
ARTICLE

Received 1 Aug 2013 | Accepted 7 Nov 2013 | Published 3 Dec 2013

Ribosome profiling reveals features of normal
and disease-associated mitochondrial translation
Koos Rooijers1,*, Fabricio Loayza-Puch1,*, Leo G. Nijtmans2 & Reuven Agami1,3

Mitochondria are essential cellular organelles for generation of energy and their dysfunction

may cause diabetes, Parkinson’s disease and multi-systemic failure marked by failure to

thrive, gastrointestinal problems, lactic acidosis and early lethality. Disease-associated

mitochondrial mutations often affect components of the mitochondrial translation machinery.

Here we perform ribosome profiling to measure mitochondrial translation at nucleotide

resolution. Using a protocol optimized for the retrieval of mitochondrial ribosome protected

fragments (RPFs) we show that the size distribution of wild-type mitochondrial RPFs follows

a bimodal distribution peaking at 27 and 33 nucleotides, which is distinct from the

30-nucleotide peak of nuclear RPFs. Their cross-correlation suggests generation of

mitochondrial RPFs during ribosome progression. In contrast, RPFs from patient-derived

mitochondria mutated in tRNA-Tryptophan are centered on tryptophan codons and reduced

downstream, indicating ribosome stalling. Intriguingly, long RPFs are enriched in mutated

mitochondria, suggesting they characterize stalled ribosomes. Our findings provide the first

model for translation in wild-type and disease-triggering mitochondria.
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T
he primary function of the mitochondrion is ATP
production via the oxidative phosphorylation pathway1.
The human mitochondrial genome contains 37 genes of

which 13 are protein-coding. These genes are essential for normal
energy production function of the mitochondria but also other
processes such as cell signaling and cell death2,3. The mito-
chondria harbor their own ribosomes, which are structurally
more similar to bacterial ribosomes than the cytosolic ribosomes4.
However, the protein-synthesizing system of mitochondria and
the template mRNAs contain unique features not observed in
prokaryotes or the eukaryotic cell cytosol, including arginine
codons AGG and AGA, which are unassigned while UGA stop
codon codes for tryptophan; both AUG and AUA serve as
START codons; messenger RNAs (mRNAs) essentially lack
untranslated regions, are uncapped and contain a poly(A) tail,
and mitochondria use a simplified decoding mechanism that
allows translation of all codons with only 22 tRNAs1. Because
of their function in the oxidative phosphorylation pathway,
mitochondria are recognized for their role in the production
of reactive oxygen species (ROS) and nitric oxide5. The
production of ROS may also be associated with ageing since
mitochondria increase production of ROS during human
lifespan6. Interestingly, mutations in mitochondrial translation
machinery, such as their tRNAs, are the source of various human

diseases, typically causing multi-systemic disorders and early
fatality7.

To characterize mitochondrial translation we used ribosome
profiling, a deep sequencing-based technology that allows
quantitative analysis of translation at nucleotide resolution8,9.
Ribosome profiling maps the positions of ribosomes on trans-
cripts by nuclease footprinting, generating nuclease-protected
mRNA fragments bound to ribosomes that are converted into a
DNA library suitable for deep sequencing. We observed a poor
capacity of the established ribosome profiling protocol to capture
mitochondrial ribosome protected fragments (RPFs) and
developed a suitable method for this purpose. We then used
the adapted protocol to show that the mitochondrial tRNA
(Trp)5556G4A mutation induces strong ribosome stalling.

Results
Mitochondrial RPFs are poorly captured by current protocols.
The abundance of RPFs was demonstrated to correlate with the
level of translation of a gene8. Figure 1a shows the translational
efficiency (TE; normalized abundance measured by ribosome
profiling divided by normalized abundance measured by RNA
sequencing) of nuclear- and mitochondrial-encoded genes.
Curiously, all mitochondrial transcripts (marked green) showed
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Figure 1 | A modified ribosomal profiling protocol improves detection of mitochondrial translation. (a) A plot showing the TE as a function of mRNA

abundance in a standard ribosomal profiling protocol. Mitochondrial and histone genes (in green and red, respectively) appear as outside groups.

