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Abstract

Multi-group latent growth modeling in the structural equation modeling framework has been 

widely utilized for examining differences in growth trajectories across multiple manifest groups. 

Despite its usefulness, the traditional maximum likelihood estimation for multi-group latent 

growth modeling is not feasible when one of the groups has no response at any given data 

collection point, or when all participants within a group have the same response at one of the time 

points. In other words, multi-group latent growth modeling requires a complete covariance 

structure for each observed group. The primary purpose of the present study is to show how to 

circumvent these data problems by developing a simple but creative approach using an existing 

estimation procedure for growth mixture modeling. AMonte Carlo simulation study was carried 

out to see whether the modified estimation approach provided tangible results and to see how these 

results were comparable to the standard multi-group results. The proposed approach produced the 

results that were valid and reliable under the mentioned problematic data conditions. We also 

presented a real data example and demonstrated that the proposed estimation approach can be used 

for the chi-square difference test to check various types of measurement invariance as conducted in 

a standard multi-group analysis.
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There are many situations where we want to know if a measurement or structural equation 

model for one group has the same parameter values as in other groups (Bollen, 1989). This 

question can be addressed using a multi-group approach in which various forms of 

invariance are tested across groups, with or without latent variables, in the structural 

equation modeling (SEM) framework (Jöreskog, 1971; Sörbom, 1974). There has been a 

plethora of multi-group SEM research on various methodological and substantive topics 

(e.g., see Byrne, Shavelson, & Muthén, 1989; Cheung & Rensvold, 2000; Cole, Martin, & 

Steiger, 2005; LaGrange et al., 2011; Mun, Fitzgerald, von Eye, Putter, & Zucker, 2001; 
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Muthén, 1989; Rivera & Satorra, 2002; Vandenberg & Lance, 2000). In recent years, multi-

group SEM has been extended to latent growth modeling (LGM; McArdle, 1986; Meredith 

& Tisak, 1984, 1990) to examine differences in growth trajectories across multiple manifest 

(observed) groups. For substantive, as well as methodological, examples, see Little, 

Schnabel, and Baumert (2000), McArdle (1989), Muthén and Asparouhov (2002), Palardy 

(2008), and Wang, Siegal, Falck, Carlson, and Rahman (1999).

Despite the usefulness of a multi-group LGM approach, a couple of data problems may arise 

especially when one of the known, manifest groups is small. For example, Figure 1 shows a 

hypothetical situation in which heterogeneity in depression trajectories is examined using 

LGM across several race groups, with Native American and Asian groups having small 

sample sizes. If any one of these small groups has completely missing responses at a single 

time point, either due to study design (no planned follow-up) or empirical missingness, then 

the subsequent estimation fails because the traditional ML estimation for multi-group 

analysis in the SEM framework initiates its estimation procedures with complete covariance 

structures for all groups. That is, the estimation fails because a covariance structure for one 

group cannot be fully specified (i.e., an indicator variable has neither variance nor 

covariance within the group). Similarly, if all participants within a group have the same 

response or if only one participant within a group has a response on an indicator, the 

traditional estimation method also fails because of the same reason--neither variance nor 

covariance can be determined.

These problematic data situations in multi-group analysis are a serious barrier for anyone 

who wants to implement a multi-group growth model in the SEM framework. The simplest 

option is to exclude the indicator variable that has no variance from the data. However, such 

an action has several unattractive implications. First, this approach will result in not fully 

utilizing existing data for all other groups. Second, depending on the model, removing a 

critical indicator variable may result in less optimal estimation of the entire model. For 

example, removing a final follow-up time point could lead to biased growth factor estimates 

for all groups. Third, in a more complex model, such as piecewise LGM (Bollen & Curran, 

2006; Muthén & Muthén, 2010; Raudenbush & Bryk, 2002), reducing the number of 

indicator variables may not be a viable option (in terms of identification) especially when 

there exists a minimal number of time points within a single phase or when higher order 

polynomials, such as quadratic growth models, have to be specified with a few available 

time points.

