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During a decade of proof-of-principle analysis in model organisms, protein networks have been used to further the
study of molecular evolution, to gain insight into the robustness of cells to perturbation, and for assignment of new
protein functions. Following these analyses, and with the recent rise of protein interaction measurements in
mammals, protein networks are increasingly serving as tools to unravel the molecular basis of disease. We review
promising applications of protein networks to disease in four major areas: identifying new disease genes; the study
of their network properties; identifying disease-related subnetworks; and network-based disease classification.
Applications in infectious disease, personalized medicine, and pharmacology are also forthcoming as the available
protein network information improves in quality and coverage.

With the completion of the Human Genome Project, focus has
shifted from cataloging the “parts list” of genes and proteins to
mapping the networks of interactions that take place among
them. Understanding this network is important because proteins
do not function in isolation, but rather interact with one another
and with DNA, RNA, and small molecules to form molecular
machines. These machines are modular, involve both static and
dynamic assemblies of macromolecules, and transmit as well as
respond to intra- and extracellular signals (Hartwell et al. 1999).

Just as genome sequencing was first demonstrated in model
organisms, analysis of protein networks has progressed initially
and most rapidly in the yeast Saccharomyces cerevisiae. Due to its
ease of genetic manipulation, yeast has been an ideal test bed for
efforts to increase the throughput and scale of protein interac-
tion measurements, with the ultimate goal of obtaining complete
coverage of all interactions encoded by an organism. Although it
is unlikely that the current network coverage of yeast is saturat-
ing, yeast nonetheless has available the greatest number of net-
works, and many of the largest generated for any organism.
These data include yeast two-hybrid (Y2H) interaction networks
(Uetz et al. 2000; Ito et al. 2001), maps of immunoprecipitated
protein complexes (Gavin et al. 2006; Krogan et al. 2006), a large-
scale network of protein–DNA interactions (Harbison et al. 2004),
a kinase–substrate interaction map (Ptacek et al. 2005), and nu-
merous large synthetic–lethal networks (Tong et al. 2001, 2004;
Schuldiner et al. 2005; Pan et al. 2006; Collins et al. 2007). These
yeast networks have provided a superb resource for development
of new algorithmic approaches and conceptual frameworks for
analyzing molecular interactions.

In just the past two to three years, large biomolecular inter-
action networks have also become available for humans. Two
studies have applied the Y2H system to test for interactions
among large sets of human proteins (Rual et al. 2005; Stelzl et al.
2005). These studies used full-length human open reading frames
(ORFs) (Rual et al. 2005) or a combination of ORF-based clones
and cDNA libraries (Stelzl et al. 2005) to clone human genes
within Y2H bait and prey constructs. Using a prey pooling strat-
egy, an “interaction space” of ∼8100 � 8100 protein pairs was
tested by Rual et al. (2005) versus 4500 � 5500 by Stelzl et al.
(2005), yielding over 5000 novel interactions across the two data

sets. A proof-of-concept study has applied coimmunoprecipita-
tion, followed by mass spectrometry, to characterize the interac-
tors of 338 proteins that were selected based on their putative
involvement in disease (Ewing et al. 2007). In addition to experi-
mentation, several efforts have attempted to build large networks
of human protein interactions curated from prior studies in the
literature (Ramani et al. 2005; Gandhi et al. 2006) (for review, see
Mathivanan et al. 2006). The effort by Gandhi et al. summarized
in the HPRD database (www.hprd.org), currently catalogs over
38,000 human protein interactions.

With the increase in availability of human protein interac-
tion data, the focus of bioinformatics development has shifted
from understanding networks encoded by model species to un-
derstanding the networks underlying human disease (Kann
2007). Many of these newer studies are directly inspired by earlier
developments in yeast network analysis, while others are
“uniquely human.” In the remainder of this review, we briefly
describe some foundations of network analysis that have
emerged from studies in yeast, and then address more recent
developments in network analysis of human disease. These latter
developments fall into four categories: the study of network
properties of human disease genes; the use of protein networks to
implicate additional genes in disease; the identification of dis-
ease-related subnetworks; and the network-based classification of
case-control studies.

