulin resistance and hyperinsulinemia lead to renal
damage have been reported by overwhelming background
studies, such as insulin-like growth factor 1 upregulation [4]
and renin-angiotensin system activation [5]. However, the
mechanism underlying the generation of insulin resistance
in obesity has not been fully understood. Recently, inflam-
mation and oxidative stress have emerged to be involved
in provoking insulin resistance in obesity-associated kidney
damage [6, 7].Therefore, alleviating inflammation and oxida-
tive stress seems to be a potential therapeutic method for this
disease.

http://dx.doi.org/10.1155/2013/367040
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Phytotherapy has been used for human disease as an
alternative or complement to allopathic medicines for sev-
eral centuries [8, 9]. One of the representative medicinal
plants is the Magnolia genus, which is mainly distributed in
East and Southeast Asia. Up till now, more than 250 kinds
of ingredients have been isolated from the cones, bark, and
leaves of the Magnolia genus, such as magnolol, honokiol,
4-O-methylhonokiol, and obovatol [10]. The medicinal use
of this species is attributed to its different pharmacolog-
ical effects, including anti-inflammation [11, 12] and anti-
oxidative stress [13, 14]. In an early study, Munroe et al.
found that honokiol administration obviously reduced air-
way hyperresponsiveness in ovalbumin-induced allergic
asthma mice, accompanied by proinflammatory cytokines
significantly reduction [15]. Subsequent observation sug-
gested that Magnolia grandiflora L. flower extract exerted
antioxidant capacities by depleting cellular reactive oxygen
species in a dose-dependent pattern [16].More recently, using
a high fat diet- (HFD-) fed mouse model, Kim et al. found
that long-term supplementation of honokiol and magnolol
attenuated body fat accumulation, insulin resistance, and
adipose inflammation [17]. However, it was unclear whether
a renal protective effect would be seen in magnolia extract-
treated obese mice.

Therefore, the current study was undertaken to study the
effects ofmagnolia extract (BL153) on renal injury in anHFD-
induced obesity mouse model. In addition, to further explore
the possible mechanism, some candidate molecules involved
in the renal inflammation, oxidative stress, and metabolism
regulation were also detected.

2. Results

2.1. BL153 Decreases Obesity-Induced Renal Dysfunction and
Structure Changes. To evaluate renal function, urinary albu-
min and urinary creatinine were detected, and based on
which, urinary albumin-to-creatinine ratio (ACR) was cal-
culated. Although remarkably elevated in HFD-fed mice at
the end of experiment, ACR was significantly reduced after
administration with BL153 at the dose of 5mg/kg or 10mg/kg
for six months (Figure 1).

Kidney weight to tibia length ratio (Figure 2(a)) and kid-
ney hematoxylin and eosin (H&E) staining were undertaken
to evaluate the protective effects of BL153 on obesity-induced
kidney structure changes. As shown in Figure 2, kidney
weight to tibia length ratio was increased in HFD-fed mice
compared with low fat diet- (LFD-) fed mice. Additionally,
kidney histopathological alterations in HFD-fed mice were
mild at the end of experiment, such as glomerular enlarge-
ment and renal tubular epithelium damage. However, all
these structure alterations were alleviated after six months of
BL153 treatment at a dose of 5mg/kg or 10mg/kg (Figure 2).

2.2. BL153 Attenuates Obesity-Induced Renal Inflammation
and Oxidative Stress. Inflammation and oxidative stress play
an important role in obesity-induced renal damage; hence,
we performed western blot assay for the renal expres-
sion of inflammatory cytokines, tumor necrosis factor-alpha

(TNF-𝛼, Figure 3(a)), and plasminogen activator inhibitor-1
(PAI-1, Figure 3(b)), which were also well accepted as adipo-
cytokines or adipokines [18]. Both of them were significantly
increased in HFD mice compared with LFD mice; how-
ever, this trend was partially abolished by BL153 treatment
(Figure 3).

In addition, we also investigated the protective effects of
BL153 on obesity-induced oxidative stress by examining 3-
nitrotyrosine (3-NT, Figure 4(a)) as an index of nitrosative
damage and 4-hydroxy-2-nonenal (4-HNE, Figure 4(b)) as
an index of oxidative damage in the next study. Simi-
larly, increased kidney 3-NT and 4-HNE expression caused
by HFD feeding were all prevented by BL153 treatment
(Figure 4).