(b) Western blot showing the abundance of mitochondrial (mtRPL11) and cytosolic (RPL10a, RPL7 and RPS6) ribosomal proteins in different sucrose

gradient fractions after RNAse I treatment. (c) Size distribution of RPFs in the standard ribosome profiling. The upper panel shows all reads, the lower panel

shows nuclear-encoded genes (red) and mitochondrially encoded genes (green) separately. (d) Overview of our modified ribosome profiling protocol.

(e) Size distribution of RPFs obtained by our modified ribosome profiling. (f) Same as in a for modified protocol. Marked improvement in the detection

of TE in mitochondrial genes is observed.
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a high level of signal in the RNA-seq while having a very low
amount of reads in the ribosome profiling data compared with
the bulk of the nuclear transcripts, which had TE values centered
on the norm and up to fourfold difference in the vast majority
of the cases, resulting in relatively low TE values for mito-
chondrial genes. A similar observation was seen when we used
several recently published ribosome profiling data sets10,11 (see
Supplementary Fig. S1 and Supplementary Table S1). In contrast,
histone genes, which are not polyadenylated and therefore are
poorly retrieved during mRNA sequencing, showed as expected
relatively extremely high, TE values (marked red in Fig. 1a).

Two potential explanations can clarify the low detection
level of mitochondrial genes in the ribosome profiling data.
First, mitochondrial genes might be translated at a remarkably
different rate compared with the cytosolic mRNAs. Alternatively,
the ribosome profiling protocol does not efficiently capture
mitochondrial RPFs as a result of either a distinct size of the
mitochondrial ribosomes or a distinct size of RPFs protected
by the mitochondrial ribosomes, compared to the nuclear-
ribosomes. As mitochondrial ribosomes are very different from
the nuclear ones, and mitochondrial proteins are produced
in high rate, inefficient capturing of mitochondrial RPFs
the RP protocol seems more likely. Therefore, we first determined
the fractions where mitochondrial monosomes localize after
RNAse I treatment and sucrose gradient sedimentation, and
indeed this analysis indicated altered sedimentation (Fig. 1b).
Second, we also examined the size of RPFs in mitochondrial-
and nuclear-encoded genes. Figure 1c shows that while nuclear
genes feature the expected enrichment of 30-nt long RPFs,
the size distribution of mitochondrial RPFs is clearly larger and
seems truncated. As the ribosome profiling protocol we used
included a selection step for fragments sized 27–33 nt, this
result suggests that most of the mitochondrial RPFs may
have a different size and thus are vastly excluded during this
selection step.

Improving retrieval of mitochondrial RPFs. We modified the
ribosome profiling protocol to collect more mitochondrial ribo-
somes in the sucrose gradient and relaxed the size of RPFs cutoff
to 25–36 during size excision of adapter ligated reads (Fig. 1d).
Indeed, Fig. 1e demonstrates that this protocol results in RPFs
whose global size distribution coincides with the expected
expansion in fragments cutoff. Moreover, it also shows that while
nuclear RPFs showed the expected peak at 30 nt, a much broader
distribution of the mitochondrial RPFs with a bimodal size
peaking at 27 and 33 nt was observed. Last, Fig. 1f shows that our
modified ribosome profiling protocol indeed improved the
apparent TE of mitochondrial mRNAs to levels comparable to the
nuclear-encoded mRNAs without compromising the quality of
libraries. As shown in Fig. 2a, the reproducibility between RP
samples is high (R2 0.91), comparable to RNA-seq data (Fig. 2b).
The data shows periodicity (Fig. 2c) and the modifications in the
protocol do not lead to increase of ribosomal RNA contamination
(Fig. 2d). Lastly, as a characteristic of ribosome profiling data, the
vast majority of reads originate from CDSs and a steep increase in
RPF density is observed at the START codons, and similarly, a
steep decrease is observed at the STOP codons (Fig. 2e).

