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Abstract

Reactive electrophiles produced during oxidative stress, such as 4-hydroxynonenal (HNE), are
increasingly recognized as contributing factors in a variety of degenerative and inflammatory
diseases. Here we used the RNA-seq technology to characterize transcriptome responses in RKO
cells induced by HNE at subcytotoxic and cytotoxic doses. RNA-seq analysis rediscovered most
of the differentially expressed genes reported by microarray studies and also identified novel gene
responses. Interestingly, differential expression detection at the coding DNA sequence (CDS)
level helped to further improve the consistency between the two technologies, suggesting the
utility and importance of the CDS level analysis. RNA-seq data analysis combining gene and CDS
levels yielded an informative and comprehensive picture of gradually evolving response networks
with increasing HNE doses, from cell protection against oxidative injury at low dose, initiation of
cell apoptosis and DNA damage at middle dose and significant deregulation of cellular functions
at high dose. These evolving dose-dependent pathway changes, which cannot be observed by the
gene level analysis alone, clearly reveal the HNE cytotoxic effect and are supported by 1Csq
experiments. Additionally, differential expression at the CDS level provides new insights of
isoform regulation mechanisms. Taken together, our data demonstrate the power of RNA-Seq to
identify subtle transcriptome changes and to characterize effects induced by HNE through the
generation of high-resolution data coupled with differential analysis at both gene and CDS levels.

Introduction

4-Hydroxynonenal (HNE), one of the major aldehydic products of lipid peroxidation, has
been suggested to contribute to the development and progression of various diseases.1~6
HNE reacts with a number of cellular molecules, including DNA, RNA and proteins, and
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has been shown to trigger multistep signal transduction cascades for suppression of cellular
functions in a dose- and time-dependent manner.’-14

In a previous study, we used the microarray technology to examine the effects of HNE on
gene expression in the RKO cell line.15 Significant alterations were observed for genes
involved in DNA damage and antioxidant, heat shock and ER stress responses. Integrating
gene expression changes with protein adduction data further elucidated signaling and
transcriptional regulatory mechanisms through which protein adduction triggers gene
expression changes.16: 17 However, the datasets and integrative analysis represented only
high micromolar treatment concentrations of HNE (i.e., 60 1M), as few gene expression
changes were detected at lower concentrations by microarray technologies, making it
difficult to study the dose-dependent response upon HNE treatment.

RNA-seq has become increasingly used to quantify expression of all genes with their
alternative isoforms. Compared with microarray, the digital nature of RNA-seq enables a
larger dynamic range, higher resolution and lower technical variance in measuring
expression abundance, which makes RNA-seq more sensitive in capturing expression
differences. 18-22 By properly assigning reads to each isoform, RNA-seq enables
quantifying gene expression at individual transcript level. Moreover, gene expression can
also be quantified by grouping isoforms into biologically meaningful units. For example,
isoforms with the same transcription start site (TSS) can be grouped together (Fig. 1,
isoforms A and B). These isoforms are derived from the same pre-mRNA and differential
expression at the TSS level suggests differential regulation of the pre-mRNA. Similarly,
isoforms with the same coding DNA sequences (CDS) can be grouped together because they
encode the same protein product (Fig. 1, isoforms B and C), and differential expression at
the CDS level indicates potentially different protein outputs. Expression quantification at the
transcript level and the intermediate functional unit levels allows the detection of expression
changes that may not be observable at the gene level. As shown in Figure 1, RNA-seq
reveals expression changes at the transcript level (isoform A) and the CDS level (CDS 1),
although no significant change can be observed at the gene level. However, as many
isoforms share exons, some reads cannot be accurately assigned to individual isoform. This
read assignment uncertainty 23 and noisy splicing?® 24 make differential expression at the
transcript level hard to detect and introduce false positives. To our knowledge, which level
(gene, CDS group, TSS group, and transcript) is best suited for detecting differential
expression has not been well studied.2>