This estimation problem can be skirted, however, using a simple but creative adjustment 

approach that takes advantage of an existing estimation procedure for finite mixture 

modeling with known classes (Muthén & Muthén, 2010). In this adjustment approach, a 

mixture estimation procedure is employed with a single latent class that encompasses 

multiple manifest groups. Since there is only one latent class with multiple manifest groups, 

the model specification is essentially the same as the standard multi-group analysis that has 

multiple manifest groups. However, unlike the standard multi-group SEM estimation 

procedure that begins with the premise that a covariance structure per each manifest group 

must be complete, the mixture estimation approach does not have that requirement. Mixture 

modeling with known classes in Mplus (Muthén & Muthén, 2010) technically treats 

Kim et al. Page 2

Br J Math Stat Psychol. Author manuscript; available in PMC 2014 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



manifest groups as a special case of latent classes in the sense that the membership of latent 

classes is known beforehand (i.e., known classes).1 This alternative to multi-group SEM, the 

mixture approach with known classes, does not check whether all a priori known classes 

(i.e., manifest groups) have complete covariance structures. Theoretically, it is unreasonable 

to check the individual covariance structure per each known class prior to estimating model 

parameters, because the known classes in a mixture model, as opposed to manifest groups in 

a standard multi-group LGM, are technically ‘latent’classes. Latent class membership is 

determined based on posterior probabilities that are assigned during the estimation process. 

By regarding the manifest groups as latent classes whose membership is known in this 

mixture estimation approach, the procedure checks the covariance structure of entire data as 

a whole, not group-specific covariance structures. The differing approaches to data between 

these two estimation procedures (the standard multi-group LGM and the mixture multi-

group LGM) makes a critical difference when estimating a model using data with 

incomplete covariance structures for some groups. It is not estimable in the former but 

estimable in the latter.

Mixture multi-group LGM has been utilized as an alternative to multi-group LGM when 

analyzing data with some of these challenging characteristics in recent applied research. For 

example, supplemental figures available in the online version of the recent article by White, 

Lee, Mun, and Loeber (2012) were drawn with the estimates produced by using this mixture 

multi-group LGM approach. While these two approaches are considered as equivalent by 

many for practical reasons, a couple of differences exist conceptually and procedurally. Most 

important, there is a need to examine these two procedures methodologically and 

systematically, and to empirically examine whether the mixture estimation approach with 

known classes produces valid estimates under these problematic data conditions.

The present study describes the estimation procedures of these two approaches in depth, and 

reports findings from both a simulation study and a real data example. We conducted a 

Monte Carlo (MC) simulation study to examine whether the mixture multi-group estimation 

provides tangible results, as opposed to the standard multi-group estimation, when a group 

has no variability on an indicator variable. In addition, we examined how comparable the 

known class mixture estimation results are to the standard estimation results when there are 

no data problems. To show these, the present study applied the two estimation procedures to 

simulated data sets with or without the data problems across several select conditions. 

Details for the simulations are provided in the MC simulation section. A real data example 

from a smoking cessation clinical trial (Bolt, Piper, Theobald, & Baker, 2011; Piper et al., 

2009, 2011) is also provided to show the feasibility of the mixture estimation with known 

classes in the presence of one of the specified data problems, and to show how to test 

invariance of growth factors using likelihood ratio tests in the context of multi-group LGM 

analysis.

1To the best of our knowledge, structural equation modeling programs other than Mplus do not handle this special kind of categorical 
variables (i.e., known class variable).
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Data Problems

A couple of data characteristics for which standard SEM estimation cannot give results for a 

multi-group analysis are presented in this section. To begin, consider a simple, typical type 

of multi-group data structure in the context of a longitudinal study design. Suppose a 

researcher is interested in the efficacy of a depression medication for individuals who have a 

history of alcohol dependence. Depression symptom levels after the pharmacological 

intervention are collected through hand-held PCs or Palm Pilots daily for 5 days using a 7-

point Likert scale. Let the group variable be race: Caucasian (65%), African American 

(20%), Asian (10%), and Native American (5%). These kinds of real-time ecological 

momentary assessment (EMA; Stone & Shiffman, 1994) data tend to have a substantial 

portion of missing responses. Thus, we suppose that the depression symptom levels are 

available from 400 individuals with 30% of all possible responses missing. A brief 

illustration is provided in Figure 1.

