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Abstract
The development of improved methods for early detection and characterization of cancer presents
a major clinical challenge. One approach that has shown excellent potential in preclinical and
clinical evaluation is molecular imaging with small-scaffold, non-antibody based, engineered
proteins. These novel diagnostic agents produce high contrast images due to their fast clearance
from the bloodstream and healthy tissues, can be evolved to bind a multitude of cancer
biomarkers, and are easily functionalized by site-specific bioconjugation methods. Several small
protein scaffolds have been verified for in vivo molecular imaging including affibodies and their
two-helix variants, knottins, fibronectins, DARPins, and several natural ligands. Further, the
biodistribution of these engineered ligands can be optimized through rational mutation of the
conserved regions, careful selection and placement of chelator, and modification of molecular
size.

Introduction
Molecular imaging can provide critical clinical information regarding the presence,
concentration, and localization of cancer biomarkers in vivo. The data, which can be
obtained dynamically or longitudinally if desired, empowers early detection, patient
stratification, and treatment monitoring. A major challenge in this field is the development
of high affinity, specific ligands for the multitude of important biomarkers. Directed
evolution and other strategies position engineered proteins to offer a robust, high throughput
means for ligand generation (Figure 1). Many of these engineered proteins have shown
promising results in preclinical evaluation as well as early clinical results. While antibodies
and their fragments have been explored [1], their large size and slow clearance are not ideal
due to the functional requirement of reduced background signal necessary for imaging
contrast; moreover, for targeting of poorly vascularized tumors, such as those in early
formation, large size slows extravasation and delivery [2]. For these reasons, as well as
benefits in stability, production, and chemical conjugation, alternative protein topologies
have been studied as scaffolds for molecular imaging. Short linear and cyclic peptides have
exhibited significant success as molecular imaging agents [3], although their robustness in
engineering high affinity toward novel targets is limited. Thus, this review will focus on
advances in molecular imaging of cancer, particularly positron emission tomography (PET),
single-photon emission computed tomography (SPECT), and gamma-camera imaging using
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engineered, folded, non-antibody proteins (Figure 2, Table 1). The majority of the research
has been performed using subcutaneous xenografted tumors in mice. There are exceptions to
these experimental systems, including clinical data, which will be noted.

Protein-Based Molecular Imaging Agents
Affibody

The affibody is a 58 amino acid, three helical bundle [4]. Typically, randomization of 13
amino acids on the surface of helices 1 and 2 is used to generate novel binding ligands. The
most extensively studied class of affibodies is those targeting human epidermal growth
factor receptor 2 (HER2). The second generation HER2-binding affibody, ZHER2:342, was
engineered to bind with 22 pM affinity [5], and has successfully imaged HER2-expressing
tumor xenografts in mice when labeled with 125I [5], 111In [6], 99mTc [7], 18F [8], 114mIn
[9], 124I [10], 68Ga [11], and 11C [12]. Tumor targeting is effective across many mouse
models with a median tumor uptake of 9 %ID/g at 4 h (range: 1 – 26 %ID/g), tumor-to-
blood ratio median of 31 (range: 1.5 – 187), and tumor-to-muscle ratio median of 61 (range;
3 – 650). Kidney uptake is generally high with a median of 111 %ID/g (range 2 – 324 %ID/
g). Hepatic retention is minimal with a median of 1.5 %ID/g (range 0.2 – 19 %ID/g).
ZHER2:342 has been extensively modified to maximize imaging contrast and decrease signal
in clearance organs. Clinical translation has been initiated as one derivative was labeled
with 111In and 68Ga for SPECT and PET imaging of metastatic breast cancer patients [13].
The tracers effectively imaged metastases and were well tolerated.

Three different anti-epidermal growth factor receptor (EGFR) affibodies (0.9 – 50 nM
affinity) labeled with 111In identified tumors using a gamma camera, exhibiting 2.4-3.4
%ID/g tumor with tumor-to-blood and tumor-to-muscle ratios of 7-15 and 18-27 [14-16].
One of these affibodies was labeled at a unique Cys residue with 64Cu via a 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. PET imaging in
xenografted mice exhibited 12±2 %ID/g tumor but only 1.04±0.01 tumor-to-blood at 4 h.
Pre-injection of 50 μg cold affibody elevated tumor uptake to 17±4 %ID/g with 10±3 tumor-
to-blood and 49±11 tumor-to-muscle [17]. Separately, this affibody was labeled with an 18F
precursor. PET imaging exhibited 8±1 %ID/g tumor with 2.6±0.5 tumor-to-blood and 37±13
tumor-to-muscle at 3 h [18].

