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Abstract
Populations of “identical” cells are rarely truly identical. Even when in the same state of
differentiation, isogenic cells may vary in expression of key signaling regulators, activate signal
transduction at different thresholds, and consequently respond heterogeneously to a given
stimulus. Here, we review how new experimental and analytical techniques are suited to connect
these different levels of variability, quantitatively mapping the effects of cell-to-cell variability on
cellular decision-making. In particular, we summarize how this helps classify signaling regulators
according to the impact of their variability on biological functions. We further discuss how
variability can also be leveraged to shed light on the molecular mechanisms regulating cellular
signaling, from the individual cell to the population of cells as a whole.

Introduction
The existence of discrete cell states within clonal bacterial or yeast populations, or within
differentiating cell populations in multicellular organisms has been appreciated for some
time [1,2]. In recent years, however, observations of continuous cell-to-cell variability
(CCV) in protein abundance in genetically identical eukaryotic cells sharing a common
differentiation state have become ubiquitous [3]. As awareness of CCV is becoming more
prevalent, the importance of understanding its origins and impact has grown, and
methodologies to connect variability in gene expression, protein abundance, signaling and
phenotypes have begun to be established.

Research into the origins of CCV has suggested that noise in mRNA transcript levels may be
an unavoidable consequence of the transcriptional machinery [4,5]. The processes of
chromatin opening and closing, and transcription initiation and termination, result in
transcriptional bursts, which lead to a fundamental level of noise in mRNA production and
consequently in protein abundance [5]. An emerging body of work suggests that cells have
capitalized on such protein expression noise to promote evolutionarily adaptive functions.
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CCV in protein abundance is a precursor to the large phenotypic divergence seen in
differentiating cells, wherein broad distributions of protein abundance [6–8] or differences
in signaling responses [9,10] prepare cells to respond differently to a common signal,
producing multiple cell types. Within the immune system in particular, naïve lymphocytes
undergo differentiation into diverse cell types during most immune responses. Heterogeneity
in certain receptors has been shown to prepare differentiating CD4 cells to commit to long-
lived memory, or short-lived effector fates [7], and to further differentiate different types
within the memory population [11]. In addition to its role in differentiation, CCV has been
shown to allow a population of cells to make a graded response from decisions that are all-
or-none at a single cell level, such as apoptosis or commitment to a particular differentiation
type [9,12] Thus, even in an isogenic population of cells, CCV can generate subsets with
distinct phenotypes based on either intrinsic differences or response to stimuli.

Additionally, and by analogy with single-celled organisms, we conjecture that CCV may
serve an adaptive role in multicellular systems that must respond to uncertain external
stimuli, allowing populations of variable cells to make more robust decisions than a
population of homogeneous cells would. In bacteria, stochastic switching between states that
confer either growth or survival benefits ensures that members of a population will survive,
even in the face of sudden environmental changes. In yeast, continuous variability in certain
proteins allows a spectrum of growth rate-survival tradeoffs [13]. This strategy adopted by
single-celled organisms has been described as bet hedging as cells diversify their phenotype
in anticipation of environmental fluctuations[1,14,15]. In multicellular organisms, the
clearest analog to both of these exists in the immune system, which must react to constantly
evolving pathogenic threats. To do so, the immune system must maintain cells in many
discrete differentiated states, whose functional relevance has been abundantly characterized
with genetic tools: Loss of particular lymphocyte subpopulations often induces susceptibility
to specific pathogens or autoimmune disorders. Our recent work demonstrates the relevance
of continuous variability of protein expression within individual states [16,17]. Precisely
how CCV contributes to effective immune function in the face of uncertain threats remains
an interesting and open question.