Here we applied RNA-seq to study the transcriptome changes in RKO cells in response to
low, middle and high micromolar doses of HNE treatment. We first compared results from
RNA-seq and microarrays at high HNE dose. Then we investigated whether the ability of
RNA-seq to quantify expression of isoforms or isoform groups (CDS and TSS groups) could
provide novel insights. We found that combining gene- and CDS- level analyses improved
the consistency between RNA-seq and microarray and helped identify novel genes closely
related to HNE response, especially under low and middle HNE dose. It presented a clear
picture of gradually evolving response networks with increasing HNE doses, from cell
protection against oxidative injury, initiation of cell apoptosis and DNA damage to
significant deregulation of cellular pathways. These dose-dependent pathway changes
revealed the HNE cytotoxic effect and were supported by 1Csq experiments. Additionally,
we discussed the relative contribution of transcriptional noise and isoform switching to the
obscured expression changes at the gene level. Our study demonstrates that RNA-seq is a
powerful tool to study dose-response relationships of altered pathways. Expression
summarized at the CDS level complements gene-level analysis and provides novel and
valuable information for characterizing molecular effects induced by HNE.
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RNA-seq was conducted to explore transcriptional changes in RKO cells following
treatment for 6h with 15, 30, or 45 pM HNE. Among the total of 1195 million reads, about
81% were aligned to the human genome and 75% were uniquely mapped. Although exons
constitute less than 3% of the human genome, about 87% of reads were mapped to exons,
suggesting that our ploy(A)* -selected RNA samples were highly enriched for exonic
sequences (Supplementary Table S1).

Improved consistency between microarray and RNA-seq

We compared the intraplatform and interplatform correlations of gene expression in RNA-
seq and microarray (Figure 2) after 45 pM HNE treatment. Within each platform, a high
reproducibility was observed among biological replicates (RNA-seq: Pearson correlation
r=0.98~1; microarray: r=0.98~1). Both platforms detected the same correlation trend
between samples: correlations between replicates of 45 M HNE treated samples (r=0.99~1)
were slightly higher than that between replicates of controls (no HNE treatment, r=0.98~1),
which were higher than that between 45 1M HNE treated samples and controls
(r=0.95~0.98). In contrast, expression correlations between platforms were much lower,
with Pearson correlations ranging from 0.70 to 0.74. These results are in good agreement
with previous works that reported high reproducibility among replicates within platforms
and much lower correlation coefficients between platforms.19: 21, 22

To compare the capacities of two platforms to capture the expression changes, we also
calculated the fold-change-based correlation. Interestingly, the cross-platform correlation
was improved by using fold changes (Figure 3A, Pearson correlation r=0.76). If only
differentially expressed genes identified by either RNA-seq or microarray using the criteria
of abs(log, FC)>1 and FDR<0.01 were considered (91 genes), we obtained an even higher
correlation (Figure 3B, Pearson correlation r=0.89), suggesting that the two platforms were
quite consistent in detecting differential expression. Among the 91 differentially expressed
genes, 24 were identified by both platforms and 11 could not be detected by RNA-seq gene-
level analysis. In contrast, differential expression of another 56 genes could not be captured
by microarray analysis (Figure 3C, Supplementary Table S2).

We used Cuffdiff to extend differential analysis from gene level to higher resolution levels
(transcript, CDS and TSS levels).26: 27 Among the 11 genes detected by microarray but
missed by RNA-seq gene-level analysis, two upregulated (GCLM, TXNRD1) and four
downregulated genes (PPRC1, DOT1L, URB2, EGR3) could be rediscovered by the CDS
level analysis (Figure 3B). In contrast, only two upregulated (GCLM, TXNRD1) and two
downregulated genes (EGR3, PPRC1) could be rediscovered by transcript or TSS-level
analyses.

We further investigated the consistency in gene ranking between microarray and RNA-seq
analyses at different levels. Using a FDR cutoff of 0.01, genes identified by microarray and
RNA-seq through combining results from different levels were ranked by their fold change
values, respectively, and were used to calculate the POG (Percentage of Overlapping genes).
As shown in Figure 3D, POG between RNA-seq and microarray was improved when
differential analysis at CDS, TSS or transcript levels was added to gene-level analysis.
However, integrating TSS-level and transcript-level data introduced noise into highly
changed genes, which led to lower POGs for the top ranked genes.

The six genes rediscovered by the CDS level analysis, including GCLM, TXNRD1, PPRC1,
DOTLL, URB2, and EGRS3, are important anti-oxidant genes or genes involved in DNA
damage and cell proliferation, indicating their close relationship with HNE treatment.

