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Plant metabolites are crucial for both plant life and human nutrition.
Despite recent advance in metabolomics, the genetic control of plant
metabolome remains largely unknown. Here, we performed a ge-
netic analysis of the rice metabolome that provided over 2,800
highly resolved metabolic quantitative trait loci for 900 metabo-
lites. Distinct and overlapping accumulation patterns of metabo-
lites were observed and complex genetic regulation of metabolism
was revealed in two different tissues. We associated 24 candidate
genes to various metabolic quantitative trait loci by data mining,
including ones regulating important morphological traits and bio-
logical processes. The corresponding pathways were reconstructed
by updating in vivo functions of previously identified and newly
assigned genes. This study demonstrated a powerful tool and
provided a vast amount of high-quality data for understanding
the plasticity of plant metabolome, which may help bridge the
gap between the genome and phenome.
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Plants are highly enriched in specific metabolites with exten-
sive quantitative and qualitative variation both among and

within different plant species (1, 2). Understanding the genes
involved in metabolism and dissection of the metabolic pathway
are essential to improve plant adaptation to environmental
stresses, to improve food quality, and to increase crop yield.
Recent advance in metabolomics together with transcriptomics
and gene/metabolite coexpression networks analyses has proven
to be powerful in functional gene elucidation, although it is spec-
ified for transcriptionally regulated genes with limited throughput
so far.
A large number of metabolic quantitative trait loci (mQTLs)

have been identified based on linkage maps using low-density
markers, such as restriction fragment length polymorphism and
simple sequence repeat markers (3–5). However, the underlying
genes remain elusive because of the relatively low resolution of
the genetic maps associated with these markers. In addition to
the species-specific accumulation of the metabolites in plant,
tissue-specific accumulation of metabolites, especially secondary
metabolites, are of special importance for the survival and ad-
aptation of plant species. Although the genetics of tissue-specific
regulation gene expression across the tissues as revealed by ex-
pression quantitative trait locus analysis is one of the major
topics in animal and plant, the genetics of tissue-specific
metabolome is somewhat overlooked (5, 6). Despite the advance
in metabolomics (2), the genetic control of the plant metabolome
is still largely unknown.
Moreover, the elucidation of pathways for the biosyntheses

of important metabolites such as amino acids, lysophosphati-
dylcholines (LPCs), and flavonoids, and the variation and the
genetics control of them are vital for both basic research and
breeding application. For example, flavonoids are one of the
main groups of secondary metabolites that play important roles
in a number of biological processes such as resistance to biotic/
abiotic stresses (7) and confer health-promoting effects against
chronic diseases such as cardiovascular diseases and certain

cancers (8). The accumulation and regulation of O-glycosyl
flavonols have been well studied in dicotyledonous plants
(9). However, monocots such as rice and maize accumulate
C-glycosylated flavones as the major flavonoids (10), whereas the
regulation and modification of flavonoids in these crops are
poorly understood (3, 11). Elucidation of the genetic bases of
these pathways in rice would provide foundations for genetic
improvement of important traits such as stress resistance and
nutritional quality in one of the world’s most important crops.
Here, we report a genetic analysis of rice metabolome com-

bining metabolic profiling (12) with an ultrahigh-density genetic
map (13) using a recombinant inbred line (RIL) population. We
demonstrated that the high-resolution mapping of the large
number of mQTLs may greatly accelerate gene identification and
pathway elucidation for metabolites, which will enhance our
understanding of the genetic and biochemical basis of the
metabolome and also be valuable for crop genetic improvement
through metabolomics-assisted breeding.