Network analysis in yeast: A brief tour

Although numerous methods have been applied to analyze gene
and protein networks in yeast, they are best understood accord-
ing to their ultimate goals of analysis. A first set of methods
(Jansen et al. 2003; von Mering et al. 2003; Bader et al. 2004; Lee
et al. 2004; Myers and Troyanskaya 2007) was developed to clean
the noise from raw interaction measurements, leading to higher-
confidence networks with quantitative measures of accuracy as-
sociated with each interaction. Typically, these methods inte-
grate many sources of evidence for protein interaction, using
them as features for a classifier of interactions/noninteractions.
The classifier is trained on a gold-standard set of true and false
interactions and assigns to each possible interaction a confidence
score. Given a high-confidence weighted network, a second set of
methods was developed to predict new annotations for proteins,
such as protein function, localization, and functional orthology,
based on the protein’s network neighbors and other network
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information (Letovsky and Kasif 2003; Vazquez et al. 2003; Es-
padaler et al. 2005; Leone and Pagnani 2005; Bandyopadhyay et
al. 2006; Lee et al. 2006).

The remaining efforts in yeast fall into two categories, which
might be called “synthetic” and “divisive,” respectively. Syn-
thetic methods attempt to synthesize global properties of biology
through analysis of molecular interaction networks. Many analy-
ses in this category have examined how the number of interac-
tions per protein (the “degree” of each protein) is distributed over
all proteins in the network. In yeast protein–protein interaction
networks, the degree was found to follow a power law (Yook et al.
2004) or a truncated power-law distribution (Huang et al. 2007).
In complex systems, power laws are often interpreted as signa-
tures of hierarchy and robustness (see Box 1; for review, see Bar-
abasi and Oltvai 2004). Some of these authors also showed that
proteins with high degree are likely to be essential for growth
(Jeong et al. 2001). Later, Said et al. (2004) and Shachar et al.
(2007) showed that protein degree correlates with other pheno-
types in addition to essentiality. Said et al. (2004) investigated
proteins required for the response to genotoxic agents, showing
that these lay in the “middle” between nonessential and essential
proteins with respect to their average degree, network distance,
size of connected components, and clustering coefficient (Box 1).
Similar conclusions were reported by Shachar et al. (2007) for
genes involved in maintenance of telomere length.

In contrast to the above synthetic methods, divisive meth-
ods attempt to decompose or partition networks into smaller
building blocks (Alon 2006). Uri Alon and colleagues (Milo et al.
2002) searched a yeast transcriptional interaction network (link-
ing transcription factors to the genes they regulate) for instances
of each possible subnetwork topology containing three or four
proteins. They showed that certain subnetworks, which they
called network “motifs,” were highly enriched compared with
randomized networks (an example is the “feed-forward circuit,”
in which one transcription factor regulates another along with
the second factor’s regulated genes; another is “autoregulation,”

in which a transcription factor directly regulates its own gene).
Some have argued that each type of network motif encodes a
specific biological function: For instance, feed-forward loops may
correspond to sign-sensitive accelerators, which speed up the re-
sponse in an off-to-on direction, but not in an on-to-off direction
(Mangan and Alon 2003).