By fitting a multi-group latent growth model (Bollen & Curran, 2006; McArdle, 1989; 

Muthén & Muthén, 2010), we would like not only to see the change in depression after the 

intervention but also to see whether there are significant differences in those changes across 

the four different race groups. Suppose, unfortunately, a small group has only one response 

or even no response at one time point. For example, only one participant in the Native 

American group responds at T5, or responses by the Native American group are completely 

missing at T5 as shown in Figure 1. In this case, the standard multi-group SEM procedure 

fails because a covariance matrix involving T5 data is incomplete for that group, which 

means an incomplete covariance structure exists for the Native American group. Another 

situation in which every subject in a group has the same response at least for one time point 

also results in an estimation problem because of the same reason as before, namely no 

variance. For example, suppose that all subjects in the Asian group rate their depression 

symptom levels as two on a scale of seven at T4 as shown in Figure 1. In this case, 

covariances or correlations involving the 4th indicator cannot be calculated for the Asian 

group, resulting in an incomplete covariance structure.

As discussed previously, one possible solution to this estimation failure due to the 

completely missing data cell or the same response data cell in Figure 1 would be to 

eliminate these data at T4 or T5 for all groups from analysis. However, valuable post-

intervention outcome data for the majority of the sample will not be utilized, and any 

resulting growth trajectories may not be very trustworthy because the growth trajectories are 

based on only three or four time points in this particular hypothetical example. The validity 

of a latent growth curve model is directly related to the number of indicator variables, i.e., 

the number of time points in growth models (Kim, 2012). Data from four time points are 

normally acceptable for a linear growth model, but they are not enough, for example, when 

the sample size is small or when a quadratic slope needs to be estimated. Moreover, when 

both the missing data problem and the same response data problem simultaneously happen 

at different time points or when there are a limited number of time points, it may not be 

feasible to exclude multiple time points in analysis. For example, with four assessment time 

points, we cannot eliminate data from two waves because it will prevent us from fitting a 

latent growth curve model.
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These situations are not uncommon, especially for cohort sequential longitudinal data. A 

cohort sequential, longitudinal design is often recommended as an economical way to assess 

a behavior of interest over a long period of time (Duncan, Duncan, & Hops, 1996). 

Assuming there is sufficient overlap in assessment time periods across cohorts, we can draw 

valid inference about developmental trajectories from multiple cohorts. For example, White 

et al. (2012) conducted a multi-group, four-piecewise linear growth curve model and 

examined alcohol use trajectories during the transition from adolescence to adulthood for the 

following five violence groups: nonviolent (n = 580; 65%), late-onsetters (n = 51; 6%), 

desisters (n = 76; 9%), persisters (n = 103; 12%), and one-time offenders (n = 84; 9%). The 

sample was comprised of two different cohorts: youngest and oldest cohorts who were 

followed up from the 1st and 7th grade, respectively (Loeber, Farrington, Stouthamer-Loeber, 

& White, 2008). Thus, this cohort-sequential longitudinal design made it possible to 

examine alcohol trajectories from ages 12 through 24/25 years, a much larger developmental 

window than using data from either cohort alone. However, this also created a situation 

where data were sparse at both ends of the age range and even sparser or completely missing 

when examined separately for each cohort. More specifically, the covariance (data) coverage 

between some of the time points was low, and there were either zero valid observations or 

only one valid observation (no variance in either case) for some of the violence groups at a 

couple of time points. We also provide a real data example of the same response data 

problem (Bolt et al., 2011; Piper et al., 2009, 2011) to further examine the mixture multi-

group procedure with known classes for the tricky data problems, in the section of Real Data 

Analysis.

