
X!!Tandem, an Improved Method for Running X!Tandem in
Parallel on Collections of Commodity Computers

Robert D. Bjornson*,†,‡, Nicholas J. Carriero†,‡, Christopher Colangelo†, Mark Shifman§,∥,
Kei-Hoi Cheung‡,§,∥,⊥, Perry L. Miller§,∥,#, and Kenneth Williams†,¥

Yale University, Department of Computer Science, P.O. Box 208285, New Haven, Connecticut
06520-8285

Abstract
The widespread use of mass spectrometry for protein identification has created a demand for
computationally efficient methods of matching mass spectrometry data to protein databases. A
search using X!Tandem, a popular and representative program, can require hours or days to
complete, particularly when missed cleavages and post-translational modifications are considered.
Existing techniques for accelerating X!Tandem by employing parallelism are unsatisfactory for a
variety of reasons. The paper describes a parallelization of X!Tandem, called X!!Tandem, that
shows excellent speedups on commodity hardware and produces the same results as the original
program. Furthermore, the parallelization technique used is unusual and potentially useful for
parallelizing other complex programs.

Keywords
proteomics; protein identification; parallel database search; X!Tandem; tandem mass
spectrometry; parallel X!Tandem; MPI

Introduction
Tandem mass spectrometry is commonly used to identify proteins in a sample, a process that
requires search algorithms to compare observed spectra against protein databases and
identify potential matches. A number of programs exist for performing this search, including
commercial programs such as Sequest1 and Mascot;2 among the most popular is an open-
source program, X!Tandem.3,4

X!Tandem's major innovation is to conduct the search in two phases. In the first phase, a
rapid survey identifies candidate proteins that are approximate matches to the input spectra.
In this phase, perfect cleavage is assumed, and no post-translational modifications are
allowed. In the second phase, a new search is conducted against only the candidates
identified in the first phase, this time permitting refinements such as missed cleavages and
post-translational modifications, which greatly increase the complexity of the search.

© 2008 American Chemical Society

*To whom correspondence should be addressed. robert.bjornson@yale.edu.
†Keck Biotechnology Resource Laboratory.
‡Department of Computer Science.
§Center for Medical Informatics.
∥Department of Anesthesiology.
⊥Department of Genetics.
#Department of Molecular, Cellular and Developmental Biology.
¥Department of Molecular Biophysics and Biochemistry.

NIH Public Access
Author Manuscript
J Proteome Res. Author manuscript; available in PMC 2013 December 15.

Published in final edited form as:
J Proteome Res. 2008 January ; 7(1): . doi:10.1021/pr0701198.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Performing this refined search against the smaller population of candidates from the first
phase significantly reduces search time.

Unfortunately, even using this strategy, X!Tandem search times are a bottleneck in the
overall protein identification workflow, motivating the development of parallel versions of
X!Tandem. X!Tandem is capable of executing in parallel threads on shared memory
multiprocessors (SMPs). Compute servers with 2 or 4 processors connected to shared
memory are becoming quite common and relatively inexpensive, but achieving speedups
greater than 5- or 10-fold requires the use of large SMPs such as the SGI Altix. Because
such machines are expensive and uncommon, a distributed memory parallelization that
could run on a cluster or network of commodity CPUs would be of great utility to many
users. This is particularly true given rapidly growing processing loads due to improved mass
spectrometry throughput, more complex samples, and interest in post-translational
modifications, which increase the search space exponentially.

Duncan et al.5 of Vanderbilt University previously created a parallel, distributed memory
(rather than shared memory, as above) version of X!Tandem that ran using either PVM6 or
MPI7,8 (open-source message-passing libraries). Rather than modify the X!Tandem
program, they chose a strategy in which they used multiple instances of unmodified X!
Tandem, combined with a number of utility programs, to perform the work in parallel.
Summarizing, their method:

1. Subdivided the spectra file into k fragments using a utility program.

2. Ran each spectra fragment through X!Tandem as a first pass without refinement or
post-translational modifications (PTMs). Each of these independent runs could be
done in parallel.

3. Scanned the resulting k output files with another utility program to determine
which proteins were hit.

4. Created a new, smaller database from those proteins, again with a utility.

5. Reran each spectra fragment through X!Tandem (again, in parallel) as a second
pass, this time with refinement and PTMs.

6. Combined the output files into a single output file with another utility.

7. Reran sequential or multithreaded X!Tandem against this output file to compute the
correct expectation scores.

This multistep process could be performed manually, or automatically via a provided driver
program.