Beyond enriched motifs, methods have been devised to
identify all sorts of network structures, such as densely connected
network regions (for review, see Brohee and van Helden 2006),
which are suggestive of protein complexes, and paths of interac-
tions connecting membrane proteins to transcription factors
(Steffen et al. 2002; Scott et al. 2006), which are suggestive of
signaling pathways. In cases in which interaction data are avail-
able across several species, there is now a burgeoning area of
algorithm development aimed at detecting subnetwork struc-
tures that are evolutionarily conserved across multiple networks
(for review, see Sharan and Ideker 2006). Finally, there is a rich
yeast literature on methods for integrating gene-expression data
with molecular networks and pathways, with the goal of identi-
fying network “hot spots” or “expression-activated modules”
(Zien et al. 2000; Ge et al. 2001; Ideker et al. 2001, 2002; Hanisch
et al. 2002). Expression-activated modules are sets of proteins
enriched for both interaction and coexpression across several
conditions; they provide an important means of distilling the
thousands of interactions present in a typical molecular network
to arrive at a smaller number of discrete modules of activity.

Network analysis in human: Properties of disease
genes

Inspired by the findings that essential yeast proteins tend to have
high network degrees, several groups have now tailored such
analyses to focus on phenotypes related to human disease. Wachi
et al. (2005) studied genes that are differentially expressed in
lung squamous cancer tissues (Fig. 1). They tested the degree
distribution and centrality of the set of differentially expressed
genes in a human PPI network, obtained by combining curated
interactions with interactions that were transferred from model
organisms (so-called “interologs”) (Matthews et al. 2001). As a
centrality measure, they used the fraction of differentially ex-
pressed genes that were present in a k-core of the network (see
Box 1). Up-regulated genes in the cancerous tissues tended to be
highly connected and central. The authors explained this finding
by suggesting that up-regulated genes are essential for prolifera-
tion of the cancerous tissue and, hence, share the topological
characteristics of essential genes.

Jonsson and Bates (2006) investigated the network position
of 346 genes that had been implicated in a comprehensive census
of all human cancer genes (Futreal et al. 2004). They showed that
these proteins tended to have, on average, twice as many inter-
action partners as noncancer proteins. In a clustering of the net-
work (into overlapping subnetworks), the cancer proteins tended
to reside in larger clusters. Moreover, such proteins tended to
participate in more clusters than noncancer proteins.

Goh et al. (2007) created a network of human disease/
human gene associations, in which each genetic disease is con-
nected to the genes known to cause it, as documented in the
database of Online Mendelian Inheritance in Man (Hamosh et al.
2005). They found that disease genes exhibit an increased ten-
dency for their protein products to interact with one another,
tend to be coexpressed in specific tissues, and display coherent

Box 1. Network properties

Given a protein network, one can characterize a set of genes
related to a phenotype by projecting them onto the network and
testing their network properties. These properties can be com-
pared with those computed for random gene sets of the same size
to evaluate the significance of the findings. Let G = (V,E) denote a
network on a set of vertices (or nodes) V and a set of edges E. The
degree of a node is the number of edges adjacent to it. The
distance between two vertices is the length of the shortest path
connecting them in the network. G is said to be connected if there
is a path between every pair of vertices in G. An unconnected
network can be partitioned into its connected components. A
subset S of the vertices induce a subnetwork, whose edges are
those edges in E that connect two vertices from S. The k-core of G
is obtained by successively removing from G vertices of degree
less than k, until no further vertices can be removed. Given a
source vertex set and a target vertex set, the betweeness centrality
of a vertex is the relative number of shortest paths that go from a
source vertex to a target vertex. The clustering coefficient of a
vertex v is the fraction of edges that exist among pairs of neigh-
bors of v (of all possible pairs of neighbors). The distribution of
node degrees P(d) can be investigated for its power-law property.
The degree d follows a power-law distribution if P(d) �d-k, where
k > 1 is a constant.
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functions with respect to all three branches of the Gene Ontol-
ogy hierarchy (Harris et al. 2004). They also found that the vast
majority of disease genes are nonessential and, in contrast to the
above studies, have no tendency toward higher degree in the
human protein–protein interaction network. In a related work,
some of the same authors performed a similar analysis of a hu-
man gene/drug network, composed of gene-drug associations
known to the USA Food and Drug Administration (Yildirim et al.
2007).