Growth Mixture Model with Known Classes

Mixture modeling with known classes (Muthén & Muthén, 2010) can be used when one 

wants to perform a mixture analysis while taking manifest group membership, such as 

gender, into consideration. In the mixture model with known classes, there are two types of 

categorical latent variables: one is a latent class variable, whose values are unknown and 

estimated by the model, and the other is a known class variable that corresponds to manifest 

group membership, such as boys and girls or intervention and control groups. Therefore, this 

model is a combination of latent class analysis (i.e., mixture models) and multi-group 

analysis. For example, if two latent classes are specified along with four known classes (i.e., 

four manifest groups), a total of eight (4×2) class patterns are formed in the model: from ‘1 

and 1’(1st known class and 1st latent class), ‘1 and 2’(1st known class and 2nd latent class), 

and so on up to ‘4 and 2’(4th known class and 2nd latent class).

For the purpose of the present study, the mixture modeling with known classes is applied to 

a latent growth model in this section, resulting in growth mixture modeling with known 

classes (Muthén & Muthén, 2010). A path diagram is provided in Figure 2 for a graphical 

illustration of the model. Thorough model specification is omitted here because growth 

mixture modeling (GMM; Muthén, 2001a, 2001b; Muthén, 2004; Muthén & Shedden, 1999) 

and multiple group analysis (e.g., Jöreskog, 1971; Sörbom, 1974; Vandenberg & Lance, 

2000) are well documented elsewhere, and because the specifications of these models for the 

purpose of the estimation are explained in the next section. From the path diagram, notice 

that this path diagram is the same as that of GMM with the difference being the introduction 
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of a known class variable (manifest group variable in the form of a categorical latent 

variable). Both latent class and known class variables are technically categorical latent 

variables. However, while latent classes are really latent, known classes, in fact, correspond 

to manifest groups.

The present study utilizes this special extension of GMM that includes one latent class 

variable and one a priori known class variable. We identified some critical data problems in 

a multi-group longitudinal data analysis mentioned previously and applied one special case 

of the GMM with a known class variable to data to circumvent these problems. This 

approach involves specifying one latent class variable with a single category and the other 

latent class variable (i.e., known class variable) to indicate multiple manifest groups.2 As a 

result, the GMM with one latent class and multiple known classes is equivalent to the 

standard multi-group LGM because the known classes of this mixture approach are 

fundamentally the manifest groups. The two approaches, the GMM with one latent class and 

multiple known classes and the standard multi-group LGM, can be used interchangeably 

when data across all manifest groups have complete covariance structures.

Model Specification and Estimation

In this section, the estimation procedures for a standard multi-group SEM and for a mixture 

multi-group SEM with known classes are compared to show that they have the same model 

specifications for estimation. Then, one important difference in the procedures between the 

two methods is discussed. There have been articles and books that showed estimation 

procedures for a general structural equation model and a mixture model (Bollen, 1989; 

Jöreskog, 1973; McLachlan & Peel, 2000). However, the following section is presented to 

draw attention to the commonality and difference between the two approaches targeted in 

this present study: a standard multi-group SEM and a mixture multi-group SEM estimation 

procedures.

A Standard Multi-group SEM

Jöreskog (1973) discussed ML estimation for general structural equation models. Slightly 

different or modified versions also appear in Bollen (1989) and Kaplan (2009). To begin, let 

the observed responses x (exogeneous variables) and y (endogeneous variables) be denoted 

as a vector z, and let the observed responses be based on a sample of n. Central to the 

development of the ML estimation is the assumption that observations are derived from a 

population that follows a multivariate normal distribution (Kaplan, 2009). The multivariate 

normal density function of z can be written as:

(1)

2 The mixture model with known classes can be used for different purposes such as complex survey analysis with weights. Neale and 
Cardon (1992) also used a mixture item response theory model that used a single latent class with two known classes in the study of 
monozygotic and dizygotic twins.
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where μ is a mean vector, Σ is a covariance matrix, p is the number of y variables, and q is 

the number of x variables. The μ and Σ can be further structured by imposing a structural 

equation model (Tueller & Lubke, 2010) as follows:

(2)

(3)

where ν is a vector of equation intercepts, Λ is a matrix of factor loadings, I is an identity 

matrix, B is a matrix of regression coefficients between factors, α is a vector of factor 

means, 1 is a covariance matrix for the factors, and Θ is a covariance matrix of the 

measurement error terms with error variances on the diagonal.