Despite the appreciation of CCV in protein abundance and its clear importance to the
regulation of differentiation and apoptosis in eukaryotic development, an understanding of
the connections between underlying variability and heterogeneous outcomes is still
developing. Observing CCV requires only the ability to measure a biological readout at the
level of single cells. This can be accomplished through microscopy of live or fixed cells
[4,13], flow cytometry, mass cytometry [18] or various methods of single-cell gene
expression profiling [19–21]. Connecting variability to downstream effects, however,
requires a variety of tools and techniques. More specifically, quantifying the impact of
protein abundance on signaling responses requires different methodologies than identifying
the impact of protein abundance on functional responses. As each method of single-cell
analysis requires certain trade-offs, fully understanding the consequences of CCV requires
the combination of multiple methods. In this review, we will focus on the combinations of
methods that can connect variable protein abundance, through signaling, to functional
responses. Rather than providing an exhaustive catalog of studies using cell-to-cell
variability, this review will focus on a few key examples of studies demonstrating
techniques to connect layers of CCV—from gene regulation to functional responses—
towards the development of a more-mechanistic understanding of cellular decision-making.

Studying signaling in heterogeneous populations
Cellular signaling networks translate external environmental cues into response and change
of internal cell state. There exist many layers of heterogeneity that can affect the eventual
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response. Studying this response with single-cell resolution requires a measurement of
pathway activation, of which there are two principal categories: live cell reporters of protein
activity, or antibody immunostaining for activated states of proteins, typically phospho-
epitopes.

If cell signaling needs to be analyzed over a period of time, it is necessary to endow the cells
with reporting capability through genetic methods. In cases where activation results in
nuclear localization, such as for extracellular regulated kinase (ERK) [22], signal transducer
and activator of transcription 5A/5B (STAT5) [23], or nuclear factor of activated T-cells
(NFAT) [24], microscopy of live cells expressing fluorescently tagged proteins reveals
activation through the proxy of localization. In other cases, direct enzymatic activity can be
evaluated, such as with Förster resonance energy transfer (FRET) reporters of ERK kinase
activity [25], or cleavageactivated fluorescence reporters of caspase activity [12,26]. The
principal benefit of analyzing signaling in live cells is the ability to track a single cell over
time. This is essential in cases where the phenomenon being studied involves an oscillatory
or transient signal [27] and is also key in the ability to track the connection of signaling and
phenotype (discussed in more detail below). The drawback of such live-cell methods is the
complexity of constructing systems to measure multiple signals simultaneously, and the
difficulty of implementation in primary cells.

In cases where time-evolution is not as critical, end-point fixed-cell methods provide the
ability to measure multiple phospho-signals and regulatory proteins simultaneously through
antibody staining [28–30]. Flow cytometry and microscopy of fixed cells both provide well-
established methods to measure protein and phosphoprotein levels simultaneously. Applying
automated methods of image processing can allow quantitative analysis of large numbers of
cells [31,32], allowing the analysis of outliers or small populations. Though, in our
experience, the dynamic range of measurements made by microscopy are not as large as
those made by flow cytometry the added protein localization information, ability to work
with adherent cells, and ability to identify physical phenotypes makes this a valuable tool in
the study of cell-to-cell variability [20,31]. Flow cytometry provides the added ability to
quantify simultaneously the abundance and modification of a large number of proteins. This
allows the possibility to examine mixed populations of cells (such as splenocytes), identify
subpopulations of interest through expression of surface markers, and still have the ability to
measure the abundance of regulatory proteins and phosphoproteins. Modern fluorescence-
based cytometers have the ability to measure more than 16 channels simultaneously.
However, due to spectral spillover, the number of channels that can be measured with
quantitative precision at any one time is limited to one per laser, typically no more than five.
Recently, the introduction of mass cytometry [18] has greatly expanded the number of
simultaneous parameters that can be assessed. The potential to simultaneously assess
variability in entire signaling networks with single-cell resolution is an exciting prospect.