Combining these network-based disease studies with the
original analyses of network properties in yeast, the overriding
conclusion is that genes associated with a particular phenotype
or function, including the progression of disease, are not ran-
domly positioned in the network. Rather, they tend to exhibit
high connectivity, cluster together, and occur in central network
locations. In yeast (Said et al. 2004; Shachar et al. 2007), one sees
that their network property values, such as overall degree or av-
erage distance to one another, tend to lie between those of the
essential genes and those of the nonessential ones. In humans,
some groups report an elevated degree for disease genes (Wachi et
al. 2005; Jonsson and Bates 2006), while others do not (Goh et al.
2007). Further work will be needed to resolve this discrepancy
and carefully examine the different studies for possible sources of
bias. For instance, one possible explanation is that the former
two studies focused on cancer genes in particular, while Goh et
al. (2007) investigated disease in general. A potential source of
bias, especially in literature-curated networks, is that disease-
causing proteins may have higher degrees simply because they
are better studied.

Prediction of disease-causing genes

A second area in which biomolecular interaction networks have
informed the study of human disease is in prediction of new
disease-associated genes. The key assumption in these studies is
that a network-neighbor of a disease-causing gene is likely to
cause either the same or a similar disease (Goh et al. 2007; Oti
and Brunner 2007). This concept is illustrated in Figure 2.

Oti et al. (2006) aimed to predict disease-causing genes for
genetically heterogeneous diseases in which some of the caus-

ative genes had been identified, while
for other genetic factors, only locus in-
formation was available. This scenario is
typical of large gene association studies,
in which several significant loci are usu-
ally found (containing polymorphic
markers associated with disease), but the
specific causative gene in each locus is
not easily identified. For a given disease,
Oti et al. (2006) predicted new disease
genes as those that fell within one of the
significant loci and had a protein inter-
action with a gene already well known
to cause disease. They showed that pre-
dictions using this method are 10-fold
enriched in true disease-causing genes,
as compared with a random selection of
genes at the same locus.

Franke et al. (2006) devised the Pri-
oritizer algorithm based on similar prin-
ciples. Their algorithm ranks a set of can-
didate disease-causing genes in multiple

susceptibility loci for further sequence or association analysis. To
this end, they constructed a functional human gene network
based on known molecular interactions as well as computation-
ally predicted functional relations. The network was used to rank
the candidate genes on the basis of their interactions, assuming
that the causative genes for any one disorder will be involved in
only a few distinct biological pathways. This assumption implies
that genes from different susceptibility loci would cluster, result-
ing in shorter network distances (see Box 1) between disease
genes than the random expectation.

Finally, Lage et al. (2007) extended the above works by using
information on several related diseases to tackle the prediction
task. Specifically, they devised a phenotype similarity score and
used it to look for protein complexes whose genes were associ-
ated with similar phenotypes. The search for protein complexes
was conducted on a network of protein–protein interactions, in-
cluding reported interactions and interactions that were trans-
ferred from model organisms. Each candidate protein was ranked
by the phenotype similarity score of the diseases associated with
the protein and its direct network neighbors. The biological in-
terpretation of a high-scoring candidate was that this protein was
likely to be involved in the molecular pathology of a disorder of
interest, since it is part of a high-confidence candidate complex
in which some proteins are known to be involved in highly simi-
lar (or identical) disorders.

Thus, the idea that proteins close to one another in a net-
work cause similar diseases is becoming an increasingly impor-
tant factor in the hunt for disease genes. Different approaches
tackle the prediction problem using different kinds of integrated
data, but all of them involve superimposing a set of candidate
genes alongside a set of known disease genes on a physical or
functional network. “De-novo” approaches that do not depend
on prior knowledge of disease genes are yet to be developed.