An affibody engineered to 0.5 nM affinity for insulin-like growth factor type I receptor
(IGF1R) labeled with 111In yielded 1.3±0.1 %ID/g tumor with 2.5±0.2 tumor-to-blood and
4.3±1.0 tumor-to-muscle at 4 h [19]. However, no significant contrast was observed for
tumor relative to pancreas, spleen, stomach, and colon. Contrast was modestly improved
using 99mTc labeling via an HEHEHE purification tag [20].

Two-helix affibody
A 36 amino acid two-helix derivative has been explored as a smaller alternative to the
affibody via removal of the third helix. The resulting destabilization was partially
compensated by stabilizing mutations and disulfide bonding [21,22]. The two-helix affibody
has only been able to achieve low nanomolar affinity to date [21]. The two-helix affibody
has been applied to molecular imaging in HER2-expressing tumor xenograft models
successfully when labeled with 68Ga [23], 18F [24], and 111In [25]. In a comparative study,
the two-helix affibody (2 nM affinity) showed higher tumor-to-blood ratio than the parental
affibody (78 pM affinity) [25]. However, the tumor uptake of the two-helix derivative was
40% lower than the parental clone. Further stabilization and affinity maturation could make
the two-helix affibody an advantageous option for high-contrast molecular imaging.
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Knottin
Knottins are 30-50 amino acid polypeptides containing three disulfide bonds that form a
knotted structure [26]. Binding motifs have been grafted into one to two loops to provide
binding functionality. Randomizations of loop lengths, motif position, and surrounding
amino acids have been used for affinity maturation. An integrin-binding motif was grafted
into Ecballium elaterium trypsin inhibitor II and evolved for mid-nanomolar affinity to
integrin αvβ3 with cross-reactivity for integrins α5β1 and αvβ5. 64Cu radiolabeling via
DOTA enabled PET imaging with 4.5±1.2 %ID/g tumor, 6±1 tumor-to-blood, and 17±8
tumor-to-muscle at 1 h and 4.0±0.7 %ID/g tumor, 42±9 tumor-to-blood, and 21±13 tumor-
to-muscle at 4 h [27]. Renal retention was 4±1 %ID/g at 1 h while hepatic signal was
2.2±0.2 %ID/g. Minimal degradation was observed in blood, minor breakdown in tumor,
and >50% degradation in kidneys. A knottin variant with six loop mutations, 2.5D, was then
labeled with 18F so that radioisotope kinetics would better match pharmacokinetics [28].
Effective tumor imaging was observed with 2.6±0.7 %ID/g tumor at 0.5 h. Kidney and liver
uptake were similarly decreased relative to 64Cu-knottin values. In a comparative study in a
transgenic mouse model with nascent lung tumors, the 64Cu-knottin tracer exhibited superior
tumor-to-lung ratios (6.0±0.6 versus 4.4±0.7) relative to 18F-fluorodeoxyglucose [29]. The
2.5D knottin was also dually labeled with 64Cu and near infrared fluorophore as a
multimodality probe, which improved tumor retention but elevated renal and hepatic signal
[30].

Integrin-binding motifs were also grafted and evolved to mid-nanomolar affinity in the
Agouti-related protein knottin to yield clone 7C. 64Cu labeling enabled effective PET
imaging of xenografted tumors with rapid uptake including 2.7±0.9 %ID/g tumor at 1 h and
6.6±1.2 tumor-to-blood and 17±5 tumor-muscle by 2 h [31]. Kidney retention was higher
(60±18 %ID/g at 2 h) than with the Ecballium elaterium trypsin inhibitor II scaffold. 111In
labeling of this knottin yielded 5.7±1.6 %ID/g tumor at 0.5 h but rapid reduction in tumor
signal (2.5±0.4 %ID/g tumor at 2 h) [32]. Renal retention was improved relative to the 64Cu
probe (34±8 %ID/g). 18F radiolabeling via 18F-fluoropropionate yields effective PET
imaging with a more translatable isotope: 2.5±0.2 %ID/g tumor, 20±2 %ID/g kidney, 7±1
tumor-to-muscle, and 4±1 tumor-to-blood at 1 h [33].