Results
Widely Targeted Metabolic Profiling Analysis Using Liquid Chroma-
tography–Electrospray Ionization–MS/MS. Samples of the flag leaf
at the heading date (termed flag leaf hereafter) and seed at 72 h
after germination (termed germinating seed hereafter) from 210
RILs derived from a cross between two elite indica rice varieties,
Zhenshan 97 (ZS97) and Minghui 63 (MH63) (13) were collected,
and an MS2 spectral tag (MS2T) library was constructed as
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described previously (12, 14) (Dataset S1). A data matrix was
generated, consisting a total of 1,000 metabolites including 683
in flag leaf and 317 germinating seed, with 100 metabolites were
detected in both tissues (Fig. 1A and Dataset S2). Among the
900 unique metabolites, 50 were structurally identified by direct
comparison of their chromatographic and fragmental behaviors
to those of the commercial standards, including amino acids,
flavonoids, LPCs, and fatty acids, etc., and 303 metabolites were
annotated (Dataset S2) using strategies described previously
(12). Totally, 60 of the 100 metabolites detected in both tissues
were identified or annotated (Fig. 1A and Dataset S2). High-
throughput quantification of metabolites was then carried out by
scheduled multiple-reaction monitoring (15). The content of
metabolite varied substantially among the RILs with an average
genetic coefficient of variation (CV) of 51.2% and 43.7% in flag
leaf and germinating seed, respectively (Fig. 1B and Dataset S2).
The distributions of broad-sense heritability (H2) across all

metabolites revealed a H2 of over 0.6 for more than 47% and
58% of the metabolites in flag leaf and germinating seed, re-
spectively (Fig. S1A), indicating a significant genetic contribution
in determining the content of these metabolites in both tissues.
Correlation-based network analysis of the 100 codetected metab-
olites indicated that the metabolic network of germinating seed is
more coordinately regulated than that of the flag leaf (Fig. S2A).
Further analysis of annotated metabolites showed that the content
of most flavonoids exhibited even higher heritability with a mean
H2 > 0.7 for both tissues (Fig. S1A and Dataset S2). The levels of
most flavonoids were controlled coordinately within each tissue,
while distinct regulations were observed between the two tissues
(Fig. S2B). However, the existence of two seed flavonoids in the
cluster of leaf flavonoids, and vice versa, suggests that there is
some overlapped regulation of this pathway between the tissues.

mQTL Mapping Using an Ultrahigh-Density SNP Map in Different
Tissues. mQTL mapping using an ultrahigh-density map con-
sisted of 1,619 bins generated by population sequencing (13)
resulted in 1,884 and 937 mQTLs in flag leaf and germinating

seed [logarithm of odds (LOD) > 3.0], respectively. More than
90% of the metabolites had at least one mQTLs detected
(Dataset S2). The number of mQTL for each metabolite varied
from one to nine in flag leaf, with 120 metabolites having more
than four mQTLs (Dataset S2). Although mQTL was not found
for 15 (4.7%) metabolites in germinating seed, 48 metabolites
had more than four mQTLs in this tissue (Dataset S2).
Of the 1,884 mQTLs detected in flag leaf, 1,682, 129, and 73

mQTLs accounted for <20%, 20–50%, and over 50% of the
variation of the corresponding metabolites, respectively (Fig. S1B and
Dataset S2). In germinating seed, 831 mQTLs accounted for <20%
of the variation in metabolites, whereas 22 mQTLs had effects of
over 50% (Fig. S1C and Dataset S2). In total, 202 and 106 mQTLs
with effects of more than 20% were obtained in flag leaf and ger-
minating seed, respectively (Dataset S2).
Genome-wide analysis of mQTLs revealed a significant de-

viation from random distribution across the 12 chromosomes of
both in flag leaf (χ2 = 322.92, P < 2.2e−16) and in germinating
seed (χ2 = 605.38, P < 2.2e−16). The occurrence of mQTL en-
riched regions indicates that major genes controlling levels of
large set of metabolites may exist within them. We identified 44
and 16 potential mQTL “hot spots” in flag leaf and germinating
seed, respectively. mQTL hot spots in flag leaf were mainly lo-
cated on chromosomes 1, 6, 7, and 10, but on chromosomes 5
and 6 in germinating seed (Fig. 1 C and D and Table S1). When
mQTLs of individual metabolite were compared, we detected
463 distinct loci among the total of 509 loci detected for the 100
codetected metabolites in the two tissues (Dataset S2), suggest-
ing that the majority of QTLs are under different genetic control.
For example, in germinating seed, two major QTLs for the level
of L-glutamic acid were mapped to the 27.2- to 27.8-Mb region
on chromosome 5 and the 1.6- to 1.8-Mb region on chromosome
6 with LOD of 23.6 and 24.2, respectively. However, QTLs for
the same metabolite were mapped to 4.0–4.8 Mb on chromo-
some 1 and 5.5–9.9 Mb on chromosome 6 in flag leaf with much
smaller effects (Dataset S2).
Despite the overall tissue-specific regulation of metabolism,