Mol Biosyst. Author manuscript; available in PMC 2014 December 29.
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GCLM (the modifier subunit of glutamate cysteine ligase) is the first and the rate-limiting
enzyme in the synthesis of GSH, a major player in cellular defense against oxidative
stress.28 TXNRD1 (thioredoxin reductase 1) reduces thioredoxin as well as other substrates
and protects the cell from oxidative damage.?® 30 DOT1L (DOT1-like, histone H3
methyltransferase) has been reported to be involved in DNA damage response. 31
Furthermore, based on the assumption that functionally related genes have similar
expression changes, we systematically evaluated the biological relevance of differentially
expressed CDS using three protein-protein interaction (PPI) datasets (PPI HQ, PPI all and
PrePPI, see Method section for description).32: 33 Using the criteria of FDR<0.05 &
abs(log,FC)>0.5, 297 genes were identified at the gene level and additional 195 genes were
detected at the CDS level after 450M HNE treatment (Figure 4). The 195 genes detected
only at the CDS level were more likely to interact with the 297 genes detected at the gene
level than randomly selected genes (p=3.5E-07 for PPl HQ, p=2.2e-15 for PPI all, p=2.4e-05
for PrePPI) (Table 1). These results suggest that differentially expressed CDS are highly
likely to be involved in biological processes induced by HNE and differential analysis at the
CDS level is a useful and appropriate complement to the gene level analysis.

Gradually evolving response networks presented by the combined level

Differential expression at the CDS and gene levels were identified using Cuffdiff with
FDR<0.05 & abs(log,FC)>0.5 after 15, 30 and 45 HNE treatment. CDS or genes were
required to have FPKM>1 (Fragments Per Kilobase of transcript per Million fragments
mapped) in at least one condition. The numbers of differentially expressed genes reported at
CDS and gene levels at 15, 30, and 45 M HNE are illustrated in Venn diagrams (Figure 4).
In agreement with our previous study, the most pronounced changes in gene expression
occurred in cells treated with the highest HNE concentrations.1®

It should be noted that analysis at the CDS level detected a fraction of unique genes in each
condition. Under 15 uM HNE treatment, 15 genes were detected at both CDS and gene
levels, whereas 20 genes were only captured at the CDS level including GCLM, RRM2,
SLC1A5 and TXNRD1. GCLM and TXNRDL, showing a 1.8-fold and 2.4-fold increase at
the CDS level respectively, have been reported to play a vital role in protecting cells from
oxidative stress.28-30 With 30 pM HNE treatment, 40 genes were detected at both CDS and
gene levels, whereas 51 genes were only captured at the CDS level, including RRM1,
RRM2, CCND1, DKC1, BUB1B, POLE3 and GADD45A, which are involved in cell cycle,
DNA replication and glutathione metabolism. With 45uM HNE treatment, 147 genes were
detected at both CDS and gene levels, whereas 195 genes were only captured at the CDS
level, including many genes involved in cell cycle (e.g., EGFR, BUB1B, CCND1, and
PPP5C), DNA replication (e.g.,, HMGB1, MCM10, MCM5, MCM8, RRM1, and DKC1)
and glutathione metabolism (e.g., RRM1 and GCLM). Most of unique genes detected at the
CDS level closely related to HNE response suggested that CDS level analysis is a useful
complement to gene level analysis, which helps reveal important subtle biological changes.