Connecting cell-to-cell variability in protein abundance to variability in
signal sensitivity

Connecting CCV in signaling components to differences in signaling response requires the
simultaneous measurement of protein abundance and pathway activation. To do this in live
cells, over time, requires either complicated genetic intervention or restricted scope [32], and
has rarely been attempted. Instead, most work has utilized flow cytometry of fixed cells to
provide a snapshot of the population, as flow cytometry provides the ability to measure the
abundance and activation (through phosphorylation) of multiple signaling regulators
simultaneously.
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Our lab has made extensive use of these aspects of flow cytometry to derive deeper
understanding of the underlying regulatory networks through the development of CCV
analysis (CCVA), a computational method to correlate variability in protein expression with
variability in signaling sensitivity using flow cytometric data (Figure 1). By binning cells
according to variation in the abundance of regulatory proteins of interest, we are able to
analyze cell-to-cell variation in stimulus sensitivity, bypassing the fact that measurements of
dose-responses at the single cell level are technically impossible (cells often respond to
stimuli by adapting—tuning their responsiveness according to past stimuli). We first
demonstrated that T cells with identical T cell receptors (TCRs) can vary in their ability to
trigger a phospho-ERK response by three orders of magnitude, due to heterogeneity of two
key proteins: a co-receptor (CD8) and a negative regulator (Shp-1), but not in the levels of
ERK itself. Similarly, we have used this methodology to demonstrate how CCV regulates
heterogeneity in sensitivity to interleukin 2 (IL-2) [16] and other members of the γc cytokine
family [17]. In all of these cases, the observed correlations between protein and signaling
variability were used to refine and extend models of cellular signaling (discussed below).
Furthermore, because such CCV is widespread, we have created a program enabling CCVA
to be applied without specialized computational knowledge [33]. Overall, correlating CCV
in protein abundance with heterogeneity in signaling responses is quite amenable because it
requires simply adding a step of computational processing following the commonly used
technique of flow cytometry.

Connecting Cell-to-Cell Variability in Signaling Response to Phenotypic
Variability

Developing an understanding of how CCV in signaling translates into differential decisions,
such as differentiation or death, presents methodological challenges since signaling is best
measured with fixed-cell methods, while outcomes must be observed at later time points.
Thus, connecting CCV in signaling with CCV in phenotype requires either connection of
multiple snapshots of signaling, or the application of additional methods, such as
computational modeling or biochemistry.

Chen et al [31] examined the connection between ERK and Akt signaling and neuronal
differentiation in PC12 cells responding to EGF or NGF (epidermal and neural growth
factors, respectively). Signaling through phospho-ERK (ppERK) and phospho-Akt (pAkt),
and the choice between differentiation and proliferation were measured using microscopy of
fixed cells, 24 hours following treatment with either growth factor. A clear map could be
derived, whereby the combination of ppERK and pAkt levels identified regions of
propensity towards either differentiation or proliferation. While this map provided a
correlation between variable signaling and heterogeneous differentiation, discerning the
cause-effect direction required intervention, both chemical (inhibitors) and genetic (siRNA).
Through an siRNA screen, the group was able to identify a number of regulators that shifted
the map of ppERK and pAkt, and identify a novel regulatory crosstalk between ppERK and
pAkt pathways downstream of NGF stimulation. It would be interesting to further examine
whether CCV in key regulatory proteins of the ERK and Akt signaling cascades maps out
the ppERK-pAkt responsiveness, and how the variability of this map is regulated.

Bridging CCV in Protein abundance to divergence in phenotype
Linking variability in protein expression to heterogeneous cellular fates entails the complete
connection of protein abundance, signaling regulation, and eventual phenotype, and presents
the possibility of fully understanding the implications of CCV.
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Biochemical models can provide the link between variability in protein abundance and
variability in phenotype by simulating signaling. This requires that the signaling cascades be
well characterized, restricting the freedom with which a model can be fit to a given set of
experimental results. As a prime example of the utility of models in such a study, Spencer et
al [12] used an established model of TNF-related apoptosis-inducing ligand (TRAIL)
signaling [12] to connect variability in apoptotic regulators, such as Bcl and Bid, with
heterogeneity in the timing of apoptosis. The measured variation in apoptotic regulators was
small (coefficients of variation ranging from 0.21 – 0.28), and no single protein’s abundance
predicted the time to death. However, a model of the collective, uncorrelated variation could
predict the full range of times to death seen in the population of cells given low doses of
TRAIL. This result presents an interesting conundrum: given that such small variability in a
handful of proteins can lead to a wide divergence in a life-or-death decision, how do cells
ensure that they respond appropriately to an apoptotic signal? The answer to this question
becomes more clear when the multicellular organism, rather than the individual cell, is
considered the unit of evolutionary selection: low doses of TRAIL, the variability in the
system converts an all-or-none response at the individual level into a graded response at the
population level, allowing the population as a whole to commit only partially in response to
an uncertain signal, providing a benefit similar to that seen in bet hedging.