we found that 23 loci for 19 metabolites (15 known and 4 un-
known) were detected simultaneously in both tissues (Dataset
S2), suggesting some overlapped genetic control of metabolism
between tissues. For instance, a QTL for the level of chrysoeriol
O-rutinoside was mapped to the same 0.5-Mb region on chromo-
some 1 in both tissues, and a QTL for the content of Helonioside
B that mapped to 0.3-Mb region on chromosome 11 in flag leaf
was also detected in germinating seed. A major QTL for the level
of pyridoxine O-hexoside was observed in flag leaf within a 0.8-Mb
region on chromosome 7. The same QTL was detected for this
metabolite in germinating seed in addition to another major
tissue-specific QTL in this tissue (Dataset S2). The above data
suggested that, although some mQTLs could be detected si-
multaneously in both tissues, most of them functioned in a tissue-
specific manner.

Complex Genetic Control of Metabolism Revealed by mQTL Analysis.
Different types of genetic control of metabolism were revealed
by our mQTL analysis. The levels of some metabolites were
controlled by only one major mQTL, which can explain more
than 70% of the variation, such as m0202-L, m0458-L, m0707-L,
m0853-L, m0876-L (Fig. S3A and Dataset S2).
However, the levels of most metabolites are determined by

multiple loci. To test the possible interactions between mQTLs,
we calculated the pairwise epistatic interactions between the
mQTL hotspots against the average accumulation of known
metabolites within the RILs (16, 17). All 946 possible pairwise
epistatic interactions between the 44 mQTL hot spots were
tested in flag leaf, and a total of 5,063 significant interactions
(P < 0.01) was detected for 343 known metabolites, varying from
1 to 67 epistatic interactions for a single metabolite (Dataset S3).
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Fig. 1. The number of detected metabolites, distribution of the values of
genetic coefficient of variation (CV), and metabolic quantitative trait loci
(mQTLs) for metabolic traits. The number of metabolites detected (A) and
distribution of genetic CVs of metabolites (B) in the RIL population. Red, flag
leaf. Blue, germinating seed. Distribution of mQTLs in the rice genome in
flag leaf (C) and germinating seed (D). The horizontal dashed line indicates
the threshold for mQTL hot spots, represented by the maximum number of
mQTLs expected to fall into any interval by chance alone with a genome-
wide P = 0.01.
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Similarly, analysis of pairwise epistatic interactions between the
16 mQTL hot spots for 151 known metabolites in germinating
seed revealed from 1 to 29 significant (P < 0.01) epistatic inter-
actions for 61 metabolites (Dataset S3). For example, qm0681-1
(bin147) on chromosome 1 and qm0681-2 (bin288) on chromo-
some 2, which are the two major mQTLs for m0681-L (annotated
as chrysoeriol O-malonylglucoside), had significant interaction
(P < 0.001) in determining the content of m0681-L (Fig. S3B and
Dataset S3), in which the effect of MH63 allele at qm0681-1 on
increasing the content of m0681-L was dependent on the ZS97
allele at qm0681-2 locus.

Confirmation of the mQTLs by Introgression Lines in Flag Leaf. To
evaluate the quality of our mQTL analyses, metabolic profiling
of 64 selected metabolites was carried out using an introgression
line (IL) population in which marker-defined genomic regions of
ZS97 were replaced with homologous intervals of MH63
(Dataset S4). Fifty of the 64 mQTLs detected in RILs were
confirmed in ILs that showed the expected variation for both the
direction and amplitude of the variation, each of which was
confirmed in at least two independent ILs (Fig. 2A). For instance,
mQTL for m0723-L (annotated as tricin O-malonylhexoside) with
a support interval from 16.6 to 18.1 Mb on chromosome 2 was
validated by showing that the two ILs that both contain the 16.6-
to 18.1-Mb segment of MH63 introduced into ZS97 background
(IL022 and IL023) accumulated the MH63 level of m0723-L (Fig.
2B and Dataset S4). Similarly, the mQTL for m0873-L (anno-
tated as C-pentosyl-apigenin O-caffeoylhexoside) was confirmed
by examining the genotypes and comparing the content of the
m0873-L of the two ILs (IL007 and IL091) relative to the pa-
rental lines (Fig. 2C).
Moreover, mQTLs for metabolites controlled by more than