Identification of disease-related subnetworks

In addition to predicting individual disease proteins, a biomo-
lecular network can also be used to predict disease-related sub-
networks. Subnetworks are significant because, in contrast to in-
dividual proteins, they provide concrete hypotheses as to the

Figure 1. Differentially expressed cancer genes tend toward higher network connectivity. Human
proteins of each network degree (X-axis) were analyzed to compute their fraction of genes up-
regulated (A) or down-regulated (B) in the microarray profiles of five lung cancer tissue biopsies. Both
up- and down-regulated genes show significant positive correlation to protein degree, in contrast to
the set of all genes on the microarray (C). Reproduced from Wachi et al. (2005) and reprinted with
permission from Oxford University Press © 2005.
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molecular complexes, signaling pathways, and other mecha-
nisms that impact the disease outcome. As one example, Goehler
et al. (2004) constructed a PPI subnetwork around HTT, muta-
tions that cause Huntington disease (Fig. 3). Each direct interac-
tor of HTT was tested for its ability to enhance HTT aggregation,
which is linked to disease progression (Sanchez et al. 2003). This
screen identified a new enhancer of HTT aggregation, GIT1, and
additional tests verified its role in disease pathogenesis.

Calvano et al. (2005) assembled an endotoxin inflammatory
response network by integrating functional interactions curated
from the literature with gene-expression information. Here,
gene-expression profiling was used to identify genes responsive
to endotoxin administration. The response network enabled the
identification of new endotoxin-responsive modules and re-
vealed a reprioritization of the transcriptional regulatory pro-
gram in leukocytes in response to endotoxin, suppressing mito-
chondrial energy production and protein synthesis machinery.
More generally, the theme of interpreting expression profiles as
hot spots of activity within a protein network has potential ap-
plication to many disease studies; moving forward, it might ben-
efit substantially by drawing on the earlier methods developed in
yeast to identify expression-activated network modules (see
above).

While the above approach specifies a subnetwork by over-
laying expression profiles as states on a functional network, ex-
pression profiles have also been used to define the network itself,
which is then integrated with other types of data. For instance,
Ghazalpour et al. (2006) constructed a gene coexpression net-
work using microarray profiles gathered from the livers of a panel
of mice, in which genes were linked if the correlation between

their expression profiles exceeded a certain threshold. This net-
work was then integrated with genetic marker data from the
same individuals, indicating which genetic loci had association
with 22 different physiological traits such as body weight. Vari-
ous subnetwork “modules” of the coexpression network were
found to be enriched for genes in loci with strong associations to
a physiological trait, yielding a matrix of module/trait associations.

Lim et al. (2006) used Y2H screens to construct a PPI net-
work around 23 proteins involved in inherited ataxias. The re-
sulting network was expanded by literature-curated interactions
and interologs and contained a total of ∼7000 interactions
among ∼3500 proteins. The network was found to be highly con-
nected, and the mean distance between the ataxia-causing pro-
teins in the network was much lower than in a network nucle-
ated around 30 disease proteins sampled independent of pheno-
types. The authors demonstrated the network’s utility in
uncovering novel ataxia-causing genes and genetic modifiers for
ataxia.

In a conceptually similar study (Pujana et al. 2007), a breast
cancer-related network was constructed starting with four known
breast cancer-associated genes: BRCA1, BRCA2, ATM, and CHEK2.
To form the network, proteins were linked based on coexpres-
sion, phenotypic similarity, and genetic or physical interactions
among orthologs of the proteins in other species. The network
neighbors of the starting four disease genes implicated additional
factors important for breast cancer progression, including a
new gene, HMMR, which was shown by the authors to be asso-
ciated with a higher risk of breast cancer in two case-control
studies.

Common to all of the above studies is the understanding
that integrating disease genes with physical or functional net-
works can lead to the identification of additional disease-related
genes and generate subnetworks that offer mechanistic hypoth-
eses about the causes of disease. The interactions within such
subnetworks are often suggestive of functional signaling cas-
cades, metabolic pathways, or molecular complexes that are ei-
ther causes or effects of the disease phenotype. They help to
explain the influence of the many genetic and environmental
factors influencing a disease in the context of a smaller number
of discrete modules.