Building better computational models using heterogeneity
We posit here that cell-to-cell variability analysis is a useful method to develop and test
quantitative models of signaling. Biochemically explicit models, as illustrated in key studies
of TCR signaling, TRAIL-induced apoptosis and cytokine response [10,12,16,34] have been
proposed to account for the average response of cells to external stimuli. The natural
variability seen in cell populations provides the opportunity to both characterize individual
proteins’ roles in signaling networks and quantitatively constrain models of signaling.

To better understand the structure of networks, their component signaling regulators’ effects
can be classified along the dimensions of positive, neutral or negative, and threshold or
amplitude, based on the effect that variable abundance of these regulators have on the
signaling response (see figure 2). In our experience, neutral regulators are the most common:
the abundance of a given protein does not impact the input/output relationship, a property
known as robustness, common in enzymatic systems in which the substrate is not limiting.
Threshold and amplitude regulators are defined by their impact on parameters characterizing
the dose-response to stimuli, namely EC50 and amplitude, respectively. For example, in the
case of TCR signaling, CCVA was used to identify a proximal signaling component (CD8)
as a threshold regulator, a feedback phosphatase (Shp-1) as an amplitude regulator and the
enzymatic substrate ERK as a neutral regulator, in agreement with model predictions [10].
In the case of the IL-2 receptor, IL- 2Rα was identified as a threshold regulator of STAT5
phosphorylation in response to IL-2, whereas il2rb was identified as an amplitude regulator
[16], in concordance with a model whereby preformation of the IL-2 receptor regulates
sensitivity to IL-2 [33].

Alternatively, the rich experimental observables generated by analysis of variable
populations of cells can be used to better constrain or refine mathematical models of
signaling [24], or to uncover connections that would be invisible if observed at an average
level [33]. As an example, Tay et al. observed heterogeneous responses to TNF stimulation
through single cell tracking of NFκb localization dynamics. To account for this
heterogeneity, the researchers constructed a model of NFκb regulation that relied on
stochasticity of transcription to create cell-to-cell variability in the response to TNF. We
propose that experimental measurement of CCV in TNF response regulators would add
quantitative observations to further test the proposed mechanism for the generation of
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heterogeneous responses in this system. Such an analysis was performed for a model of
TRAIL signaling, using quantitative single cell measurements to experimentally validate the
model’s parameter sensitivity [35,36]. Similarly, in the context of the signaling response to
common gamma cytokines among T lymphocytes, this stringency led to reconsideration [33]
of a previous model of IL-2 signaling [16]. CCVA revealed an inhibitory effect of the IL-2
receptor alpha chain (IL-2Rα) abundance on IL-7 sensitivity. As IL-2Rα is directly involved
only in IL-2 signaling, this necessitated an expansion of the model for IL-2 receptor
formation to allow competition for the common gamma chain, a signaling chain shared with
the receptors for IL-7 and other cytokines [33,37]. In this case, the greater stringency placed
on the model by CCVA necessitated an increased number of parameters than would have
been statistically valid without the inclusion of variability.

Leveraging cell-to-cell variability to interpret mutational sensitivity
With the proliferation of whole-genome sequencing of tumors, the number of potentially
oncogenic mutations has multiplied, while the development of novel methods to characterize
the functional significance of these mutations has lagged. Some of these mutations imply
dominant effects on phenotypes, allowing genetic approaches such as siRNA knockdown to
serve as sufficient validation. For more subtle cases, in which mutations marginally alter the
enzymatic activities or the binding affinities of proteins, more subtle methods such as
CCVA may prove better suited. CCVA has the ability to identify the nodes of the signaling
network that have significant analog or digital effects (see Figure 2), for which marginal
increase in abundance may serve as a suitable analogy to the effects of a marginal increase
in enzymatic activity.