2.3. Protective Effects of BL153 on Obesity-Induced Renal
Damage Is Associated with the Upregulation of Renal Perox-
isome Proliferator-Activated Receptor-𝛾 Coactivator-1𝛼 (PGC-
1𝛼), NAD(P)H Quinone Oxidoreductase 1 (NQO1), and Hex-
okinase II (HK II) Expression. The next study was to explore
the possible mechanism by which BL153 attenuates kidney
inflammation and oxidative stress in obesity. As shown in
Figure 5, kidney PGC-1𝛼 was slightly increased in HFDmice
compared with LFD mice, and it was further increased after
six-month BL153 treatment at indicated doses (Figure 5(a)).
Additionally, kidney NQO1 was significantly decreased in
HFD mice compared with LFD mice; however, it was
increased by BL153 administration (Figure 5(b)).

Another candidate molecule is HK II. As shown in
Figure 6, HK II protein expressionwas decreased in kidney of
HFD group mice compared with LFD group mice; however,
it was almost back to normal level by BL153 administration at
indicated doses (Figure 6).

3. Discussion

In current study, we provide the first evidence that magnolia
extract, BL153, attenuates obesity-associated renal structural
and functional changes in an HFD-induced obesity mouse
model. Importantly, BL153 treatment attenuated obesity
caused renal inflammation and oxidative stress, which was
likely due to the ability of BL153 to increase PGC-1𝛼 and HK
II expression in kidney.

Obesity is considered as a state of chronic low-grade
systemic inflammation and oxidative stress, which interact
with each other and cause a vicious circle, promoting the
development of insulin resistance [19, 20]. This concept has
been proven by numerous studies. For instance, using human
visceral adipose cells, Vazquez-Carballo et al. found that
TNF-𝛼 treatment leads to insulin resistance upon glucose
uptake, glucose transporter 4 translocation, and insulin sig-
naling [21]. Experimental data and human studies indicated
that 4-HNE, a major oxidation product of membrane lipids,
impaired insulin signaling and disrupted the insulin biolog-
ical activity in skeletal muscle [22]. Consistent with these
reports, our present study found that inflammatory markers,
like TNF-𝛼 and PAI-1, and oxidative stressmarkers, like 3-NT
and 4-HNE, were elevated in HFD-fed mice, accompanied
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Figure 1: BL153 prevented obesity-induced renal functional changes. Male C57/BL6/J mice at 8 weeks of age were fed either a LFD (10% kcal
as fat) or a HFD (60%kcal as fat) with or without indicated dose of BL153 (2.5mg/kg, 5mg/kg or 10mg/kg) for 6 months. Urine samples were
collected and then all mice were sacrificed for study. Urinary albumin and creatinine levels were examined to reflect renal function. 𝑛 = 5;
∗

𝑃 < 0.05 versus LFD group; #
𝑃 < 0.05 versus HFD group.

by insulin resistance as we reported recently (Sun et al.,
unpublished paper).

Our data demonstrated for the first time that these alter-
ations could be reversed by BL153 administration. Several
previous studies about magnolia extract obtained similar
conclusions. Purified from the Magnolia officinalis, mag-
nolol was found to exert an anti-inflammatory property
via repressing lipopolysaccharide-induced Toll-like receptor
4 expression, subsequent nuclear factor kappa-B (NF-𝜅B),
and MAPK signaling pathway in uterine epithelial cells
[23]. Furthermore, in vivo study indicated that honokiol,
another compound isolated from the magnolia herb, modu-
lated inflammation-associated cytokines, such as interleukin-
1𝛽, interleukin-6, TNF-𝛼, and monocyte chemoattractant
protein-1, through activation of NF-𝜅B [24]. Besides anti-
inflammation properties, Magnolia extract has also been
found to take part in ameliorating oxidative stress through
different pathways. For example, 4-O-methylhonokiol, a
novel compound isolated fromMagnolia officinalis, prevents

the development and progression of Alzheimer’s disease by
improving oxidative stress through a p38 MAPK-dependent
pathway [25]. The beneficial effects of magnolol on learning
and memory abilities were reported to be associated with
superoxide dismutase (SOD) restoration in a scopolamine-
induced mouse model [26]. However, how does magnolia
extractmodulate kidney inflammation and oxidative stress in
obesity status is still unclear.