one locus were also confirmed. For instance, the MH63 alleles of
qm0681-1 and qm0681-2 contribute positively and negatively to
m0681-L accumulation, respectively (Fig S3B and Dataset S2).

The effect of each locus was confirmed by the fact that ILs
(IL031 and IL091) with both the positive alleles had higher
m0681-L level than that in either of the parents, whereas the
opposite was the case for the ILs (IL025 and IL026) containing
both of the negative alleles (Fig. 2D).

Identification of Candidate Genes for mQTLs. The high resolution
and large effects of our mQTLs facilitated the assignment of
candidate genes for mQTLs. In most cases, the chemical struc-
ture of the metabolites, the existing knowledge of the pathway
architecture, together with the annotated genome sequence
allowed the tentative assignment of a protein or protein cluster
as regulating the metabolic traits. Candidate gene mining of
mQTLs for flavonoids allowed the tentative assignment of
function to 24 candidate genes (Table 1 and Dataset S5) in-
cluding 15 reported genes (10, 11, 18–25), with the majority of
them characterized only in vitro.
An mQTL specific for three annotated flavonoid O-rutinosides

(rather than flavonoid O-monoglycoside) was mapped to a 1.2-
Mb region on chromosome 11 in flag leaf (Dataset S2), which
suggested that a flavonoid O-glucoside: O-rhamnosyltransferase
was involved. Os11g26950, one of the two annotated UDP-gluco-
syltransferases (UGTs) within the support interval, shows higher
expression level and higher sequence identity to At5g54060 that
encodes a flavonoid 3-O-glucoside: 2″-O-xylosyltransferase (26).
Further phylogenetic analysis indicated that both Os11g26950 and
At5g54060 clustered with UGTs that catalyze glycosyl transfer to
a sugar moiety of flavonoid glycosides (Fig. S4A) (26). We there-
fore assign Os11g26950 as the candidate gene underlying this
mQTL. Similarly, Os09g30980 (a putative UGT gene) was tenta-
tively identified as the gene underlying the mQTL for m0837-L
(putative tricin O-hexoside derivative) (Dataset S2) for its homol-
ogy (36% identity at amino acid level) with At4g15280, which
encodes a quercetin glucosyl transferase (27).
mQTLs for malonylated flavones were comapped to a 1.5-Mb

region on chromosome 2 (Table 1 and Dataset S5). Candidate
gene search within this region revealed a cluster of eight (puta-
tive) malonyltransferase genes (Fig. 3A) including OsMaT-2 that
functioned as flavonol 3-O-glucoside malonyltransferase in vitro
(20). OsMaT-2 and Os02g28340 (termed OsMaT-3 hereafter),
which showed the highest expression levels among them and
contained the conserved -YFGNC- motif typically detected in the
anthocyanin/flavonoid BAHD acyltransferases (28), were assigned
as the candidate genes, although effects of other genes could not
be ruled out. Major mQTLs for a number of aromatically acylated
flavonoids were comapped to a 0.5-Mb interval on chromosome
10 (Dataset S2), but not for their nonacylated precursors, sug-
gesting the involvement of a gene encoding an acyltransferase.
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Fig. 2. Validation of the metabolic quantitative trait loci (mQTLs) results
with introgression lines (ILs). (A) Overlay heat map of the metabolite profiles
of the ILs in comparison with the parental control (ZS, ZS97; MH, MH63).
Blue and red indicate that the metabolite contents are decreased or in-
creased, respectively, after the introgression of MH63 segments. The content
of m0723-L (tricin O-malonylhexoside) (B), m0873-L (C-pentosyl-apigenin
O-caffeoylhexoside) (C), and m0681-L (chrysoeriol O-malonylhexoside) (D) in
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Table 1. The list of previously unidentified candidate genes for
metabolic quantitative trait loci (mQTLs)