Mitochondrial RPF length shows bimodality. The apparent
bimodal distribution of mitochondrial RPFs length, peaking at 27
and 33 nt, may indicate alternative mitochondrial ribosome
configurations or different positioning on mRNA. To examine
this point we divided the mitochondrial RPFs into short
(24–29 nt) and long (31–36 nt) fragments and measured their
distribution over the mitochondrial transcripts. Figure 3a shows

an overall similar pattern of distribution between the two types of
mitochondrial-RPFs, both were distributed similarly along the
transcripts, though some positions were reproducibly slightly
more enriched with one type of fragment. Additionally, analyzing
the orientation of mitochondrial-RPFs with respect to the START
codon, we found no apparent periodicity difference between
the short and long fragments (Fig. 3b). These results may indicate
that the two mitochondrial-RPF types are either generated
from the same ribosome during the translation process, or from
two types of related ribosomes both engaged in active trans-
lation of the mitochondrial genes. Interestingly, if the first is the
case, a global correlation between the positions of the two types of
RPFs should exist. We therefore compared the correlation
between the distribution of reads with exactly 27 and 33 nt in
length and found two preferential relationships (Fig. 3c).
The peak at –6 indicates an overhang of 6 nt at the 50 end, while
the peak at 0 indicates alignment of the 50 ends and thus an
overhang of 6 nt at the 30 end. Though not entirely excluding the
existence of two separate mitochondrial ribosome types, this
result strongly supports the hypothesis that the two RPF types
are generated from one mitochondrial ribosome during its
progression in a manner depicted in Fig. 3d. We envision that
during progression the mitochondrial ribosome encompasses
additional 6 nt.

tRNA(Trp)5556G4A mutation causes ribosome stalling. Next,
to learn more about the protein translation process in mito-
chondria and relate it to mitochondria malfunction, we utilized
trans-mitochondrial cybrids, rho(0) cells that lack mitochondrial
DNA and fused with patient-derived mitochondria12. We
performed our ribosomal profiling on cybrids containing either
wild-type (wt) or the naturally occurring pathogenic mutant
mitochondria at tRNA(Trp)5556G4A, as this was shown to cause
impairment of mitochondria function and reduce mitochondrial
protein translation12. Although mitochondria-targeted TagYFP
expression showed no major abnormalities in terms of number
of mitochondria between wt and mutant mitochondria
(Supplementary Fig. S2A), mitochondrial activity assays
(Table 1) and acidification of medium (Supplementary Fig.
S2B) indicated reduced functionality, consistent with reported
OXPHOS defects12. The mutation was verified using tRNA
sequences retrieved in the ribosome profiling and purity was
499% (Supplementary Fig. S5).

Intriguingly and most importantly, our ribosomal profiling
method revealed a distinct distribution pattern of mitochondrial
RPFs between wt and tRNA(Trp)5556G4A mitochondria (Fig. 4a).
In particular, peaks of the tRNA(Trp)5556G4A mitochonderia
typically tended to be centered on tryptophan codons. Data
analysis confirmed increased abundance of RPFs with the
mitochondrial-tryptophan codons TGA and TGG (Fig. 4b).
Moreover, RPF alignment analysis indicated that the tryptophan
codons are centered in the middle of the RPFs, positions 15–18,
implying stalling of the ribosome when encountering tryptophan
codons. This effect was specific to mitochondrial tryptophan
codons, as it was not observed in other codons (for example, the
mitochondrial phenylalanine codon) or in nuclear-encoded
tryptophan codons (Fig. 4c). Data from biological replicates
showed that this was reproducible (Supplementary Fig. S3A).
qRT–PCR measurements indicated comparable expression levels
of the mutated tRNA(Trp)5556G4A and tRNA(Trp)wt in wt and
tRNA(Trp)5556G4A mutant mitochondria (Fig. 4d, upper panel).
Moreover, immune-precipitation analysis of mitochondrial ribo-
somes showed comparable enrichment levels (Fig. 4d, lower
panel). This indicates that the 5556G4A mutation in mitochon-
drial tRNA(Trp) does not lead to rapid degradation and does not
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Figure 2 | Reproducibility and quality control of modified ribosome profiling protocol. (a) Correlation between ribosome profiling data set replicates in

the modified ribosome profiling protocol. (b) Correlation between RNAseq data sets in the modified ribosome profiling samples. (c) In-frame RPF