Differentially expressed CDS and genes were further interpreted by functional enrichment
analysis against Gene Ontology (GO) terms and KEGG pathways. Under 15uM HNE
treatment, only MAPK signaling pathway and metabolic pathway were enriched in the
differentially expressed genes. Besides these two pathways, glutathione metabolism was
observed at the combined level (combining differentially expressed CDS and genes,
FDR=0.0006) (Figure 5, Supplementary Table S3). Indeed, glutathione is a major
intracellular antioxidant and glutathione synthesis is increased following HNE treatment to
protect against oxidative injury.34 35 Additionally, pyrimidine metabolism was also
significantly represented at the combined level (FDR=0.015) and pyrimidines has been
reported to be a rich source for the synthesis of new antioxidant compounds.36-38 With 30
puM HNE treatment, additional pathways, such as focal adhesion, endocytosis, spliceosome
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and cysteine and methionine metabolism, were detected at both gene level and the combined
level. Interestingly, pathways associated with apoptosis and DNA repair were only revealed
at the combined level, including programmed cell death (FDR=0.044), nucleotide excision
repair (FDR=0.015), base excision repair (FDR=0.012), p53 signaling pathways
(FDR=0.0006), DNA replication (FDR=0.038), etc (Figure 5, Supplementary Table S4).
This is consistent with our previous studies, which reported that the 1Csq values of HNE in
RKO cells is 20 pM39 and a concentration equal to or greater than 30 uM begins to induce
apoptosis and cell cycle deregulation.12 With 45 uM HNE treatment, a number of additional
pathways, such as ubiquitin mediated proteolysis, DNA repair, microtubule-based process,
and RNA transport were affected, while most of these pathways showed a higher level of
enrichment in combined level analysis compared to gene level analysis (Figure 5,
Supplementary Table S5). For example, the FDR value for “DNA repair” is 3.63e-07 at the
combined level compared to 1e-04 at the gene level.

Taken together, the HNE cytotoxic effect was clearly shown by the dose-dependent pathway
changes at the combined gene and CDS levels. At a low HNE concentration (15 pM),
adaptive changes that protect cells against oxidative injury (e.g., glutathione and pyrimidine
metabolism) occurred. At the 30 pM HNE concentration, repair of DNA damage was
introduced along with an increase in the apoptotic response, which is consistent with 1Csq
experiments. Notably, cell protection against oxidative injury occurring at low dose and cell
apoptosis initiated at middle dose was not identified by gene level analysis alone. At the 45
1M concentration, HNE triggered many changes in signal transduction pathways that
suppress cellular functions, which may lead to cell cycle arrest and apoptosis. Compared
with gene level analysis combining gene and CDS levels helped reveal a gradual and
continual involvement of biological pathways after low to high HNE dose treatment, which
present an informative and comprehensive picture of the dose-dependent cellular function
changes.

Discussion

RNA-seq provides the highest resolution of transcriptome information at the transcript level
and the lowest resolution at the gene level. Our study is the first to estimate which level(s)
are best suited to identify differential expression across conditions in terms of maximizing
overlap with microarray data and providing biological relevance. At the gene level,
differential expression identified from RNA-seq and microarrays were quite consistent, with
more genes identified by RNA-seq. At higher resolution, differential expression identified at
the CDS level seemed to be a useful complement to gene-level analysis. Differential
expression detected by the combined level(CDS and gene) achieved a higher overlap with
microarray results and provided higher sensitivity in revealing biological insights into HNE
dose-dependent responses than from gene-level analysis alone. The combined level analysis
helped reveal gradually evolving response network with increasing HNE dose, from cell
protection against oxidative stress (e.g., glutathione metabolism) at 15 pM HNE treatment,
initiation of apoptosis and the DNA damage response at 30 uM HNE treatment, and
significant deregulation of cellular pathways at 45 M HNE treatment.

Detection of differentially expressed CDS is technically more difficult than differentially
expressed genes, due to greater uncertainty of read assignment and more stringent multiple
test correction to account for a larger number of comparisons. There are two main possible
explanations for differential expression detected at the CDS level but not at the gene level:
transcriptional noise obscuring gene-level signal and isoform switching inducing differential
splice variants without gene-level expression changes. To evaluate the relative contributions
of these two factors to obscured gene expression changes, we compared the “CDS-only”
group (differential expression detected only at the CDS level, 195 genes, Figure 4) with the
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“both CDS and gene” group (differential expression detected at both CDS and gene levels,
147 genes, Figure 4) after 45 nM HNE treatment. These two groups both have differentially
expressed CDS but differ in gene-level expression changes. With the potential to change
protein output, differentially expressed CDS is likely to function in HNE response and thus
more informative. This informative CDS in the “CDS-only” group contributed less to the
overall gene expression than those in the “both CDS and gene” group (Figure 6A),
suggesting higher background noise or splicing complexity in the “CDS-only” group.
Furthermore, compared with genes in “both CDS and gene group”, which exhibited
similarity in both fold changes and expression variability (calculated by Cuffdiff26,
including biological and technical variance) with their corresponding CDS, genes in the
“CDS-only” group showed similar fold change with but higher expression variances than
their corresponding CDS (Figures 6B and 6C). The high gene expression variability,
resulting from transcriptional noise, obscures the gene level signal in the “CDS-only” group.
Additionally, we only found one instance (SEPT6) out of 195 genes where isoform
switching led to differentially expressed CDS (log,FC=-1.58, FDR=0.004) without
detectable changes at the gene-level (logoFC=-0.24, FDR=1) (Supplementary Text and
Figures S1-S6). Thus transcriptional noise instead of isoform switching might be the main
reason for the insignificant gene-level expression changes.