Metabolite* Chr LOD† Rsq‡ Interval§ Gene

Tri O-malhex 2 146 0.95 16.5–18.1 Os02g28340
Tri O-hex-O-hex 2 6 0.10 34.2–34.7 Os02g56010
m0434-L 3 117 0.91 14.5–14.6 Os03g25500
Sin O-hex 5 25 0.36 27.5–27.8 Os05g47950
L-Glutamic acid 6 25 0.29 1.6–1.8 Os06g03990
Pyr O-hex 7 19 0.17 0.0–0.2 Os07g01020
Tri O-hex der 9 100 0.86 18.6–18.7 Os09g30980
Pyr O-hex 10 24 0.30 0.0–0.8 Os10g01080
Api 7-O-rut 11 44 0.29 14.2–15.4 Os11g26950

*The full names of metabolites’ abbreviation are given in SI Materials and
Methods.
†LOD, logarithm of odds.
‡Variation explained by the QTL.
§1.5-LOD support interval of the QTL (in megabases).
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Only one acyltransferase gene Os10g11980 (OsAT1) was found
within this region, encoding an acyltransferase that confers bacterial
blight resistance in rice (22). Comparison of Os10g11980 sequences
disclosed 1-aa difference of this gene between ZS97 (Ser) and
MH63 (Ala), suggesting Os10g11980 to be the likely candidate
gene underlying the mQTL for these acylated flavonoids.
mQTLs for both C- and O- glycosyl flavonoids with various

structural classes were mapped to a 0.5-Mb region on chromo-
some 5, suggesting the involvement of a regulatory gene un-
derlying these QTLs. Candidate gene search within this region
revealed a gene OsMYB55 (Os05g48010) modulating amino acid
metabolism that was involved in the tolerance to high tempera-
ture (29). Interestingly, Os05g48010 was coexpressed highly with
several structural genes of the flavonoid pathway (Table S2).
Sequence comparison of Os05g48010 indicates 1-aa difference
between ZS97 (Leu) and MH63 (Ile). These data suggest that
Os05g48010 could be the candidate gene underlying the mQTLs.
Candidate genes underlying mQTLs for metabolites from

other pathways such as pyridoxine, amino acid, and LPCs were
also tentatively assigned (Table 1 and Dataset S5). m0283 (an-
notated as pyridoxine O-glucoside) was mapped into a 0.2-Mb
interval on chromosome 7 in both tissues investigated (Dataset
S2). Os07g01020 (encoding a putative SOR/SNZ family protein)
was tentatively identified as underlying this mQTL for its high
homology (85% identity at amino acid level) with the pyridoxine
synthase gene AtPDX1 (30). m0033-S (L-glutamic acid) was mapped
to a 0.2-Mb interval on chromosome 6 in germinating seed. The
high homology (51% identity at amino acid level) between
Os06g03990, the only biochemical related gene in the interval, and
the aminotransferase gene AtACS12 (31) suggests that Os06g03990
is likely the candidate gene underlying this QTL. m0297-S (anno-
tated as sinapoyl O-hexoside) was mapped into a 0.3-Mb interval
on chromosome 5 in germinating seed. Os05g47950, encoding a

putative UGT, was assigned as candidate gene for these mQTLs
for its homology (31% at amino acid level) with At3g21560 that
catalyze the formation of sinapoyl glucose (32) and also because
it was one of the two biochemically relevant genes within the
support interval. QTLs for 10 putative LPCs colocalized to a 0.2-Mb
region on chromosome 6 (Dataset S5). Candidate gene mining
within the support interval revealed no gene involved in LPC
metabolism/catabolism, but a gene (Os06g04200) that encodes
starch synthase was detected (33) (Dataset S5). LPCs are the
main phospholipids in rice kernels and their contents are an
important determinant of starch quality. Previous results sug-
gested that starch synthase IIIa (SSIIIa) and starch branching
enzyme (BE) affect the metabolite composition including LPC
levels in rice kernels (34). We therefore assign Os06g04200 as
a candidate gene underlying the mQTLs regulating these LPCs.
The high resolution and large effects of our mQTLs also fa-