In our present study, a novel finding was that PGC-1𝛼
was increased by more than 10-folds after BL153 treatment.
As a well-known insulin resistance regulator, PGC-1𝛼 also
has been reported to exert anti-inflammation effects by
multiple mechanisms [27–29]. For instance, overexpression
of PGC-1𝛼 in cultured vascular smooth muscle cells leads to
decreased reactive oxygen species generation by the increased
expression of SOD2 in the mitochondria. The knockdown of
PGC-1𝛼 by specific small interfering RNA greatly reduced
mitochondrial antioxidative protein expression [29]. In this
study, we demonstrated that NQO1, but not SOD2 (data not
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Figure 2: BL153 prevented obesity-induced renal structural changes. Kidney weight was normalized by tibia length (a). Renal pathology
was examined by using hematoxylin and eosin staining (b), and the arrows indicated glomerular enlargement and renal tubular epithelium
damage. Qualitative analysis for glomerular enlargement was indicated by mean glomerular area (c). 𝑛 = 5; ∗𝑃 < 0.05 versus LFD group;
#
𝑃 < 0.05 versus HFD group.

shown), was significantly increased by BL153 administration
(Figure 5(b)). Taken together, it is possible that magnolia
extract (BL153) attenuates kidney inflammation and oxidative
stress via increasing PGC-1𝛼-mediated various antioxidative
protein expressions under different conditions. Moreover,
our results showed that PGC-1𝛼 was slightly elevated in the
kidney of HFD-fed mice. Similar elevation was also found
in the pancreas islets of type 2 diabetic rats [30], while
other observation declared a reduction of PGC-1𝛼 in the
adipose tissue of insulin-resistant and obesity individuals
[31]. We assumed that the increasing PGC-1𝛼 found in HFD-
fedmouse kidney was due to a positive feedback from insulin
resistance to overcome the impairment of local homeostasis,
as illustrated in Figure 7.

Another important observation in this study was that
kidney HK II expression was lower in HFD group mice than
that in LFD groupmice.This finding was supported by a pre-
vious human study in obesity and type 2 diabetes individuals

[32]. However, after treatment with BL153, HK II expression
was upregulated in HFD-fed mouse kidney, accompanied by
renal oxidative stress alleviation. Once worked as a pivotal
mediator in glycolysis by catalyzing the phosphorylation
of glucose to generate glucose 6-phosphate [32], HK II
has emerged to play a role in oxidative stress recently
[33, 34]. Based on these, we hypothesized that increasing
HK II expression might be another mechanism underlying
renoprotection by BL153 in obesity-induced kidney injury.
On the other hand, overexpression of HK II is involved in
cancer cell proliferation andmigration [35]. Our data showed
that BL153 administration did not affect HK II expression
level in LFD group mice; moreover, BL153 administration in
HFD groupmice only increased HK II expression back to the
normal level, even at a high dose (10mg/kg), indicating the
safety of BL153, as illustrated in Figure 7.

There is one limitation in our study. To make sure the
crucial role of PGC-1𝛼 and HK II in BL153-associated kidney
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Figure 3: BL153 ameliorated obesity-induced renal inflammation. Western blot assay were performed for measuring the expression of
inflammatory cytokines and TNF-𝛼 (a) and PAI-1 (b). 𝑛 = 5; ∗𝑃 < 0.05 versus LFD group; #

𝑃 < 0.05 versus HFD group.
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Figure 4: BL153 ameliorated obesity-induced renal oxidative stress. Western blot assay were performed for measuring the oxidative damage
including the accumulation of 3-NT (a) and 4-HNE (b). 𝑛 = 5; ∗𝑃 < 0.05 versus LFD group; #

𝑃 < 0.05 versus HFD group.

prevention during obesity, PGC-1𝛼 and HK II knockout
animals should be used. We hope that further research will
confirm our hypothesis.