Transcriptional noise mainly stems from noncoding isoforms. Among 248675 transcripts
detected in the HNE transcriptome, 154780 (62%) are noncoding isoforms. Noncoding
isoforms, classified as retained intron or processed transcript, lack protein-coding capacity
and do not contribute to protein output and thus may not be as functionally important as
protein coding isoforms 40. They are generally subject to less functional constraints on
isoform abundance and have larger expression variances, which obscure gene-level signal.
For example, NEDD4 was identified to undergo significant expression changes at the CDS
level (FDR<0.05), but not at the gene level (FDR=0.99) with 45 p M HNE treatment (Figure
7A). NEDD4 had two highly expressed transcripts, ENST00000435532 and
ENST0000508075 (Figure 7B). ENST00000435532 codes for a protein product and its
expression was significantly changed (FDR=0.027), whereas ENST0000508075 is a
noncoding transcript whose expression varies a lot in two conditions and was not changed
after 45 pM HNE treatment (FDR=1). Another possible source of transcriptional noise is
from those coding isoforms lacking strong transcriptional control. Their expressions, to a
large extent reflecting background transcription, make gene-level signal hard to detect. For
example, HNRNPR underwent significant expression changes at the CDS level (FDR<0.05),
but not at the gene level (FDR=0.29) with 45 pM HNE treatment (Figure 8A). Besides the
differentially expressed CDS (containing two isoforms, ENST00000302271 and
ENST00000374612), HNRNPR had another CDS without significant expression change
(ENST00000426846, FDR=1), which obscured the gene-level signal (Figures 7A).
Comparing the transcript structure of these two CDS, we found that the significantly
changed CDS has one more exon than the non-significant CDS (Figure 8B). This exon
encodes RNA recognition motif domain 1 (RRMZ1)(Figure 8C), which is predicted to
interact with many differentially expressed genes or CDS by PrePPlI, including HNRPDL,
SRSF1, RNPS1, HNRNPF, HNRNPL, etc. (Figure 7D). The CDS containing this important
exon might be subjected to strong constraints on its expression, showing a higher
transcriptional signal-to-noise ratio. In contrast, the non-informative CDS lacking the exon,
subject to less functional constraints on isoform abundance, might undergo noisy splicing by
erroneous splice site choice?* and results in lower signal-to-noise ratio. This agrees with a
previous study demonstrating that noise in gene expression is a biologically important
variable and subject to natural selection.24

Additionally, differential expression observed at the CDS level but not at the gene level may
present an opportunity for exploring potential post-transcriptional regulatory mechanisms to
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gain insights into isoform specific regulation. For example, the small expression variation of
the functional transcripts within biological replicates suggest that their expression might be
controlled by the coupling of transcription and splicing since RNA binding proteins usually
have a low degree of transcriptional noise.*! As another example, post-transcriptional
regulation might be involved if only functional transcripts changed their abundance across
conditions (e.g., miRNA targeting of specific isoforms to induce mRNA decay). Analyzing
the 3" UTR of genes with differentially expressed CDS is one way to find the miRNA
involved in the process. For example, NEDD4 was found to be the target of several miRNAs
from MSigDB (c3.mir.v3.1.symbols.gmt)*2, including miR-30, miR-27, miR-9 and
miR-144. The binding sites are evolutionarily conserved and the miRNA-target relationships
are also supported by other prediction algorithms (Supplementary Table S6). Consistently,
miR-144 targets were highly enriched in differentially expressed gene sets, not only in those
detected at the CDS level but also at the combined level (CDS and gene levels)(FDR<1e-06,
Table 2). Previous studies have found that the RKO cell line exhibits low expression levels
of miR-144 and down regulation of miR-144 leads to colorectal cancer progression via
activation of the mTOR signaling pathway.*3 Thus, miR-144 might be upregulated by HNE
treatment, which leads to the down regulation of transcripts or genes and the inhibition of
cell proliferation.