Under the assumption that the observations are independent of one another, the joint density 

function (i.e., the likelihood function) for a typical structural equation model can be derived 

(Bollen, 1989). After making some adjustments to make the calculation easier,3 we need to 

maximize Equation (4), the log likelihood function without the constant term, with respect to 

the parameters of the model:

(4)

where θ is a vector of parameters, and S is an unbiased sample covariance matrix 

corresponding to z.

For the estimation of a multi-group structural equation model, each group’s (denoted by 

using a subscript g) observed covariance matrix (Sg) is the object of the analysis. The 

hypothesized structure implies a covariance matrix Σg (θg) for each group. The total log 

likelihood for the multi-group SEM is a weighted sum of the group-specific log likelihoods 

by the group sample size:

(5)

where G is the total number of groups. When the observed covariance matrices, Sg, are 

closer to the model-implied covariance matrices, Σg (θg), for all groups, the multi-group 

model fits better.

3 According to Bollen (1989), sample size n should be n +1, and S should be S * that corresponds to n +1 in Equation (4). However, 
the difference between S and S * or the difference between n and n +1 is negligible in large samples.
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A Mixture SEM with Known Classes

The multivariate normal density function of a finite mixture extension of a structural 

equation model (Kaplan, 2009; McLachlan & Peel, 2000; Muthén, 2002; Tueller & Lubke, 

2010; Vermunt & Magidson, 2005) is given by

(6)

where z is a vector of observed variables, K is the number of latent classes, πk is the class 

proportions such that  are multivariate normal density functions 

with class specific mean vectors μk and class-specific covariance matrices Σk. The μk and Σk 

can be further structured by imposing a structural equation model, and those are the same 

equations as Equations (2) and (3) with the latent class subscript k. The observed log 

likelihood function of a mixture SEM model is:

(7)

For the estimation of a single-class mixture SEM model, we apply K =1 to the finite mixture 

extension of an SEM model in Equations (5) and (6). When K =1, the last term of Equation 

(7) becomes the right-hand side of Equation (8),

(8)

because the multivariate normal density function in Equation (7), φk (zi; μk, Σk) without the 

subscript k (i.e., the multivariate normal density with a single latent class), is equivalent to 

the multivariate normal density function shown in Equation (1), φ(zi; μ, Σ). The right-hand 

side of Equation (8) is equivalent to Equation (4), i.e., the log likelihood of the SEM is equal 

to the log likelihood of the single-class mixture SEM. Therefore, the standard SEM model is 

equivalent to the single-class mixture SEM model from the point of the log likelihood 

equations. Thus, the same multi-group adjustment as in the standard SEM in Equation (5) 

can be applied to the single-class mixture SEM. Consequently, for the purpose of estimation, 

the model specifications for the standard multi-group SEM and the single-class mixture 

SEM with multiple known classes are basically equivalent. Now the only difference between 

the two approaches lies in how each estimation procedure handles multiple groups: a group 

variable is manifest in the standard multi-group analysis, whereas it is latent (known class 

variable) in the mixture multi-group analysis.
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In a multi-group analysis, the mean vector and the covariance matrix for each group can be 

modeled and estimated separately without taking into account the other groups or the entire 

sample because the mean vector and covariance matrices are not correlated across groups 

(Arminger & Stein, 1997). That is, a multi-group model is nothing but the sum of group-

specific models. In contrast, in the case of mixture analysis, k posterior probabilities are 

assigned to each individual. For example, one individual case has a probability of 0.7 that it 

belongs to the first latent class and, at the same time, has a probability of 0.3 that it belongs 

to the second latent class. All individuals within the entire sample are linked to one another 

through posterior probabilities within and across the latent classes. Therefore, a mixture 

model is not the sum of class-specific models as in a multi-group model; class-specific 

models are rather regarded as the derivatives from a complete mixture model. Thus, when 

manifest groups are specified as known classes in a mixture analysis, these known classes 

are treated as derived subgroups from the entire sample, even if the posterior probabilities of 

the individuals belonging to these known classes are pre-determined (either 1 or 0).