cilitate the assignment of candidate genes for QTLs of unknown
metabolites. A QTL for m0434-L (m/z 427/397) detected in flag
leaf was mapped to a region of 0.1 Mb on chromosome 3 and
explained over 90% of the variation (Dataset S2). Examination
of the expression profiles of genes within the region revealed
a leaf-specific gene Os03g25500 (encoding putative cytochrome
P450 72A1). Comparison of the sequences of Os03g25500 be-
tween ZS97 and MH63 revealed several SNPs, one of which
(GAG for Glu in MH63 to TAG for stop codon in ZS97) caused
a premature termination of Os03g25500 in ZS97 compared with
MH63. We therefore assign Os03g25500 as the candidate gene
underlying the mQTL for the level of m0434-L.

Functional Identification of Three Candidate Genes in Vivo. Experi-
mental validation of all candidate genes is beyond the scope of a
single study, but we showed that confirmation is possible by dem-
onstrating the contributions of candidate genes to the accumula-
tion of the corresponding metabolites. To confirm the in vivo
function of Os11g26950, a candidate gene for the level of m0760-L,
this gene was introduced into ZH11 (a variety with low m0760-L
content) and the results showed that the content of m0760-L was
significantly increased in the transgenic plants than the control
(Fig. S4 B and C), which is in accordance with the result of the
QTL analysis. Similarly, when the two malonyltransferases were
overexpressed in ZH11, the content of m0723-L was substantially
increased in both theOsMaT-2 (Fig. 3 B and C) andOsMaT-3 (Fig.
3 D and E) overexpressors compared with the control, whereas
malonylated flavonols were detectable in neither the control nor
the transgenic plants, indicating that they both function as flavone
malonyltransferase in vivo.

Reconstruction of Metabolic Pathways frommQTL Results.Combining
prior knowledge of pathway architecture, the chemical structure
of identified/annotated metabolites and the candidate genes re-
vealed in the study, we updated and reconstructed pathways of
the corresponding metabolites in rice (Figs. 4 and 5) using the
genetic logistic approach as previously described (35, 36). m0508-L
(chrysoeriol 7-O-hexoside) showed only one QTL at the UGT706D1
locus, whereas m0681-L (annotated as chrysoeriol O-malonylgluco-
side) mapped to UGT706D1 and OsMaT-2 loci, and m0760-L (an-
notated as chrysoeriol O-rutinoside) to UGT706D1 and Os11g26950
loci (Fig. 4A and Dataset S5). This enabled us to put both OsMaT-2
andOs11g26950 downstream of UGT706D1 with different branches
(Fig. 4C). This deduction also applies to the biosynthesis and
modification of C-glycosyl flavones (Fig. 4 B and C). Using this
strategy, the pathways were updated and reconstructed (Fig. 5).
In the newly constructed pathways, most of the structural genes

reported previously for flavonoids biosyntheses were mapped
(Fig. 5). The broad substrate specificities of both CYP93G2, and
UGT706D1 revealed in our study (Fig. 5 and Dataset S5) are
consistent with previous studies (10, 37). OsMaT-2, a malonyl-
transferase that displayed higher activity toward glycosyl flavonols
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Fig. 3. Functional identification of OsMaT-2 and OsMaT-3. (A) Phylogenetic
analysis of 12 BAHD acyltransferases with OsC1 as an outgroup. The
neighbor-joining tree was constructed using aligned full-length amino acid
sequences. Bootstrap values from 1,000 replicates are indicated at each
node. (Bar: 0.1-aa substitutions per site.) GenBank accession numbers are
given in SI Materials and Methods. The mRNA level of OsMaT-2 (B) and the
content of m0723-L (C) in OsMaT-2 overexpressors (1–3) (T1) and ZH11. The
mRNA level of OsMaT-3 (D) and the content of m0723-L (E) in OsMaT-3
overexpressors (1–3) (T1) and ZH11. All data are given as mean ± SEM (n = 3).
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such as quercetin 3-O-glucoside in vitro (20), was reannotated
with its in vivo function listed as specific to glycosyl flavones (Fig.
5 and Dataset S5). In addition, genes underlying the mQTLs for
primary metabolites such as LPCs, amino acids, and pyridoxine
with its derivative were also mapped (Fig. 5 and Dataset S5).
Tissue-specific regulations of most known metabolites (Fig.