Differential CDS analysis can identify significant CDS abundance changes no matter gene
expression changes or not, but this method is quite different from methods aimed to detect
differential spliced genes or differential exon usage, e.g., MISO%, ALEXA-Seq*®,
DEXseq*® and DSGseq*’. The major difference is that if the gene’s overall expression
changes but the relative abundances of the different transcripts stay the same, the genes will
be called significant by differential CDS analysis but not be called by methods focusing on
differential splicing. Among 35 significantly changed genes detected by microarray at 45
M HNE treatment, 30 were called by differential gene and CDS analysis from RNA-seq,
but none of them were identified by DEXSeq. In addition, differential CDS analysis has
several advantages. CDS is an important function unit, thus differential CDS analysis is
more biologically meaningful and easier to interpret than differential exon usage.
Furthermore, although exons are more sensitive and easier to calculate than CDS, the results
based on exon level are more prone to noise and will be less robust and less stable. A large
portion of differentially expressed/spliced genes at low dose is expected to be also
significantly changed at high dose since HNE response networks will gradually evolve with
the increasing dose. This expectation is better supported by differential CDS analysis than
alternative splicing methods. 77% (23) of 30 significant CDS at 15 pM were found to be still
significantly changed at 30 M, and 86% (78) of 91 significant CDS at 30 pM were
supported by 45 pM. In contrast, only one (50%) of two exons detected by DEXSeq at 15
1M found evidence of differential usage at 30 1M, and 78% (18) of 23 exons detected at 30
1M were re-identified at 45 M HNE. Even worse, MISO identified 29 exon skipping and
11 exon inclusion events at 15 pM, but only one exon skipping and 2 inclusion events (8%)
reappeared at 30 pM. Among 23 exon skipping and 10 exon inclusion events detected at 30
1M, only 4 skipping and 2 inclusion events (18%) were re-identified at 45 pM
(Supplementary Figures S7).

Although RNA-seq offers high resolution transcriptome information, read assignment
uncertainty remains a major challenge, especially for low abundance genes with many
isoforms. Differential expression at the transcript level is the most difficult to detect, due to
the largest read assignment uncertainty and the highest statistical significance required to
account for the largest number of comparisons. Additionally, noisy splicing leads to false
positives, especially when the number of replicates is small. Therefore, transcript level
analysis did not help find more biologically relevant results in our experiments with only 3
replicates in each condition. Standard RNA-seq methods are not suited to annotate the 5/
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start site, which may explain why differential expression detection at the TSS level was not
as useful as expected. In contrast, each CDS group encompasses all transcripts coding for
the same protein product, which reduces the read assignment ambiguity and the noise due to
erroneous splice site choice. Thus, differential expression analysis at the CDS level is a
useful complement to gene-level analysis. Combining CDS and gene levels revealed more
subtle biological responses triggered by HNE treatment. In the future, adding more
replicates, increasing sequencing depth, and using long pair-end reads will facilitate
differential expression detection at the transcript level, which will create opportunities for
regulation analysis with unprecedented scope and scale and allow researchers to better
disentangle the complex interplay between transcriptional and post-transcriptional
regulation.

Materials and Methods

Cell culture and treatment

RKO human colorectal carcinoma cells were grown in McCoy’s 5A medium supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, and antibiotics at 37 °C and 5% CQO2.
HNE was obtained from Cayman Chemical and was dissolved in MeOH as a 1000 x stock
solution. RKO cells were seeded and were treated with vehicle or 15, 30, or 45 uM HNE for
6h. Cell treatments were conducted three times for each condition. Experimental details
have been described previouslyl®.

RNA sequencing

The twelve RNA samples were sequenced following the protocols recommended by the
manufacturer (Illumina). Briefly, poly-A was purified and then fragmented into small
pieces. Using reverse transcriptase and random primers, RNA fragments were used to
synthesize the first and second strand cDNAs. Following end repair, addition of an “A”
base, adapter ligation, size selection and amplification of cDNA templates, samples were
sequenced in 5 lanes on the Illumina HiSeq 2000, generating about 70~110 million of 100
pair-end reads per sample (Supplementary Table S1).