abundance for nuclear-encoded genes in two modified ribosome profiling replicate samples. Error bars indicate standard deviations across the genes with

at least 100 RPFs (n¼ 5579 for sample #1 and n¼ 7108 for sample #2). (d) Abundances of mRNA and contamination in the conventional and modified

ribosome profiling protocol samples. (e) Coverage around START and STOP codons in modified ribosome profiling sample #1.
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affect loading into the ribosomes. However, despite the dramatic
changes observed in the distribution pattern of mitochondrial
RPFs, the TE was not affected in the tRNA(Trp)5556G4A sample
(Fig. 4e). Altogether, our observations indicate that the expression
of tRNA(Trp)5556G4A enforces relocation of mitochondrial
ribosomes to tryptophan codons.

Next, we asked whether the relocation of ribosomes to
tryptophan codons in the tRNA(Trp)5556G4A mitochondria is a
result of stalling, and therefore impacts on the downstream
translation process. We aligned the first tryptophan of each
mitochondrial transcript and plotted RPF density. Compared
with wt mitochondria, tRNA(Trp)5556G4A mitochondria mani-
fested increased abundance of RPFs centered at the first
tryptophan codons of mRNAs, and reduced abundance of RPFs
downstream of it (Fig. 5a). This trait indicates stalling of the

ribosome at tryptophan. To support global ribosome stalling, we
aligned all mitochondrial transcripts and plotted RPF density
along the transcripts. Figure 5b shows a cumulative density of
RPFs and clearly indicates a significant reduction in RPF density
at the 30 half of the transcripts in the tRNA(Trp)5556G4A

mitochondria compared with tRNA(Trp)wt. Furthermore, this
global effect was observed at the level of the individual transcripts.
Figure 5c presents two examples (MT-ND3 and MT-ND5) of the
change in RPF density along mitochondrial genes in
tRNA(Trp)5556G4A mutant and wt mitochondria. The change
in RPF density generally showed good correlation with the
appearance of tryptophan codons along the mitochondrial
transcripts (green dashed lines in Fig. 5c and Supplementary
Fig. S4), while the tryptophan-less MT-ND4L transcript showed a
similar RPF pattern in control and mutant mitochondria. Thus,
our results demonstrate the general effect of tRNA(Trp)5556G4A

mutation on mitochondrial translation, pausing ribosomes at
tryptophan codons and altering ribosomal density on mitochon-
drial mRNAs.

Last, the stalling of ribosomes in the tRNA(Trp)5556G4A

mutant mitochondria presented us with the possibility to examine
the RPFs generated during ribosome progression. In particular,
whether stalled ribosomes preferentially produce a certain type of
RPFs. As tryptophan codons are enriched at the center of the
RPFs in the tRNA(Trp)5556G4A mutant mitochondria, our model
(Fig. 3d) predicts accumulation of long RPFs. Figure 5d shows
that ribosomes from cybrids with tRNA(Trp)5556G4A mitochon-
dria produce longer RPFs than cells with wt mitochondria.
This phenomenon was reproduced in biological replicates
(Supplementary Fig. S3B). A very moderate increase in cytosolic
RPFs was observed too, perhaps due to metabolic changes the
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Table 1 | Enzymatic activity of respiratory complexes I–V in
the tRNA(Trp)5556G4A mutant cybrid and control cells.

tRNA(Trp)5556G4A Control

CI-Q 11.9 316.7mU mU� 1 CS
CI-D 17.9 501.7mU mU� 1 CS
CII 334.4 746.3mU mU� 1 CS
CIII 161.7 895.0mU mU� 1 CS
COX 43.4 333.4mU mU� 1 CS
SCC 122.8 406.1mU mU� 1 CS
CS 1,000.0 1,000.0mU mU� 1 CS

Values are normalized to citrate sythase activity.
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cells experience in the presence of dysfunctional mitochondria.
Altogether, our results show, for the first time at a nucleotide
resolution, how a mutation in tRNA disturbs translation,
and how this information can be used to decipher ribosome
progression.