Although their method does result in performance improvement, it has several drawbacks:

• It is complicated. Users must create extra parameter files not required by X!
Tandem.

• It is prone to error and difficult to debug when errors occur. Often, errors are not
caught and reported immediately but cause subsequent steps to fail in mysterious
ways.

• The method is sensitive to changes to the format of X!Tandem input or output files.

• Results differ significantly from X!Tandem.

• Parallelism is limited by the final sequential step, which is necessary to compute
proper expectation scores.

Bjornson et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Given the drawbacks of the existing parallel methods, we decided to directly parallelize X!
Tandem for distributed memory machines. Although this required modifying the source
code, it offered several advantages over the previous method:

• Ease of use: the program can be run in almost exactly the same way as the
sequential program.

• Lower complexity: the program consists of a single executable and does not require
a number of auxiliary programs.

• Better parallelism: both the unrefined and refinement steps of X!Tandem would be
parallelized, eliminating the limit on parallelism imposed by the final sequential
step in the Duncan method.

• Identical results: ideally, the output should be identical to that for X!Tandem,
greatly simplifying the task of verification.

We call our parallel version X!!Tandem, denoting it a direct parallelization of X!Tandem.
As described below, the source code changes are extremely modest.

Materials and Methods
A 130 node Dell cluster at the Yale Center for High Performance Computation in Biology
and Biomedicine9 was used for all computation. Each node consisted of (2) 3.2 GHz Xeon
EM64T processors and 8 GB of RAM. The head node consisted of (4) 3.2 GHz Xeon
EM64T processors with 8 GB of RAM. The nodes were interconnected via switched gigabit
Ethernet.

The software for the performance testing described in this paper included MPICH version
1.2.6, X!Tandem version 06-09-15-3, Boost version 1.33.1, Gcc version 3.2.3, and RedHat
Enterprise Linux AS release 3.

The mass spectral data used in our testing were generated by proteolytically digesting two
samples of mouse brain and labeling each with Applied Biosystems iTRAQ reagent. The
resulting samples were combined and separated by high-pressure microcapillary liquid
chromatography (LC) on a cation-exchange column. Twenty fractions from the cation-
exchange column were analyzed via reversed phase LC—MS/MS on an Applied Biosystems
QSTAR XL mass spectrometer. Each of the QSTAR XL mass spectrometer spectra files
(*.wiff format) was processed with MASCOT Distiller version 2.1, and the resulting peak
lists were exported as individual spectra in *.dta format. In total, we had 29 268 individual
spectra that totaled 92 298 597 bytes in length. The X!Tandem search parameters included
static modifications for Carbamidomethyl (Cys) and iTRAQ reagent (N-terminal, Lys) and
variable modifications of phosphorylation (Ser, Thr, Tyr). The database searched was IPI
mouse, version 3.23 from Nov 2, 2006. It contained 51 536 sequences, totaling 24 497 860
amino acids, and was obtained as a fasta file from EBI.10,11

The Duncan parallel X!Tandem version and X!!Tandem parallel version were run on
varying numbers of compute nodes of the cluster. The multithreaded version of X!Tandem
was run on the head node of the cluster, since it was the largest shared-memory processor
we had available to us.

Initial experiments with both the multithreaded version of X!Tandem and the Duncan
parallel X!Tandem indicated a problem with load balancing on our input set. During both
the unrefined and refined search steps, the first thread or process would finish in roughly
half the time of the longest. This problem was caused by the method used to subdivide the
spectra file. Both methods perform the split by breaking it into equal numbers of spectra; the

Bjornson et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



first process taking the first chunk of spectra, the second the next chunk, etc. This technique
does not take into consideration the difference in computational complexity among spectra
or their distribution in the input file, and thus can easily lead to load balance problems.

Although a full solution to this problem would require estimating compute times for each
spectrum a priori, we were able to address this problem satisfactorily by randomly shuffling
the spectra file using a Python script. Using this randomized file, both methods showed
much-improved load balancing. All results reported in this paper used the same randomized
input file. Performing the random shuffle required only 3 s for our input file.