RNA-seq and microarray analysis

Reads were mapped to human genome hg19 using TopHat version 1.4.0 with the reference
annotation file (Homo_sapiens.GRCh37.65.gtf).26: 27. 48 Each sample obtained similar
mapping quality, about 81% of the reads mapped to genome, of which 87% overlapping
exons. The mapping results were summarized in Supplementary Table S1. The aligned reads
was assembled and transcript expression was quantified using FPKM (Fragments Per
Kilobase of transcript per Million fragments mapped) by Cufflinks version2.0.2, which uses
a linear statistical model to compute the likelihood that the number of fragments would be
observed given the proposed abundances on the transcripts25. Differential expression
between four groups, HNE15 vs. HNEO, HNE 30 vs. HNE 0, and HNE 45 vs. HNEO was
detected by Cuffdiff.26: 27. 49 Genes, CDS, TSS or transcripts with FPKM>1 in any of four
conditions were selected for further analysis.

Affymetrix cel files were normalized using the Robust MultiChip Analysis (RMA)
algorithm %9 as implemented in Bioconductor.5! Probe set identifiers (IDs) were mapped to
gene symbols. Probe sets that mapped to multiple genes were eliminated. When multiple
probe sets were mapped to the same gene, the probe set with the maximal IQR was used to
represent the gene expression level. Differential expression analysis between HNE 45 and
HNE 0 was performed using limma.>2
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A common set of genes shared by RNA-seq and microarray was used to compare gene
expression between these two platforms. If genes had FDR<0.01 at both gene-level and
other levels (CDS, TSS or transcript), fold change values at gene level were used. A fold
change ranking with FDR cutoff of 0.01 was applied separately to RNA-seq and microarray
to calculate the percentage of overlapping genes (POG) using the equation POG = 100*(DD
+UU)/2L, where DD and UU are the number of down- or up-regulated genes common in
RNA-seq and microarray, respectively, and L is the number of selected genes ranked by fold
change. Directionality of gene regulation is considered in POG calculations, that is, genes
selected by two platforms but with different regulation directionalities are considered as
discordant.53

Functional interpretation

Three protein-protein interaction datasest, PPl HQ, PPI all and PrePPI, were downloaded
from PrePPI webserver (http://bhapp.c2b2.columbia.edu/PrePP1/).32: 33 PP HQ contains
7,409 interactions of at least two publication supports, involving 2976 proteins. PPI all
includes 82,551 interactions between 12,104 proteins from HPRD, DIP, IntAct, BioGRID,
and MINT. PrePPI comprises 317,813 high confidence interactions (LR>600) for 11219
proteins. For 492 genes whose differential expression was detected at the gene or the CDS
level after 45 pM HNE treatment (Figure 4), 154 was contained in PPl HQ, 405 were
included in PPI all, and 217 was involved in PrePPl. Hypergeometric test was used to
calculate the probability of differentially expressed CDS randomly connected to
differentially expressed genes in the protein-protein network.

GO, KEGG and miRNA targets enrichment analysis were performed using WebGestalt®4.
Functional categories or pathways containing no less than two differentially expressed CDS
or genes with FDR<0.05 were selected. Potential miRNAs targeting NEDD4 were obtained
from MSigDB (c3.mir.v3.1.symbols.gmt)*242, which were further validated by evolutionary
conservation and other miRNA target prediction algorithms, including TargetScan,
DIANAmMT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR4, PICTARS, PITA, and
RNA22.
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Figure 1.

Significant changes detected at the high-resolution level but not at the low-resolution gene
level by RNA-seq. (a)Gene produces three isoforms A, B and C at different abundances.
TSS or CDS groups are formed by grouping isoforms sharing the same transcription start
site (TSS) or coding the same protein sequences (CDS). For example, A and B are within
the same TSS group, while B and C are within the same CDS group.(b) Analyzing
expression difference at the transcript level, different isoform groups level and the gene
level. At the transcript level, the expression of isoform A is significantly changed across
conditions, while B and C are not. Adding expression values of A and B yields the
expression value for TSS1 group. At the TSS level, TSS1 and TSS2 groups are not
significant changed. Adding expression values of B and C yields the expression value for
CDS2 group. At the CDS level, CDS1 group is significantly changed but CDS2 group is not.
Adding expression values of three isoforms yields the expression value of the gene, which is
not significantly changed across conditions.
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Interplatform and Intraplatform correlations of gene expression under control and 45 (M

HNE treatment between microarray and RNA-seq.
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Figure 3.