This analogy could work in reverse as well: The natural heterogeneity of abundance in
protein expression could help identify outlier subpopulations whose extremes of signal
regulator expression produce the same overactive signaling that results from oncogenic
transformation [18,38]. Single-cell resolution of cellular responses could identify how
outlier subpopulations with aberrant phenotypes are kept in check in healthy individuals, or
contribute to oncogenesis when these checks fail [39].

Conclusion
In this review, we have presented studies that connect different layers of cell-to-cell
variability with the goal of explaining how continuous distributions of proteins, through
divergent signaling, lead to heterogeneous phenotypes. In our view, CCV appears to be a
default characteristic of protein expression across a population, an inherent feature of the
eukaryotic protein expression machinery. Specific mechanisms to limit CCV arise only
when variability would be deleterious. In other cases, CCV in “neutral regulators” may
remain unregulated, since it has no effect on overall phenotype. Most interestingly, however,
CCV for threshold and amplitude regulators may provide a preexisting mechanism to endow
populations of cells with phenotypic variability that diversifies their response to
environmental cues. Hence cells can rely on CCV to adapt to varied stimuli without having
to evolve specific regulatory pathways. The studies presented in this review have begun to
address this larger question of how CCV contributes to evolutionarily adaptive
developmental or bet-hedging mechanisms. These studies used single-cell methods to
connect two layers of variability, and diverse methods such as modeling and/or biochemistry
to create a fuller picture of the significance of variability to the function of the cell. Systems
allowing direct connections between all of these layers will be highly valuable to forge a
mechanistic understanding of how such complexes processes as differentiation and
apoptosis are regulated at both cellular and population levels.
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Highlights

Cell-to-cell variability is ubiquitous in genetically identical cells.

Variability exists at multiple levels: genes, proteins, signaling and phenotypes.

New methods have been developed to connect different levels of variability.

Variability provides insight into cells’ function, individually and in populations.

Computational modeling maps out variability that in turns helps improve models.
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Figure 1. Cell-to-cell variability analysis (CCVA) computational processing
(a) The first step in CCVA is binning across abundance of two markers of interest (X, and Y
in our example). In each bin, for each dose of stimulus, the mean fluorescence intensity of a
phospho-response is calculated (blue histogram), a histogram of an untreated control
histogram is shown for comparison (open histogram). (b) The second stage is performed
within each bin, across all doses of stimulus, wherein (c) a curve is fit describing the
phospho-response as a function of varied doses of stimulus. This curve has two principal
output parameters: EC50 and amplitude. The EC50, which describes the dose at which half of
the maximum phospho-response stimulation is reached, provides a measure of sensitivity.
The amplitude, which is the difference between the lower and higher response plateaus,
measures the maximal responsiveness of the cells. The output of this analysis is a map of
EC50 (d) and amplitude (not shown). In this example, Marker X has a strong correlation with
sensitivity, with EC50s varying from 1 nM to 1 pM. Abundance of Marker Y, however, does
not strongly influence stimulus sensitivity.
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Figure 2. Identification and classification of signaling regulators
(a) Schematic diagram of a signaling module. The input-output relationship must be
evaluated as a function of the abundance of a regulatory component X. (b) For component X,
deviations from the average abundance can have different effects on the input-output
relationship of the signaling module. Based on such effect, regulatory components can be
identified and classified. Using their effect on the relative EC50 of the response (threshold
regulators), its amplitude (amplitude regulators), or both (general regulators). The input-
output relationship can also be largely unaffected by changes in the abundance of a
component X, in which case the component is identified as a neutral regulator. Examples of
threshold, amplitude, general and neutral regulators are given here. (c) Diagram of the
Relative Amplitude and EC50 for the deviation from the average response when the
abundance of component X varies. These deviations classify the regulators as in (b) as
threshold, amplitude, general and neutral are shown.
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