The breadth of knottin scaffolds and their targets was expanded as Momordica
cochinchinensis trypsin inhibitor II was grafted with integrin αvβ6-binding motif and
evolved to 3-6 nM affinity [34]. 64Cu labeling yielded 4.3±0.7 %ID/g tumor at 1 h with 9±2
tumor-to-muscle but 75±5 %ID/g kidney. Grafting this loop onto a serine-rich Lens culinaris
trypsin inhibitor knottin reduced renal retention to 18±4 %ID/g, although tumor uptake was
reduced two-fold. This tracer also effectively imaged orthotopic pancreatic tumors.
Radiolabeling with 18F yielded effective PET imaging as early as 0.5 h with significant
decline in renal retention [35]. In further evidence of the breadth of this topology,
fluorophore-conjugated agatoxin was successfully able to image integrin αvβ3-expressing
U87MG glioblastoma xenografts in mice [36].

Fibronectin Domain
The tenth type III domain of human fibronectin (also known as monobody or Adnectin) is a
94 amino acid β-sandwich protein. Diversification of 10-24 amino acids in one to three
solvent-exposed loops imparts novel binding activity [37,38]. Recently, the fibronectin
scaffold was validated for in vivo molecular PET imaging in mouse tumor xenograft models
[39]. PET imaging with a 64Cu-DOTA conjugated EGFR-binding fibronectin showed good
tumor uptake (3.4±1.0 %ID/g at 1 h), retention (2.7±0.6 %ID/g at 24 h), and contrast
(8.6±3.0 tumor-to-muscle ratio, 8.9±4.7 tumor-to-blood ratio). Dynamic PET indicated
effective contrast was present as early at 15 minutes post-injection. High renal retention was
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partially alleviated by 18F radiolabeling. Biodistribution was further modified by mutation of
hydrophobic and charged residues [40]. A 64Cu-DOTA-fibronectin specific to CD20 has
also been developed and tested in a humanized transgenic mouse model for B-cell imaging
(Arut Natarajan, BJH, Sanjiv Gambhir, unpublished). Resulting PET images showed
encouraging results for the application of this fibronectin in imaging non-Hodgkin's
lymphoma. Both spleen uptake and spleen-to-blood ratio for the 64Cu-DOTA-fibronectin
were significantly higher than 64Cu-DOTA-rituximab, showing that the biodistribution
properties and imaging ability of the fibronectin domain are superior to monoclonal
antibodies.

Designed Ankyrin Repeat Protein
The designed ankyrin repeat protein (DARPin) is composed of 4-6 repeat units of 33 amino
acids making one β turn followed by 2 α-helices. Diversification of 7 amino acids per repeat
unit yields novel binding activity [41]. 99mTc(CO)3-labeled DARPins with affinities
between 90 pM and 270 nM have been applied to imaging HER2-expressing tumor
xenografts in mice using SPECT/CT [42]. The tumor uptake ranged from 1.5±0.2 %ID/g for
the weakest affinity to 9.1±1.8 %ID/g for the strongest affinity DARPin at 1 h. The tumor-
to-blood ratio for the 90 pM agent is 27±15 at 4 h, however, kidney uptake is 239±33 %ID/
g. Poly(ethylene glycol) (PEG) conjugation increased tumor uptake at late time points but
reduced tumor-to-blood ratios; ratios above 1 were not observed until the 24 h post injection
time point. Biodistribution for a fusion of Pseudomonas aeruginosa exotoxin A and an
EpCAM-specific DARPin was determined in vivo with a Cy5.5-conjugated DARPin fusion
construct [43]. Ex vivo analysis 48 h post injection shows the highest localization in the
EpCAM-expressing tumor, providing greater signal than the clearance organs.