Correlation of RNA-seq and microarray at the level of fold changes at 45 uM HNE
treatment. A) Correlation of fold change for all genes in microarray and RNA-seq. B)
Correlation of fold change of differentially expressed genes detected either by microarray or
RNA-seq using the criteria of abs(log,FC)>1 and FDR<0.01. C) A Venn diagram of the
number of genes detected by microarray and RNA-seq. D) POG values between the
microarray and RNA-seq when gene-level analysis was combined with higher resolution
level analysis, CDS, TSS and transcript levels.
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Figure 4.
Differentially expressed genes detected at the CDS level and the gene level in HNE-treated
RKO cells.
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Figure5.
Over represented pathways detected at the gene level and the combined level in HNE-treated
RKO cells. Pathways observed only at the combined level are denoted by *.
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A) Cumulative distribution of the relative contributions of differentially expressed CDS to
the genes in the “CDS-only” group and the “both CDS and gene” group. B) Fold change of
differentially expressed CDS vs. fold change of the corresponding genes in the “CDS-only”
group and the “both CDS and gene” group at 45 pM HNE treatment. C) Variances for
differentially expressed CDS vs. variances of the corresponding genes in the “CDS-only”
group and the “both CDS and gene” group under 45 pM HNE treatment.
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A) Gene and transcript expression changes of NEDD4 in response to 45 uM HNE treatment.
B) Transcript structure of differentially expressed CDS and non-differentially expressed
transcripts. ENST00000435532 encodes differentially expressed CDS, while
ENSTO00000508075 is a processed transcript.
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Figure8.

A) Gene and CDS expression changes of HNRNPR in response to 45 pM HNE treatment.
B) Transcript structure of differentially expressed CDS and non-differentially expressed
CDS. Two transcripts, ENST00000302271 and ENST00000374612 encode differentially
expressed CDS, while ENST00000426846 encodes non-differentially expressed CDS,
which lacks an exon situated in RRM1 domain. C) Comparison of protein sequences
between differentially expressed and non-differentially expressed CDS.D) The RRM1
domain of HNRNPR is predicted to interact with many genes by PrePPI, whose expressions
are significantly changed. The number on the edge denotes the likelihood ratio score based
on three-dimensional structural interaction. A score greater than 50 suggests the high
probability of interaction between two proteins. The number beside the node shows the
domain information. For example, RRM1 domain of HNRNPR is predicted to interact with
the domain 17-87 of SRSF1 with the score of 574.54.
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Table 1

Relationships between differential expression detected at the gene level and that only at the CDS level based
on three PPI datasets. The table lists the observed and the expected number of differential expression at the
CDS level interacting with differentially expressed genes, and the probability to obtain at least the observed
number by random

Observed Expected P-value

PPIHQ 23 7.3 3.5e-07
PPI all 86 39.1 2.15e-15
PrePPl 69 45.8 2.4e-05

* PPI HQ (high quality protein-protein interaction dataset); PPI all(all protein-protein interaction dataset); PrePPI (protein-protein interaction
dataset from PrePPI).
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Table 2
miRNA targets enrichment analysis on differential expression at the CDS level and the combined level (CDS
or gene)

DEGsat CDS-level DEGs at combined level
miRNA Num. of targets FDR Num. of targets FDR
miR-144 13 1.25¢-07 15 1.26e-07
miR-524 14 6.07e-05 19 2.20e-06
miR-518a-2 10 6.07e-05 13 2.23e-06
miR-101 10 2e-04 14 3.89e-06
miR-519a, b, ¢ 13 2e-04 16 6.01e-05
miR-522 8 2e-04 1 6.82e-06
miR-204, miR-211 9 3e-04 10 3e-04
miR-181a, b, ¢, d 13 4e-04 18 1.55¢-05
miR-324-3p 6 5e-04 6 0.001
miR-30a-5p, 30c, 30d, 30b, 30e-5p 14 5¢-04 24 1.26¢-07
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