Discussion
Impaired mitochondrial protein translation affects organismal
development, function and ageing, and is a cause for early
mortality in humans. Precise measurement of protein translation
in the mitochondria is therefore crucial in understanding why
malfunctioning occurs. Distinct characteristics of mitochondrial
and cytosolic translation machineries however hampered faithful
translation measurements using ribosomal profiling. By including
several modifications to the ribosomal profiling protocol we show
that efficient capturing of cytosolic and mitochondrial ribosomes
RPFs in a single experiment is possible.

Our adapted protocol provides a useful new tool for
mitochondrial research. It allowed us to show that a genetic
disorder caused by a mutated tRNA(Trp)5556G4A leads to stalling
of ribosomes on mitochondrial genes. The stalled positions
are strongly enriched for tryptophan codons, and inversely
tryptophan codons show a large increase in RPFs with respect

to wt mitochondria. Furthermore, mitochondria expressing
tRNA(Trp)5556G4A showed an increase of ribosomes at the
50 half of transcripts, and a decrease at the 30 half. Thus, the
point mutation in the mitochondrial-tRNA encoding for
tryptophan has a vast effect on ribosome progression and rate
of translation along the transcripts. We did not detect any
prominent change in the translation in the cytosol, indicating
limited effect to the mitochondria. Intriguingly, not all
mitochondrial tryptophan codons induced stalling (Fig. 5c and
Supplementary Fig. S4), suggesting that other factors, such
as mRNA structure, modification and composition, might
influence the usage of mutated tRNA by mitochondrial
ribosomes.

Our findings also infer, for the first time, mitochondrial
ribosome progression from sequencing-based data analyses.
Mitochondrial ribosomes display a bi-modal size distribution
of RPFs, peaking at 27 and 33 nt, in contrast to the single
peak at 30 nt observed from cytosolic ribosomes. This observation
suggests a parallel between mitochondrial and bacterial ribo-
somes, since a similar observation was recently made for the
latter13. Altogether, the distribution of mitochondrial RPFs,
their relative position with respect to mRNA, and changes due to
a disease-causing tRNA mutation, suggest a model for ribosome
movement (Fig. 3d) and stalling (Fig. 6).
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Methods
RNA sequencing. RNA was isolated using Trizol reagent (Invitrogen). RNASeq
libraries were prepared using the TruSeq RNA Sample Prep Kit v2 (Illumina)
following the manufacturer’s instructions. In brief, RNA was fragmented, then
first-strand cDNA was prepared using the kit-supplied 1st Strand Master Mix and
Superscript III (Life Technologies) followed by second strand cDNA synthesis.

Libraries were amplified by PCR for 12 cycles and sequenced on a HiSeq 2000
System (Illumina).

Alignment of raw data. 50 and 30 adapters were clipped from ribosome profiling
reads prior to alignment. rRNA and tRNA fragments were cleaned by aligning to
databases of rRNA and tRNA (compiled from Ensembl (http://dec2011.archive.
ensembl.org/index.html) categories ‘rRNA’, ‘rRNA_pseudogene’ and ‘Mt_rRNA’
and the genomic tRNA database14 for hg19 respectively) in two alignment steps
and removing reads with one or more hits. Cleaned data was aligned to hg19 using
Tophat15 and splice junctions of the transcriptome that was assembled by merging
Ensembl, Refseq and Broad novel transcripts16 using the gffread utility supplied
with the cufflinks package17. Only primary alignments (that is, not having SAM
flag 0x256) with mapping quality Z10 were kept.

Size distribution analysis. Valid alignments were assigned to genes using htseq-
count (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html) and
only reads unambiguously assigned to a gene were counted. The gene-wise read
density over the read sizes was averaged across genes with at least 100 reads.

Periodicity analysis. Coding sequence (CDS) regions were extracted from
Ensembl and the 50 ends of reads were offset 12 nucleotides in the 50 direction to
match the P-site location of ribosomes (that is, the currently ‘read’ codon). If reads
aligned unambiguously to a single gene and unambiguously to a single frame of
one or more transcripts of that gene they were assigned to that frame.