Network-based classification of case-control studies

A final emerging application of molecular network analysis is the
use of networks to improve the task of disease classification. Clas-
sification has long been an important technique for identifying
biomarkers able to separate “cases” from “controls.” In disease
research in particular, cases versus controls are used to separate
individuals who have a disease versus those who do not, to pre-
dict individuals likely to have severe disease outcomes versus
those who may be treated less aggressively, or to distinguish be-
tween different diseases that might otherwise appear superficially
similar (Quackenbush 2006). In terms of biomarker identifica-
tion, large-scale profiling experiments (mRNA, protein, and
small-molecular) provide quantitative measurements for thou-
sands of molecules; however, a major challenge has been to de-
velop methods able to sift through the enormous number of
potential markers to identify the particular set having the highest
predictive ability (Sotiriou and Piccart 2007). One solution to this
problem may be to integrate the search for biomarkers with a
network-level map of the cell, which focuses the search around
sets of markers functioning in the same pathway.

Figure 2. A gene-phenotype network. Shown is a combined gene–
gene, gene–phenotype, and phenotype–phenotype interaction network.
In this hypothetical example, diseases 1, 2, and 3 have known causative
genes (genes A, C, and E, respectively), and are all phenotypically related
to disease 4, which lacks an identified causative gene. If the known caus-
ative genes are functionally closely related, as in this case, then candidate
genes (genes B and D) can be hypothesized for disease 4 due to their
close functional relationships to the known genes of the phenotypically
related diseases. Black lines of varying thickness indicate the degree of
phenotypic and functional similarity between diseases and genes, respec-
tively. Reproduced from Oti and Brunner (2007) and reprinted with per-
mission from Blackwell Publishing Ltd. © 2007 (www.blackwell-
synergy.com).
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As one example, Tuck et al. (2006) examined the utility of
local features of a transcriptional interaction network in classify-
ing disease states. As the features for classification, they consid-
ered both single transcriptional interactions and sets of interac-
tions incident to the same regulated gene. For a given sample, a
transcriptional interaction feature was said to be “active” (i.e.,
activity = 1) if the corresponding transcription factor and gene
were coexpressed in the sample. The activity of a set of interac-
tions was defined as the sum of their activities. These features
were successfully used for classifying patients to disease states.
The authors noted that the network-based classification com-
pared favorably with gene-expression–based classification. More-
over, they observed that genes that optimally classify samples
(based on their set of incident interactions) are close to one an-
other in the network.

Ma et al. (2007) used this same notion, i.e., that informative
genes fall into the same network neighborhoods, to identify
genes predictive of Alzheimer’s disease. Their method, termed
“combining gene expression and protein interaction data” (CGI),
uses the protein interaction network to define a Markov Random
Field, in which the score of association between a gene’s expres-
sion level and the disease class depends on the scores of its net-
work neighbors according to a diffusion kernel. CGI was reported
to perform better than when gene-expression data were used as
the sole source of information.

Chuang et al. (2007) applied a network-based classifier to
the prognosis of breast cancer metastasis. According to their
method, the gene-expression profiles of metastatic and nonmeta-
static patients are superimposed on a human protein–protein in-
teraction network. Subnetworks are identified whose expression
levels correlate with metastasis, where the expression level of a
subnetwork is defined as a function of the expression levels of its
member genes (Fig. 4). They found that subnetwork markers were
more reproducible than individual marker genes selected with-
out network information, and that they achieved higher accu-
racy in the classification of metastatic versus nonmetastatic tu-
mors.