Contribution
We created an efficient parallelized version of X!Tandem called X!!Tandem that
demonstrates excellent speedup. In addition, it is substantially the same as the original code,
is run in the same manner, and produces identical output. The improved performance of X!!
Tandem should be of benefit to researchers analyzing mass spectrometry data. The source
code for X!!Tandem has been made freely available via the same open-source license as the
original X!Tandem.12 In addition, Dr. Ronald Beavis has indicated willingness to host the
source at the X!Tandem Web site once final integration and testing with the newest release
of X!Tandem is completed.13

For code developers, the techniques used to parallelize X!Tandem are applicable for
accelerating other complex codes that are not otherwise easily parallelized.

Results and Discussion
One major difficulty with directly parallelizing X!Tandem lies in the complexity of the data
structures that are created internally. X!Tandem is written in C++, and during the run it
creates a complex, highly interlinked graph of C++ objects that represent spectra, protein
sequences, scores, etc. These data structures could be shared easily in the multithreaded
version of X!Tandem, but a distributed version normally requires splitting the data structure
among the separate processes, a daunting prospect.

To resolve this problem, we turned to a technique that we have often found useful when
attempting to parallelize codes with complex data structures.14,15 We call this technique
Owner Computes. The basic approach is as follows: We create k instances of the code. Each
copy behaves much like the standalone, sequential version, in that it does a complete
initialization, creating the entire set of data structures rather than just a fraction of them.

However, when each copy reaches the main computational section of the code (for example
the main computational loop), each copy only performs some of the iterations, keeping track
of which iterations it actually performed, and skipping the rest. Each iteration is performed
by only one copy. Which subset of iterations a particular copy performs can be determined
in a number of ways and can be static or dynamic. At the end of the main computational
section, each copy has some data that is up-to-date (the parts that it computed) but others
that require updating (the parts that other processors computed). To correct for this, a merge
phase is performed that updates each copy's data structures to contain all the results. The
benefits of the Owner Computes method are that (i) we need to understand only a few data
structures well enough to move them around, and (ii) very few changes are needed to the
original source code.

In the case of X!Tandem, we had an additional advantage, in that the code already contained
a threaded parallelization. This parallelization operated by allowing multiple threads to
crawl over the data structures in parallel, computing results for disjoint sets of spectra. Once

Bjornson et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that was completed, a single thread performed a merge step that combined the results
appropriately. This pre-existing merge step contained most of the logic we would need for
our Owner Computes merge step.

X!!Tandem performs the following steps: We create k copies of the code, each of which is
already structured as a k-threaded program. As described above, each copy behaves much as
a standalone k-threaded program. However, at the point where it would normally create k
threads, instead each ith copy creates only a single thread that does exactly what the ith
thread would normally have done. In aggregate, we have k threads, each running inside their
own process and CPU. When each thread finishes, we gather up the results it computed and
send them to the master (which is just the copy running the first thread), where each set of
results are unpacked and placed exactly where they normally would be created by the ith
thread.

At this point, the data on the master are exactly what they would have been in a normal, k-
threaded version, so the normal merge code can be invoked, combining the results. Next the
combined results are gathered up and sent back to the other program copies, where they are
unpacked and laid out in their proper location. At this point, all k copies have the same data
structures and are ready to continue forward. Since X!Tandem has two computationally
intensive sections (the unrefined and refined search steps), the process described above
occurs twice, with a merge step at the end of each (see Figure 1).

Using the Owner Computes approach, fewer than 30 lines of code were added or changed in
the main X!Tandem source file, tandem.cpp. The changes did not alter the overall logic of
the program. A few other files required the addition of simple, boilerplate code necessary for
moving a few key data structures during the merge step (data serialization). Two additional
C++ modules were added; one manages the details of the Owner Computes method, and the
other manages data serialization. The most difficult part of the parallelization involved this
serialization: the packing, sending, and unpacking of the updated C++ data structures. We
used the Boost Serialization package,16 an open-source library, to manage the packing and
unpacking. MPI was used to send the packaged data between processors and for
coordination.

It is obviously important that the parallel versions of X!Tandem compute correct results.
This seemingly simple requirement is, in fact, somewhat complicated with X!Tandem. The
SMP version of the program produces textually different results depending on the number of
threads used, and simple textual comparison of the results (e.g., using the “diff” file
comparison program) proved to be quite difficult. We found that holding the number of
threads constant made it possible to compare the output from X!!Tandem and X!Tandem.
For example, if we compared X!!Tandem on 4 processors to X!Tandem with 4 threads, the
results were identical, with one exception. The exception concerned one field of the output:
“nextscore”, which is supposed to represent the second best score for a particular peptide.
Very infrequently, this value differed between X!!Tandem and X!Tandem. This turned out
to be due to the use of exact floating point equality comparisons in the original X!Tandem
code, a practice that is known to make code sensitive to seemingly innocuous reordering of
computations, such as changing the order in which numbers are summed. We consider this
discrepancy to be minor; the nextscore field is relatively unimportant, and future releases of
X!Tandem will correct this nondeterministic behavior.13 Producing identical results in the
parallel version greatly simplifies the task of verifying the results; we consider this to be
extremely important for creating confidence in the parallel version.