TE analysis. Genewise readcounts (in CDS for ribosome profiling data; over all
exons for RNAseq data) were obtained using htseq-count (in ‘union’ mode, the
default) and Ensembl annotations. Translational efficiencies were calculated as the
normalized ratios (by total read counts) of RNAseq and ribosome profiling data

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

20 25 30 35 40

Read length

R
el

at
iv

e 
ab

un
da

nc
e

Control

tRNATrp mutant

Nuclear

Mitochondrial

0.00

0.25

0.50

0.75

1.00

M
T

-N
D

3

0.00

0.25

0.50

0.75

1.00

M
T

-N
D

4L

0.00

0.25

0.50

0.75

1.00

M
T

-N
D

5

C
um

ul
at

iv
e 

R
P

F
 d

en
si

ty

5′ end 50% 3′ end

Relative position in transcript

Sample

Control
Trp mutant

TGA
TGG

Codon

0.0

0.2

0.4

0.6

0.8

200 0

Distance to first tryptophan codon

N
or

m
al

iz
ed

 a
ve

ra
ge

 R
P

F
 d

en
si

ty
on

 m
ito

ch
on

dr
ia

l g
en

es

Sample

Control
Trp mutant

0.00

0.25

0.50

0.75

1.00

5′ end 25% 75% 3′ end

Relative position along CDS

A
ve

ra
ge

 c
um

ul
at

iv
e 

R
P

F
 d

en
si

ty
ov

er
 m

ito
ch

on
dr

ia
l g

en
es Sample

Control
Trp mutant

100

75%25%

50%

Figure 5 | tRNA(Trp)5556G4A stalls ribosomes at tryptophan codons and causes a change in RPF size distribution. (a) RPF density from the 50 end of

transcripts up to the first tryptophan codon occurrence averaged over the 13 protein-coding mitochondrial transcripts. (b) Cumulative RPF density

normalized over the 13 protein-coding mitochondrial transcripts. (c) Example of the cumulative density of RPF density along the mitochondrial genes

MT-ND4L (having no Trp codons), MT-ND3 and MT-ND5, in wt and tRNA(Trp)5556G4A mutant cybrids. (d) The relative abundance of RPF length in

control and tRNA(Trp)5556G4A mutant cybrids.

tRNA-Trp mutant
Mitochondria

Wild type
Mitochondria

27 nt; 9 codons 27 nt; 9 codons
Anticodon

33 nt; 11 codons

Nascent
peptide

mRNA
W

W

W

Ribosome

27 nt; 9 codons 27 nt; 9 codons

Nascent
peptide

mRNA

mRNA
marker

tRNA-Trp

Mutant
tRNA-Trp

Anticodon
33 nt; 11 codons

W

W

W

Ribosome

Figure 6 | Model for ribosome stalling. (a) Schematic model for

ribosome stalling at codons translated by affected tRNAs, explaining the

unbalanced generation of long RPFs in mutant mitochondria.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3886 ARTICLE

NATURE COMMUNICATIONS | 4:2886 | DOI: 10.1038/ncomms3886 | www.nature.com/naturecommunications 7

& 2013 Macmillan Publishers Limited. All rights reserved.

http://dec2011.archive.ensembl.org/index.html
http://dec2011.archive.ensembl.org/index.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www.nature.com/naturecommunications


over the mitochondrial genes. TMM normalization was applied to RNAseq and
ribosome profiling data using the R package ‘edgeR’18.

Correlation of short and long RPFs. Abundances of RPFs of 27 and 33 nt in length
per mitochondrial protein coding transcript were used to calculate cross-correlation.
The cross-correlation values were adjusted by multiplying with the length of the
transcript. The normalized cross-correlation was averaged over the 13 transcripts.

Codon enrichment. RPFs assigned uniquely to the CDS of a mitochondrial gene were
used to determine codon enrichment. For each RPF the current P-site was estimated
by adjusting 17 nt from the 50 end of the RPF. Only P-sites which were in-frame with
the CDS were counted. The total number of each of the 64 codon occurences was
counted in the control and mutant sample, and the relative frequencies were calculated.
From this, the differences between mutant and control were calculated.