Efroni et al. (2007) performed a related study, in which they
sought to identify pathways associated with cancer gene-
expression data sets. Expression data were used to score known
pathways (taken from curated databases) for the level of activity
and consistency of their interactions in a given sample. These
scores were then used as features for classifying samples to disease
states, subsequently deriving small collections of pathways that
distinguish the phenotypes with high accuracy. The main differ-
ence versus Chuang et al. (2007) is that curated pathways were
used rather than subnetworks dynamically extracted from a pro-
tein network.

Thus, protein networks are proving to be a powerful source
of information for disease classification. Typically, one superim-

Figure 3. A protein interaction network for Huntington disease. (Red diamonds) Y2H interactors of huntingtin (HTT) newly identified by the Goehler
et al. (2004) study. (Blue squares) Previously published interactors. (Green triangles) Interactors culled from human protein interaction databases (HRPD)
(Gandhi et al. 2006), MINT (Chatr-aryamontri et al. 2007), and BIND (Bader et al. 2003). (Red squares) HTT interactors that were both newly identified
and previously reported. Reproduced from Goehler et al. (2004) and reprinted with permission from Elsevier Ltd. © 2004.
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poses gene-expression data onto the network to identify links, or
more composite subnetwork structures, whose aggregate expres-
sion discriminates between disease states. These discriminating
subnetworks are more reproducible than single genes and can
improve the prediction accuracy.

The future of networks and disease

One means of charting the road ahead is to recognize emerging
studies in yeast that are just beginning to be adapted to the more

complex networks of human disease.
One such area is protein network evolu-
tionary comparison. In yeast, there is
now a sizable literature reporting meth-
ods to align, contrast, and compare pro-
tein networks across species spanning a
wide range of evolutionary distances
(see above and Sharan and Ideker 2006).
In humans, network comparative meth-
ods are receiving significant attention in
the study of infectious disease. An in-
creasing number of protein interaction
networks are becoming available for mi-
crobial pathogens, including Helicobacter
pylori (Rain et al. 2001), Campylobacter
jejuni (Parrish et al. 2007), and Plasmo-
dium falciparum (LaCount et al. 2005).
Comparison to the human protein net-
work is providing useful insights by
identifying which protein interactions
are common between pathogen and
host and, more importantly from the
standpoint of drug development, which
interactions might be wired differently.
For instance, Suthram et al. (2005) ana-
lyzed an interaction map of the malarial
pathogen P. falciparum and showed that
it was significantly divergent from the
interaction maps of other eukaryotes.

Network-level analyses of viral
pathogens are also underway (Flajolet et
al. 2000; McCraith et al. 2000; von
Schwedler et al. 2003; Uetz et al. 2006;
Calderwood et al. 2007). Projects to map
protein networks among viral proteins,
or between viral and host proteins, are
appealing because of the greatly reduced
number of proteins and protein interac-
tions that must be tested—i.e., even the
largest viral genomes encode no more
than 1000 proteins (Raoult et al. 2004),
versus the more than 20,000 that must
be considered in higher eukaryotes.
Comparison of these networks to each
other and with the human protein net-
work may be able to elucidate key
mechanisms of infection: Toward this
goal, Uetz et al. (2006) used interactions
between herpesviral and human pro-
teins to connect the viral interactome
into the known human protein interac-
tion network and to simulate infection.

Another important area to watch will be the application of
protein interaction networks to interpret the effects of genetic
and environmental perturbations on human populations. In
yeast, genetic perturbations have been profiled by expression
profiling of gene knockout strains (Hughes et al. 2000; Workman
et al. 2006; Hu et al. 2007) or by analysis of expression quanti-
tative trait loci (eQTLs) (Brem and Kruglyak 2005), which iden-
tifies associations between polymorphic genomic markers and
gene-expression changes. In both of these cases, perturbed genes
(either explicitly by gene deletion or implicitly through popula-