The findings in the present study were relevant but
distinct from our previous studies [36, 37], in which both
inflammation and oxidative stress have been found to be

significantly increased in kidney in type 1 diabetic mouse.
In addition, ameliorating inflammation and oxidative stress
by using MG132 or sulforaphane showed beneficial effects in
diabetic nephropathy [36, 37]. MG132 is a peptide aldehyde
proteasome inhibitor and exerts its therapeutic effects by
reducing the degradation of ubiquitin-conjugated proteins
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Figure 5: BL153 upregulated renal PGC-1𝛼 and NQO1 expression. PGC-1𝛼 and NQO1 expression was detected by western blot assay. 𝑛 = 5;
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Figure 7: A proposedmechanism bywhich BL153 attenuates kidney
damage during obesity is illustrated.

such as nuclear-factor-E2-related-factor-2 (Nrf2), an impor-
tant transcription factor regulating cellular defenses against
reactive oxygen species, through inhibiting activity of the
𝛽 subunits of the core particle of 26S proteasome [38].
Sulforaphane, isolated from cabbage and broccoli, is another
Nrf2 activator and regulates Nrf2 by disassociating Nrf2
from its inhibitor Kelch-like ECH-associated protein 1 and
subsequently facilitatingNrf2 into the nucleus [39]. However,
Zhang et al. found that increasing Nrf2 activity did not
prevent diet-induced obesity and had limited effects on lipid
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metabolism [40].Moreover, the concept of more-harm-than-
benefit effect of Nrf2 on obesity has emerged. Xu et al.
demonstrated that enhanced Nrf2 activity even impaired
insulin signaling, prolonged hyperglycemia in response to
glucose challenge, and induced insulin resistance in leptin-
deficient obesity [41]. Therefore, compounds such as BL153,
with therapeutic efficacy and distinct mechanisms from
MG132 and sulforaphane, have great potential for treatment
of obesity-associated nephropathy.

In summary, our results first demonstrate a therapeutic
potential of BL153 in treating obesity-induced kidney disease.
BL153 administration in an obese state attenuates kidney
inflammation and oxidative stress, leading to improved renal
pathological and functional alterations. Furthermore, our
data suggested that the possible mechanism through which
BL153 ameliorates renal inflammation and oxidative stress is
PGC-1𝛼 and HK II upregulation in kidney. Taken together,
the present study declares that BL153 administration may be
a novel approach for renoprotection in obesity individuals.

4. Material and Methods

4.1. Magnolia Extract (BL153). The bark of Magnolia offici-
nalis were purchased from Kyungdong market, Seoul, Korea
and was taxonomically identified by Dr. Ban Yeon Hwang at
the Research Institute of Drug Resource, Chungbuk National
University (Cheongju, Korea). A voucher specimen was
deposited at the Herbarium of Chungbuk National Univer-
sity, Chungbuk, Korea. The bark of M. officinalis was dried
in the shade at room temperature and stored in a dark, cold
room until use. The air-dried bark ofM. officinalis (3 kg) was
cut into pieces and extracted twice with 95% (v/v) ethanol
(4 times as much as the weight of the dried plants) for 3
days at room temperature. After filtration through the 400-
mesh filter cloth, the filtrate was filtered again through filter
paper (Whatman, no. 5) and concentrated under reduced
pressure to obtain viscous dark-brown residue (360 g, BL153).
The ethanol extract ofM. officinalis (BL153) was analyzed by
HPLC to ensure mainly that it is containing 14.8% of 4-O-
methylhonokiol, 14.2% of honokiol, and 12.0% of magnolol,
whichwere in agreement with previously published data [42].

4.2. Experimental Animals and Protocols. All experiments
involvingmice conformed to theNational Institutes ofHealth
Guide for the Care and Use of Laboratory Animals and were
approved by the University of Louisville Institutional Animal
Care and Use Committee.