The output from the Duncan parallel X!Tandem method is not the same as that from X!
Tandem or X!!Tandem. The results differed substantially, including scores, expectation

Bjornson et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



values, and even which proteins were found in the case of marginal matches. According to
the developer, the goal in that project was to find strong matches as quickly as possible,
rather than reproducing the X!Tandem output exactly.17

Table 1. compares a small subset of the peptides found by the Duncan method to those
found by X!Tandem and X!!Tandem. Since the X!Tandem and X!!Tandem output was
identical, it is only presented once in the table. The peptides found agree well, although
some differences exist in the expectation values.

Table 2. compares the top 20 protein hits found by the Duncan method versus X!Tandem/
X!!Tandem. The table lists the union of the two sets, ordered by rank for X!Tandem. Here
the differences are more pronounced. Although the Duncan method found most of the top 20
found by X!Tandem/X!!Tandem, the scores and ranking differ significantly. We attribute
the lack of agreement between the two outputs to the complexity of the input spectra and
database; in particular, the database contains numerous cases of analogous proteins that
would score identically, and which might be ranked arbitrarily by the two methods. In
addition, for this data set, the expectation values found are not particularly high, indicating a
weaker signal that is likely to result in less definitive matches and therefore less consistency
between the two methods.

Given this, we do not assert that the differences are necessarily significant biologically. The
challenge of interpreting these differences, however, illustrates the value of an approach to
parallelism that produces results that can be easily compared to the original.

Performance Results
We compared the performance of the three methods using the input files described in the
Methods and Materials section. Figure 2 shows the runtime vs the number of CPUs, plotted
log–log. X!!Tandem shows significantly better performance than the other two methods as
the number of CPUs is increased.

Figure 3 shows the same data as speedup, as compared to the sequential time of the X!
Tandem, again plotted log–log. Note that the log–log plot, though allowing all the data to be
clearly seen, has the effect of making the speedup curves seem better than they are. For
example, although the X!!Tandem speedup curve looks nearly straight, the actual 64 CPU
speedup is ∼29 fold.

Figure 4 breaks the runtimes into their major components, giving some insight into the
relative costs of each. The X!Tandem data shows that the refinement step dominates the
computation, with the merge steps representing relatively little time (the first merge step is
so small that it is not visible). The reason for the relatively poor performance on 4 CPUs is
unclear, although we suspect that the machine was experiencing contention when all CPUs
were busy. The X!!Tandem data shows that the unrefined and refined steps scale nicely as
the number of CPUs increases, and the second merge time only begins to dominate at 64
processors. Here, too, the first merge is so small as to be invisible. The Duncan data show
very clearly that method's problem with scaling to large numbers of CPUs; although the first
two (parallel) invocations of X!Tandem scale well, the third invocation, which is run as one
instance of X!Tandem (using two threads when the overall run uses more than one CPU) to
obtain proper scoring, dominates as the number of CPUs increases. In fairness, it is possible
to run the Duncan method omitting this third invocation, which will produce results with
incorrect expectation scores but does improve both the absolute runtime and scalability
substantially.

Bjornson et al. Page 6

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We further investigated the scaling properties of X!!Tandem by performing a 32-CPU run
with instrumentation added to determine the time each worker spent performing useful
computation, overhead activities (serialization and communication) and waiting due to load
imbalance. The results are summarized in Table 3 and Figure 5. Figure 5 highlights the
problem of load balance, particularly following the refinement phase. Note that the time
spent in the send 2 phase is almost entirely due to load imbalance, since buffering
limitations force MPI to delay the worker's send until the master is ready to receive the data.
Sends that occur after the master is ready to receive (e.g., worker 20) take almost no time.
Table 3 aggregates the time spent on all CPUs. Also note that the aggregate computation
time is greater for the parallel run than the uniprocessor run; we attribute this to processing
and I/O that is duplicated due to the parallelization strategy employed.