S2A) were reflected by the different genes assigned for mQTLs
of the same metabolites between the two tissues tested (Fig. 5).
However, Os11g26950 and Os07g01020 were assigned to be the
candidate genes underlying the accumulation of flavones ruti-
noside and pyridoxine derivative, respectively, in both tissues
(Fig. 5), indicating overlapping regulation of the pathway, to
some extent, between the two tissues. Distinct regulation of the
metabolism in the two tissues might arise partially from the tis-
sue-specific expression of the responsible gene. For example,
Os05g48010, which was tentatively assigned to be responsible for
the accumulation of most of the flavonoids in germinating seed,
was expressed in this tissue but not in flag leaf (Fig. 5).

Discussion
The large number, high resolution, and large effects of the
mQTL detected in our study were mainly due to the high cov-
erage, sensitivity, and accuracy of the metabolomic method used,
and the high density of SNP markers. The characteristics of our
combined omics strategy have enabled us to identify candidate
genes directly from the genetic mapping and to generate a large

number of hypotheses for follow-up studies (Table 1 and Dataset
S5). In addition to high-throughput annotation of unknown
metabolites and candidate genes for various metabolites, in-
cluding those associated with morphological traits, our study
greatly updated the knowledge of pathways of both primary and
secondary metabolites in rice in terms of biosynthesis, modifi-
cation, and regulation. Transcription factor and enzymes with
unknown functions have been identified/annotated, and func-
tional annotation of genes previously identified in vitro has been
confirmed/updated in vivo. The distinct and overlapping regu-
lation of metabolic pathways was also revealed in the two dif-
ferent tissues (Fig. 5). Our study demonstrates the potential of
a combined omics strategy in understanding the genetic basis of
rice metabolome.
Research in humans has shown that revealing genetic influ-

ences on metabolic phenotypes is crucial to dissect complex
disorders and the definition of the pathophysiological basis of
disease susceptibility (38). The dissection and the reconstruction
of metabolic pathways in rice using mQTL analysis provides
approaches for engineering the compounds that have health-
promoting effects for humans (8) or confer resistance to fungi
pathogens (39). The discovery of Os07g01020 as a tentative de-
terminator of pyridoxine O-glucoside, Os10g11980 (OsAT1) with
a potential activity in aromatic acylated flavonoid biosynthesis
that confers blight resistance, and Os06g04200, which encodes
starch synthase with the proposed role in regulating LPCs (Table 1
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and Dataset S5), not only provides potential targets for quality
improvement but also demonstrates the potential in uncover-
ing the mechanisms of complex agronomic traits.
Integrating metabolomics strategies with other high-through-

put technologies will play important roles in genomics-assisted
selection for crop improvement. Although the linkage mapping
strategy described here proved to be a powerful tool in detecting
large number of mQTLs with high resolution, further increase in
the number of mQTLs might be limited by the availability of
appropriate mapping populations, with further increase of res-
olution hindered by limited recombinant events, hence long
linkage blocks (40). Advance in genome-wide association studies
(GWAS) with high-throughput genotyping techniques has made
it possible to land close to the gene of interests for agronomical
important traits in rice (41) and more recently in maize (42).
Appling our widely targeted metabolic profiling methodology
into GWAS has the potential to further accelerate the pace of

functional genomics in major crops such as rice and maize, thus
providing a powerful tool for crop improvement.

Materials and Methods
Details on experimental materials and methods are presented in SI Materials
and Methods. A summary is given below.

The mapping population consisted of 210 RILs derived from a cross be-
tween ZS97 and MH63. Metabolic profiling was carried out as previously
described (12). An ultrahigh-density map was used for the mQTL map-
ping (13). Seventy-one ILs generated from the same parents as the RILs
were used for validating the mQTL results. Primers used in this study are
shown in Table S3.
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