Male C57/BL6/J mice at 8 weeks of age were purchased
from the Jackson Laboratory and housed in the University
of Louisville Research Resources Center at 22∘C with a 12-
hour light/dark cycle.Thirtymicewere randomly divided into
six groups (𝑛 = 5) and fed either an LFD (10% kcal as fat;
D12450B, Research Diets Inc. NJ) or an HFD (60%kcal as
fat; D12492B, Research Diets Inc. NJ) with or without BL153
for six months. (1) LFD + 5mg/kg group: mice were fed an
LFD and supplemented with BL153 at the dose of 5mg/kg; (2)
LFD group: mice were fed an LFD and supplemented with
0.5% ethanol; (3) HFD group: mice were fed an HFD and

supplementedwith 0.5% ethanol; (4)HFD+2.5mg/kg group:
mice were fed an HFD and supplemented with BL153 at the
dose of 2.5mg/kg; (5) HFD + 5mg/kg group: mice were fed
anHFD and supplemented with BL153 at the dose of 5mg/kg;
and (6) HFD + 10mg/kg group: mice were fed an HFD and
supplemented with BL153 at the dose of 10mg/kg. Selection
of 5mg/kg and 10mg/kg for the present study was based on a
previous study [42], where treatment with BL153 at these two
dose levels for a week showed a significantly protective effect.
Since here the treatment is longer than that, we also included
one low dose of BL153 at 2.5mg/kg.

For preparing BL153 gavage solution, different doses of
BL153 were dissolved into 100% ethanol first and then diluted
with ddH

2
O into final concentration of BL153 at 1.0mg/mL

(high dose group), 0.5mg/mL (middle dose group), and
0.25mg/mL (low dose group) with final concentration of
ethanol at 0.05%, respectively. Therefore, the gavage volume
was 1% (mL/g) ofmouse bodyweight (e.g., 25 gmouse should
be given 250 𝜇L). Control groups were given same volume of
ddH
2
O with 0.05% ethanol. During the six-month feeding,

body weight was measured every month, and the gavage
volume was justified based on the body weight change. At
the end of experiment, after urine samples were collected, all
mice were sacrificed for further analysis.

4.3. Urinary Albumin Assay. Urine samples were collected
at the end of experiment. Urine albumin (Bethyl Labora-
tories, Montgomery, TX) and urinary creatinine (BioAssay
Systems, Hayward, CA) were measured according to the
manufacturers’ instructions. ACR was calculated as ACR =
urine albumin/urine creatinine (𝜇g/mg), as we previously
described [36].

4.4. Kidney Histopathological Examination. Kidney tissue
was fixed overnight in 10% phosphate-buffered formalin
and then dehydrated in a graded alcohol series, cleared
with xylene, embedded in paraffin, and sectioned at 5 𝜇m
thickness for pathological staining. To examine overall mor-
phology, paraffin sections were dewaxed for H&E staining.
Mean glomerular area was also measured to evaluate the
glomerular enlargement.

4.5. Western Blot Assay. Kidney tissues were homogenized
in RIPA buffer and total protein was extracted. Western blot
assay was performed as previously reported [37]. Briefly,
protein was separated on 10% SDS-PAGE gels and transferred
to nitrocellulose membranes (Bio-Rad, Hercules, CA). The
latter were blocked with 5% milk, followed by incubation
with the following antibodies: TNF-𝛼, PGC-1𝛼 (Abcam,
Cambridge, MA), PAI-1 (BD Bioscience, San Jose, CA), 3-
NT (Millipore, Billerica, MA), 4-HNE (Alpha Diagnostic
International, San Antonio, TX), HK II, 𝛽-actin, and NQO1
(SantaCruz Biotechnology, Santa Cruz, CA). After those
membranes were washed with Tris-buffered saline (pH 7.2)
containing 0.05% Tween 20 and incubated with the appropri-
ate secondary antibodies. Protein bandswere visualized using
enhanced chemiluminescence (Thermo scientific, Rockford,
IL).
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4.6. Statistical Analysis. Data were collected from five ani-
mals for each group and presented as means ± SD. We
used Image Quant 5.2 to analyze western blotting. Compar-
isons between groups were performed by one-way ANOVA,
followed by Tukey’s post hoc test. Statistical analysis was
performed with Origin 7.5 Laboratory data analysis and
graphing software. Statistical significance was considered as
𝑃 < 0.05.
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