Optimizing load balance is a difficult problem given X!Tandem's decomposition strategy,
which was leveraged in X!!Tandem. It requires that the spectra be subdivided into disjoint
sets at the beginning of the computation, and that these subsets remain fixed through the
entire computation. This prevents dynamic load rebalancing as the cost of computing
individual spectra is determined. Unfortunately, spectra vary greatly in the computation they
require (for example due to varying loci of PTMs). It is possible that a heuristic could be
developed that would estimate the cost of each spectrum a priori. The estimates would be
used to create subsets of putatively equal computation.

X!!Tandem was also tested using a custom scoring mechanism, via X!Tandem's plugin
scoring feature. We obtained the k-score plugin18 from CPAS19 and used it to score the
same spectra/database combination described in the Methods and Materials section. We
found that the output files were identical to those generated by X!Tandem. The only
modification required by plugin scoring was the addition of a small amount (less than 10
lines) of code to the plugin code, extending the serialization routine for the scoring object,
which was subclassed in the plugin.

Conclusion
New mass spectrometers, which are generating greater numbers of high-quality spectra in a
shorter period of time, along with intensified interest in post-translational modification of
proteins, are imposing significantly greater demands on protein identification software. We
have addressed this need by implementing a simple, efficient, distributed-memory
parallelized version of X!Tandem. By employing a low-impact Owner Computes technique,
we were able to create X!!Tandem, a parallel version of X!Tandem that demonstrated
excellent speedup on an example data set, reducing a computation that took 10 h on a single
CPU to 21 min on 64 CPUs, a nearly 29-fold speedup. In addition, it is substantially the
same as the original code, is run in the same manner, and produces identical output. Because
the code is parallelized using a standard message-passing library, MPI, it can be run on
comparatively inexpensive networks or clusters of commodity processors. The source code
has been made freely available via the same open-source license as X!Tandem.

Beyond this particular program, the authors have found the Owner Computes technique used
to parallelize X!Tandem to be extremely useful for complex codes that are not otherwise
easily parallelized.

Acknowledgments
This research was supported by the Yale Center for High Performance Computation in Biology and Biomedicine
and NIH grant: S10_RR019895, which funded the cluster. This research was also supported in part with Federal
funds from NIDA/NIH grant: 1 P30 DA018343. We thank Dexter Duncan for his assistance with Parallel X!
Tandem. We gratefully acknowledge Daphne Geismar for figure design.

Bjornson et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides

with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994; 5(11):976–989.
[PubMed: 24226387]

2. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by
searching sequence databases using mass spectrometry data. Electrophoresis. 1999; 20(18):3551–
3567. [PubMed: 10612281]

3. Craig R, Beavis RC. A method for reducing the time required to match protein sequences with
tandem mass spectra. Rapid Commun Mass Spectrom. 2003; 17(20):2310–2316. [PubMed:
14558131]

4. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;
20(9):1466–1467. [PubMed: 14976030]

5. Duncan DT, Craig R, Link AJ. Parallel tandem: a program for parallel processing of tandem mass
spectra using PVM or MPI and X!Tandem. J Proteome Res. 2005; 4(5):1842–1847. [PubMed:
16212440]

6. Geist, A. PVM: parallel virtual machine: a users' guide and tutorial for networked parallel
computing. MIT Press; Cambridge, MA: 1994.

7. Snir, M. MPI–the complete reference. 2nd. MIT Press; Cambridge, MA: 1998.

8. mpi-forum. www.mpi-forum.org

9. Yale HPC. http://www.med.yale.edu/hpc

10. European Bioinformatics Institute. ftp://ftp.ebi.ac.uk/pub/databases/IPI/current

11. Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R. The International
Protein Index: an integrated database for proteomics experiments. Proteomics. 2004; 4(7):1985–
1988. [PubMed: 15221759]

12. X!!Tandem FTP site. ftp://maguro.cs.yale.edu/Projects/Tandem

13. Beavis R. Personal communication. 2007

14. Carriero, N.; Gelernter, DH. Some simple and practical strategies for parallelism. In: Heath, MT.;
Schreiber, RS.; Ranade, A., editors. Workshop on Algorithms for Parallel Processing. Springer:
Institute for Mathematics and its Applications, University of Minnesota; 1996. p. 75-88.