Natural Ligands
Targeting agents can also be derived from natural ligands as these molecules often have high
specificity and affinity for their respective receptors. However, the major disadvantage of
using these ligands for molecular imaging is their potential agonistic effects. Despite this,
several natural ligands have been used. Vascular endothelial growth factor (VEGF) has been
used to image angiogenesis in tumors using several different radioisotopes including 123I
[44], 64Cu [45], and 68Ga [46]. A single chain analogue of VEGF has also been used to
image VEGF receptor-expressing tumor xenografts [47,48]. Radiolabeled EGF has been
applied for imaging of EGFR-expressing tumors in mouse models, although high liver signal
is a noted problem in multiple studies [49,50]. Radiolabeled annexin V has been utilized for
treatment monitoring applications. Annexin V, which binds the apoptosis marker
phosphatidylserine, has been used to assess the effectiveness of radiation therapy [51] and
doxorubicin-based therapy [52]. Annexin V effectively predicted response to chemotherapy
with 94% accuracy in separating responders from non-responders [53].

Designing Delivery
It is evident that disparate protein topologies can be engineered for in vivo molecular
recognition and delivery of radioisotopes to tumors. As the field continues to mature, we
should strive to identify the ideal molecule for the application of interest, to maximize tumor
uptake, minimize off-target retention, and tune kinetics for efficacy, logistics, and patient
safety. Quantitative design rules would be tremendously useful to optimize performance.
Select studies have been performed that initiate this effort.

Molecular Size
As previously stated, small size aids permeability across the vascular wall [2,54], which
speeds tumor uptake. It also speeds clearance, which is beneficial for low background but
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reduces the input function available for tumor targeting. A mathematical compartmental
model predicts uptake and specificity are maximized by small proteins [2], which is in
agreement with experimental data. A HER2-targeted affibody exhibited ≥10-fold greater
tumor-to-blood relative to the antibody trastuzumab at 6, 24, and 72 h [10] (Figure 3). 7 kDa
affibody monomers yielded a median of 3.4-fold higher tumor uptake than 15 kDa affibody
dimers despite blood clearance that was comparable to the monomer (median 1.0-fold)
[5,14,55-57]. A two-helix affibody derivative yielded 2.7-fold higher tumor-to-blood and
1.8-fold higher tumor-to-muscle at 1 h relative to the larger three-helix affibody albeit with a
40% reduction in tumor uptake [25]. A 15 kDa DARPin also exhibited 2.3-fold greater
tumor signal at 1 h and similar tumor signal at 4 h relative to a 35 kDa conjugate with PEG
despite an increased blood concentration for the PEGylated domain [42].

Affinity
The affinity of the engineered probe for its target affects retention in the tumor site. 111In-
DOTA-affibodies engineered to 117 pM, 157 pM, and 3.8 nM affinities for HER2 were
compared in SKOV-3 (HER2high) and LS174T (HER2low) tumor xenograft models [58]. In
the SKOV-3 model, tumor uptake was indistinguishable at 4 h (13±3, 16±7, and 14±1 %ID/
g respectively), but at 24 h, the tumor signal was 2-fold higher for the picomolar affinity
affibodies. In the LS174T model, the tumor uptake for the 3.8 nM affinity was only 1.7±0.2
%ID/g at 4 h compared to 7.4±1.6 and 10.8±1.3 %ID/g for the picomolar affibodies,
respectively. 99mTc-DOTA-DARPins with 90 pM and 1.5 nM affinities for HER2 in
SKOV-3 model showed similar results, with tumor uptakes being indistinguishable at 4 h,
but the 90 pM affinity showing better retention at longer time points [42]. The tumor uptake
of these DARPins became distinguishable when a 10 nM DARPin is compared to the 90 pM
DARPin over all time points.

Hydrophilicity
Four fibronectin domains were engineered with a range of hydrophilicities to study the
impact on biodistribution. Renal retention was observed to positively correlate with
hydrophilicity whereas hepatic retention was inversely correlated [40]. Moreover, using
phylogenetic sequence frequency, a metric was identified to select appropriate mutations to
introduce hydrophilicity. Thus, protein hydrophilicity is an addressable modulator of
physiological distribution. The decision between renal and hepatic retention can be made
based on the application; else, hydrophilicity can be introduced to minimize hepatic
retention and renal retention can be reduced by other means.

Molecular Charge
Modification of molecular charge has impacted renal retention in numerous studies,
although the impacts of total and net charge are unclear. Charge removal from cystine knots
reduced renal retention [34]. Removal of two or three lysines from an affibody chelator
eliminated 74 and 86 % of renal retention [59]; removal of two or three basic residues
eliminated 91 and 84 %ID/g tumor [7]. Removal of six acidic and five basic residues from
fibronectin decreased renal retention by 34% [40]. In a separate fibronectin clone, removal
of four acidic and two basic residues also reduced renal retention by 34%; however, removal
of one or two more acidic residues re-elevated renal retention.