Figure 4. Discriminative subnetworks enriched with hallmarks of cancer. Vertices and edges repre-
sent human proteins and protein interactions, respectively. The color of each node scales with the
change in expression of the corresponding gene for metastatic (red) versus nonmetastatic (green)
cancer. The shape of each node indicates whether its gene is significantly differentially expressed
(diamond; P <0.05 from a two-tailed t-test) or not (circle). The predominant cellular functions are
indicated next to each module, and known breast cancer susceptibility genes are marked by a blue
asterisk. Reproduced from Chuang et al. (2007) with permission from Macmillan Publishers Ltd. © 2007.
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tion genetics) are linked to genes downstream whose expression
levels are affected by perturbation. For integrative analysis of
these data, a number of network-based approaches have been
proposed that map the molecular interaction pathways leading
from each causal gene to its affected genes (Yeang et al. 2004,
2005; Ourfali et al. 2007; Shachar et al. 2007). These approaches
typically model a signaling pathway as a path of interactions
through a protein–protein or protein–DNA interaction network,
in which each interaction is associated with a direction of infor-
mation flow and a regulatory influence (activating “+” or repress-
ing “�”). The most plausible pathway explanations for each
cause-and-effect relationship are inferred from the data, along
with the likely direction and regulatory influence of each path-
way interaction. Recently, two studies have taken a network-
based approach to eQTL analysis in particular, relying on the idea
that the causal gene should be well connected to the affected
genes in the network (Tu et al. 2006; Suthram et al. 2007).

In humans, network analysis may offer a powerful means of
mapping the molecular mechanisms underlying the genetic and
environmental perturbations at the heart of disease. During the
past few years, a substantial body of cause-and-effect pertubation
data have been generated in humans, including a number of
eQTL studies (Dixon et al. 2007; Goring et al. 2007; Stranger et al.
2007). As for yeast, interpretation of human eQTLs could greatly
benefit from integration with protein–protein and transcrip-
tional interactions. However, despite the availability of human
protein–protein interaction networks, large-scale measurements
of human transcriptional interactions are still underway, mainly
using systematic chromatin immunoprecipitation experiments
in human cell lines and in-vitro technologies such as the protein-
binding microarray (PBM) (Berger et al. 2006). As human tran-
scriptional networks become available, the approaches demon-
strated in yeast may also provide a powerful means for identify-
ing human disease genes and their associated transcriptional
regulatory pathways.

Yet another direction in which network-based analysis
might inform human disease is in pharmacology, i.e., drug dis-
covery and targeting. Pioneering work in yeast (Parsons et al.
2004, 2006) has demonstrated the utility of combining molecu-
lar interaction networks with measurements of chemical–genetic
interactions (in which the combination of a chemical agent with
a gene knockout leads to cell death). These studies are based on
the observation that the chemical–genetic interaction profile of
an agent is similar to the genetic interaction profile of genes in its
target pathway. Moreover, gene deletions that result in hyper-
sensitivity to a specific drug can identify pathways that buffer the
cell against the toxic effects of the drug, providing clues about its
mode of action.

All of these and other applications of molecular networks to
disease will continue to face technological, biological, and algo-
rithmic challenges. Human network data remain sparse, and
many important types of networks, such as networks of regula-
tory and synthetic–lethal or chemical–genetic interactions, are
still forthcoming. Issues of data collection and interpretation are
complicated by the large size of the proteome in human and its
diversity of cells and tissues. In addition, existing computational
frameworks are ill-suited to cope with the ongoing explosion in
network-level measurements and information.

Nonetheless, elucidating the mechanisms of human disease
remains a holy grail of bioinformatics. Most previous studies in
this regard have analyzed single genes and the changes they ex-
hibit in the diseased state. The recent availability of human mo-

lecular interaction networks has revolutionized this view by
demonstrating the importance not only of the proteins them-
selves, but of their inter-relationships. If the recent progress in
the field is any indicator, exploiting these networks is also des-
tined to revolutionize our view of fundamental human biology
as well as disease progression, diagnosis, and treatment.
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