15. Carriero N, Osier MV, Cheung KH, Miller PL, Gerstein M, Zhao H, Wu B, Rifkin S, Chang J,
Zhang H, White K, Williams K, Schultz M. A high productivity/low maintenance approach to
high-performance computation for biomedicine: four case studies. J Am Med Informatics Assoc.
2005; 12(1):90–98.

16. Boost library. www.boost.org

17. Duncan D. Personal communication. 2007

18. MacLean B, Eng JK, Beavis RC, McIntosh M. General framework for developing and evaluating
database scoring algorithms using the TANDEM search engine. Bioinformatics. 2006; 22(22):
2830–2832. [PubMed: 16877754]

19. CPAS. https://proteomics.fhcrc.org/CPAS

Bjornson et al. Page 8

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mpi-forum.org
http://www.med.yale.edu/hpc
ftp://ftp.ebi.ac.uk/pub/databases/IPI/current
ftp://maguro.cs.yale.edu/Projects/Tandem
http://www.boost.org
https://proteomics.fhcrc.org/CPAS


Figure 1.
Schematic of X!!tandem.

Bjornson et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Total runtime of the X!Tandem, X!!Tandem, and Duncan methods, plotted log–log. Lower
is better. The dotted line indicates perfect scaling versus sequential X!Tandem.

Bjornson et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Speedup of the X!Tandem, X!!Tandem, and Duncan methods, plotted log–log. Higher is
better. The dotted line indicates perfect speedup versus sequential X!Tandem.

Bjornson et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Breakdown of the X!Tandem, X!!Tandem, and Duncan methods, showing the time spent in
each step. Steps that are too small to see are omitted. X!Tandem and X!!Tandem methods
break down into unrefined and refined search steps, each followed by a communication/
merge step. The Duncan method is quite different, consisting of 3 separate steps requiring
invocations of X!Tandem, separated by runs of utility programs. The dotted line represents
sequential X!Tandem runtime.

Bjornson et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Execution timeline for 32-CPU run, showing the various processing phases for the workers
and master (shown as M). Send/recv and serialize/deserialize are reversed for the master.
The serialize/deserialize steps are too short to be visible.

Bjornson et al. Page 13

J Proteome Res. Author manuscript; available in PMC 2013 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bjornson et al. Page 14

Ta
bl

e 
1

C
om

pa
ri

so
n 

of
 a

 S
m

al
l S

ub
se

t 
of

 t
he

 P
ep

ti
de

s 
F

ou
nd

 b
y 

th
e 

D
un

ca
n 

M
et

ho
d 

to
 T

ho
se

 F
ou

nd
 b

y 
X

!T
an

de
m

 a
nd

 X
!!

T
an

de
m

X
!T

an
de

m
 a

nd
 X

!!
T

an
de

m
D

un
ca

n

se
qu

en
ce

ex
pe

ct
ra

ti
o

sp
ec

tr
um

ex
pe

ct
hy

pe
rs

co
re

m
h

de
lt

a
z

sp
ec

tr
um

ex
pe

ct
hy

pe
rs

co
re

m
h

de
lt

a
z

28
67

8.
1.

1
3.

90
E

-0
8

71
.9

21
77

.1
47

−
0.

05
0

3
14

04
5.

1.
1

3.
20

E
-1

0
71

.9
21

77
.1

47
−

0.
05

0
3

E
L

L
L

PN
W

Q
G

SG
SH

G
L

T
IA

Q
R

12
1.

88

46
66

.1
.1

1.
00

E
-0

5
54

.4
18

44
.8

57
0.

01
9

3
46

66
.1

.1
7.

70
E

-0
7

54
.4

18
44

.8
57

0.
01

9
3

SP
E

PG
Q

T
W

T
H

E
V

FS
SR

12
.9

9

28
33

7.
1.

1
2.

30
E

-0
8

49
.3

13
37

.7
18

0.
01

0
2

13
70

4.
1.

1
1.

20
E

-0
3

49
.3

13
37

.7
18

0.
01

0
2

R
V

T
A

Y
T

V
D

V
T

G
R

0.
00

17
31

.1
.1

5.
20

E
-0

3
33

.5
21

10
.1

35
−

0.
11

2
3

17
31

.1
.1

1.
80

E
-0

3
33

.5
21

10
.1

35
−

0.
11

2
3

E
G

V
K

D
ID

IT
SP

E
FM

IK
2.