Cell culture and western blotting. BJ primary fibroblast and cybrid cells were
cultured in DMEM supplemented with 10% heat-inactivated fetal calf serum (FCS)
in 5% CO2 at 37 �C. Cell extracts were separated on 10% SDS–PAGE gels and
transferred to Immobilon-P membranes (Milipore). Antibodies used were mt-
RPL11 (Cell Signaling, 1:1,000), RPL10a (Santa Cruz, 1:1,000), RPL7 (Abcam,
1:1,000) and RPS6 (Cell Signaling, 1:1,000). Validation and homoplasmy of the
cybrids harboring the tRNA(Trp)5556G4A mutation were verified by tRNA
sequences obtained in the ribosome profiling protocol (see Supplementary Fig. S6,
which also shows full-length images of immunoblots).

Ribosome profiling. Approximately 30� 106 cells were treated with chlor-
amphenicol (100 mg ml� 1) for 15 min and cycloheximide (100 mg ml� 1) for 5 min.
Cells were lysed in buffer B (20 mM Tris–HCl, pH 7.8, 100 mM KCl, 10 mM
MgCl2, 1% Triton X-100, 2 mM DTT, 100 mg ml� 1 chloramphenicol, 100mg ml� 1

cycloheximide, 1� Complete protease inhibitor). Lysates were centrifuged at
1300g and the supernatant was treated with 2 U ml� 1 of RNase I (Ambion) for
40 min at room temperature. Lysates were fractionated on a linear sucrose gradient
(7–47%) using the SW-41Ti rotor at 36,000 r.p.m. (221632.5g) for 2 h. Fractions
enriched in mito-monosomes and cytosolic monosomes were identified by western
blotting, pooled and treated with proteinase K (Roche) in 1% SDS. Released RPFs
were purified using Trizol reagent (Invitrogen) following the manufacturer’s
instructions. Libraries for deep sequencing were prepared as described previously19.
In brief, digested fragments between 25–36 nucleotides were gel-purified and
dephosphorylated using T4 polynucleotide kinase (New England Biolabs) for 5 h at
37 �C in buffer containing 100 mM MES-NaOH, pH 5.5, 10 mM MgCl2, 10 mM
b-mercaptoethanol and 300 mM NaCl. 30 adaptor was added with T4 RNA
ligase 1 (New England Biolabs) for 2.5 h at 37 �C. Ligation products were
50-phosphorylated with T4 polynucleotide kinase for 30 min at 37 �C. 50 adaptor
was added with T4 RNA ligase 1 for 2 h at 37 �C. All the sequencing experiments
were performed on a HiSeq 2000 System (Illumina).

Mitoribosome–tRNA complex inmunoprecipitation. Cybrid cells were fixed with
1% formaldehyde for 10 min at 37 �C, quenched with 2.5 M glycine for 5 min and
washed with 1� PBS. Cell pellets were resuspended in lysis buffer (150 mM NaCl,
50 mM Tris, 0.5% Sodium deoxycholate, 0.2% SDS, 1% NP-40) supplemented with
RNAseOUT (Invitrogen) and Complete protease inhibitors (Roche). Protein-G beads
were washed and pre-incubated with mt-RPL11 antibody (Cell Signaling) (1:100) for
1 h at room temperature. Extracts and beads were incubated at 4 �C for 1 h. Beads
were washed thrice with 1� PBS, 0.1% SDS, 0.5% NP-40 and twice with 5� PBS,
0.1% SDS, 0.5% NP-40. RNA was reverse crosslinked in the presence of proteinase
K (Roche) at 65� for 3 h. RNA was purified using Trizol reagent (Invitrogen).

Primer sequences. mt-tRNA(TRP) forward:

50-GAAATTTAGGTTAAATACAGACCAAGA-30 ;
mt-tRNA(TRP) reverse:
50-GAAATTAAGTATTGCAACTTACTGAGG-30 ;
mt-tRNA(GLU) forward:
50-ACAACGATGGTTTTTCATATCATT-30;
mt-tRNA(GLU) forward:
50-TTCTCGCACGGACTACAACC-30 ;
Gapdh forward:
50-ACCCAGAAGACTGTGGATGG-30 ;
Gapdh reverse:
50-TCTAGACGGCAGGTCAGGTC-30
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