Chelator
Both chelator structure and location of ligand conjugation can be impactful on in vivo
biodistribution. The comparison of three 111In-labeled macrocyclic chelators, DOTA, 1,4,7-
triazacyclononane-N,N′,N″-triacetic acid (NOTA), and 1-(1,3-carboxypropyl)-4,7-
carboxymethyl-1,4,7-triazacyclononane (NODAGA), using anti-HER2 affibodies showed
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NOTA to have a two-fold high liver signal than the others at 4 h [60]. NODAGA
demonstrated the fastest clearance kinetics providing the highest tumor-to-blood imaging
contrast whereas DOTA had a slightly higher tumor uptake due to longer plasma residence.
In addition to ring structures, amino acid based chelators (3 residues in length) provide high
labeling efficiency and may be chosen based on imaging background requirements. In
particular, the kidneys and intestines are commonly sources for off-target uptake and a
tradeoff may be made between the two with chelator choice. Positively or negatively
charged chelators (Asp-Ser-Asp and Lys-Lys-Lys) showed high kidney signal (33 and 120
%ID/g) [59,61] whereas neutral chelators (Ser-Ser-Ser and Gly-Gly-Gly) reduced kidney
uptake (19 and 6 %ID/g) [59,62]. The location of chelator conjugation is also impactful on
biodistribution; C-terminal DOTA outperformed those placed N-terminal and mid-sequence
with a two-fold improvement in tumor-to-blood signal [63].

In summary, several protein topologies provide intriguing preclinical results, and the initial
clinical results with the affibody are encouraging. The field should aim to continue to
broaden the target portfolio, elucidate generalizable means to optimize specific targeting –
both in terms of tumor uptake and off-target retention – and translate agents into the clinic.
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Highlights

• Molecular imaging is a valuable clinical tool for cancer detection and treatment.

• Non-antibody protein scaffolds are an effective source of molecular imaging
agents.

• Affibodies, knottins, fibronectins, and DARPins have imaged many cancer
biomarkers.

• Ligand biophysical properties can be modulated to optimize in vivo
performance.
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Figure 1.
Schematic for molecular imaging agent development. Several scaffolds have been validated
for in vivo molecular imaging. Selection of an appropriate scaffold, followed by directed
evolution – for binding and delivery characteristics – and radiolabeling yield an imaging
agent with potent delivery and retention properties capable of producing high contrast
molecular images.
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Figure 2.
Cartoon structure with surface representation of protein scaffolds used in molecular imaging
applications. Variable regions are highlighted in red. Conserved portions are shown in grey.
A: affibody (PDB: 2B88); B: knottin (1HYK); C: fibronectin (1TTF); D: two-helix affibody
(modified from three-helix affibody 2KZJ); E: DARPin (2JAB); F: natural ligand (EGF)
(2KV4).
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Figure 3.
Female BALB/c nu/nu mice with HER2-expressing NCI-N87 xenografts were imaged via
PET using 124I-PIB-ZHER2:342 affibody (A-C) and 124I-PIB-trastuzumab (D-F). Mice were
sacrificed and imaged 6 (A and D), 24 (B and E), and 72 h (C and F) post injection. Urinary
bladders were removed before scanning. Figure reproduced.[10]
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Table 1
Characteristics of non-antibody molecular imaging agents

Name Topology Amino Acids Typical Paratope

Affibody triple α-helical bundle 58 surface of helices 1 and 2 (13 amino acids)

Knottin knotted 3-disulfide core 30 - 50 loop 1

Fibronectin β sandwich 94 1-3 loops (10-24 amino acids)

DARPin 4-6 repeats of: β turn + two α helices 130 - 200 β turn and first α helix (7 amino acids)

Two-Helix Affibody 2 α-helices 35 surface of helices 1 and 2 (13 amino acids)

Natural Ligands e.g. VEGF, EGF, annexin V variable natural interface

EGF(R): epidermal growth factor (receptor)

EpCAM: epithelial cell adhesion molecule

HER2: human epidermal growth factor receptor type II

IGF1R: insulin-like growth factor type I receptor

VEGF(R): vascular endothelial growth factor (receptor)
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