89

88
54

.1
.1

1.
50

E
-0

8
61

.4
20

28
.0

01
−

0.
02

0
3

88
54

.1
.1

8.
00

E
-1

0
61

.4
20

28
.0

01
−

0.
02

0
3

H
E

V
T

E
IS

N
T

D
V

E
T

Q
PG

K
18

.7
5

78
23

.1
.1

5.
40

E
-0

6
55

.1
17

82
.9

11
0.

00
8

3
78

23
.1

.1
7.

20
E

-0
6

55
.1

17
82

.9
11

0.
00

8
3

A
G

A
IS

A
SG

PE
L

E
G

A
G

H
SK

0.
75

27
13

2.
1.

1
3.

30
E

-0
4

37
.5

10
90

.6
38

−
0.

03
7

2
12

49
9.

1.
1

5.
30

E
-0

4
37

.5
10

90
.6

38
−

0.
03

7
2

FQ
V

T
V

PG
A

K
0.

62

16
84

7.
1.

1
1.

90
E

-0
4

35
.6

10
74

.6
28

0.
02

3
2

22
14

.1
.1

5.
30

E
-0

3
35

.6
10

74
.6

28
0.

02
3

2
V

G
SL

D
V

N
V

K
0.

04

82
67

.1
.1

1.
70

E
-0

4
43

.1
21

11
.2

32
−

0.
01

6
3

82
67

.1
.1

1.
40

E
-0

5
43

.1
21

11
.2

32
−

0.
01

6
3

L
K

G
PQ

IT
G

PS
L

E
G

D
L

G
L

K
12

.1
4

13
66

5.
1.

1
1.

90
E

-0
5

49
.0

21
81

.0
77

0.
02

8
3

13
66

5.
1.

1
7.

30
E

-0
5

49
.0

21
81

.0
77

0.
02

8
3

M
D

IS
A

PD
V

E
V

H
G

PE
W

N
L

K
0.

26

J Proteome Res. Author manuscript; available in PMC 2013 December 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bjornson et al. Page 15

Table 2
Top 20 Protein Hits Found by the Duncan Method versus X!Tandem, X!!Tandem

protein id

X!Tandem, X!!Tandem Duncan

rank log(e) rank log(e)

IPI00678951.1 1 −32.14 3 −37.92

ENSMUSP00000031564 2 −29.84 6 −34.64

IPI00679092.1 3 −26.71 124 −14.59

IPI00378438.6 4 −25.40 33 −23.05

ENSMUSP00000090632 5 −25.23 18 −27.10

IPI00453996.1 6 −25.07 5 −34.85

ENSMUSP00000090895 7 −24.99 4 −37.21

ENSMUSP00000021458 8 −24.34 19 −27.10

ENSMUSP00000087756 9 −24.26 25 −25.44

IPI00759925.1 10 −24.13 14 −28.41

ENSMUSP00000006629 11 −24.13 10 −30.22

ENSMUSP00000026459 12 −23.33 39 −22.38

ENSMUSP00000080974 13 −23.03 22 −25.82

IPI00123181.2 14 −22.44 17 −27.45

ENSMUSP00000015800 15 −21.29 46 −21.80

ENSMUSP00000048678 16 −21.02

ENSMUSP00000023934 17 −20.93 2 −39.05

ENSMUSP00000029549 18 −20.93

IPI00282403.2 19 −20.76 41 −22.33

ENSMUSP00000053943 20 −20.46 58 −20.14

IPI00655182.1 23 −19.98 13 −28.45

ENSMUSP00000051217 27 −19.77 11 −29.60

ENSMUSP00000057308 33 −18.71 15 −28.14

ENSMUSP00000021993 37 −17.68 12 −29.53

ENSMUSP00000033741 38 −17.68 16 −28.00

ENSMUSP00000033699 39 −17.68 20 −26.50

IPI00309658.1 62 −15.78 9 −30.88

ENSMUSP00000002572 69 −15.42 1 −40.66

ENSMUSP00000027817 70 −15.09 8 −32.76

ENSMUSP00000080538 100 −12.65 7 −33.34

J Proteome Res. Author manuscript; available in PMC 2013 December 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bjornson et al. Page 16

Table 3
Breakdown of Time Spent by X!!Tandem Workers on Various Activitiesa

wallclock Times (sec)

uniprocessor 35105

32 CPUs 1814

cumulative times for 32 CPUs (sec)

total 58054

computation 48206

overhead 627

load imbalance 9221

a
Time spent on send2 is considered load imbalance.

J Proteome Res. Author manuscript; available in PMC 2013 December 15.