In sum, the completeness of each covariance structure per each manifest group is required in 

the estimation procedure for the standard multi-group analysis, whereas only the 

completeness of the whole covariance structure across all known classes is required for the 

mixture multi-group analysis. Consequently, the mixture multi-group procedure can provide 

results under the problematic data structures for which the standard multi-group procedure 

fails to begin the estimation process. Needless to say, if data are missing on an indicator 

variable for all groups, even the mixture multi-group procedure cannot give any results 

involving that indicator variable.

Monte Carlo Simulation

In the present study, we performed a Monte Carlo simulation study to see whether the 

mixture method with known classes provides tangible results and to see how those results 

are comparable to the standard multi-group results under two situations: (1) when data did 

not have any problems, and (2) when data had problems (e.g., either missing or the same). 

The simulations were carried out under several limited conditions, since the purpose of the 

present study was to demonstrate the general idea of how to utilize two different analytic 

approaches for a given data characteristic, rather than to thoroughly evaluate the 

performance of the estimation methods under various simulation conditions.

Design and Data Analysis

In a Monte Carlo study, a model or models to be studied should be chosen first; the multi-

group latent growth model was examined in this study. For the choice of design (or 

manipulated) factors and Monte Carlo variables, a normative condition of latent growth 

models was decided: 5 indicator variables, linear slope, 20% of missing proportion, no 

covariate, a sample size of 500, and 100 replications. Four groups with the following 

proportions, 65% (NG1 = 325), 20% (NG2 =100), 10% (NG3 = 50), and 5% (NG4 = 25), were 

specified for N = 500. Once data sets at the normative condition were generated across the 

four groups, the standard multi-group procedure and the mixture multi-group procedure 

were applied to the generated data sets to see whether the results from the two estimation 
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procedures were comparable. Then, all responses on the 5th indicator variable in the 4th 

group of the generated data sets were (1) totally removed to emulate the completely missing 

data condition, and (2) replaced with a single constant4 to emulate the same response data 

condition. The mixture multi-group procedure was applied to the manipulated, problematic 

data sets, and the results were compared to the results from the previous step that had no 

data problems.

Next, each of the design factors was varied while the other factors were held constant at their 

normative values. The following four design factors were examined: (1) an added quadratic 

growth slope, (2) an added continuous covariate, (3) an increased missing proportion up to 

50%, and (4) a decreased sample size of 300. For the generated data sets with each varying 

factor, both the standard and the mixture multi-group procedures were used for estimation to 

see whether the results were comparable. Then, the data manipulation procedures described 

above were applied to the generated data sets to simulate the completely missing data 

condition as well as the same response data condition in one group. Only the mixture multi-

group procedure was applied to the problematic data sets.

Finally, the effect of the multiple missing data problem and the effect of both missing and 

same response data problems were investigated. For the multiple missing data modification 

from the generated data sets at the normative values, two cases were considered: completely 

missing data in two different groups and completely missing data at two different time 

points in one group. For the missing and same response modification, two cases were also 

considered: two different problems in two different groups versus in one group. The mixture 

multi-group procedure was applied to the manipulated data sets, and the results were 

compared as before. In the interest of space, only the parameters related to growth factors 

(i.e., means and variances of growth factors) are presented for the simulation results in 

Tables 1 – 4.

Simulation Results

Relative parameter recovery at the normative condition was compared between the results 

from the two approaches under generated (unproblematic) and manipulated (problematic) 

data sets. Averaged point estimates across 100 replications and their averaged standard 

errors (in parentheses) for growth factors are provided in Table 1.5 The results from the 

mixture multi-group analysis were exactly the same as those from the standard multi-group 

analysis across all estimates. This is not surprising because the model specifications for the 

two models are statistically equivalent. Results from the condition of completely missing 

data at one time point in one group are shown under the ‘Missing’ column in Table 1. The 

point estimates under the ‘Missing’ column were the same as the results of the standard 

multi-group procedure and also the results of the mixture multi-group procedure with the 

generated data sets. Standard errors of the simulations, however, were somewhat changed for 

4 The expected mean of the data cell on the trajectory was used as the same response. That is, we drew an extended linear line up to 
the 5th time point based on the growth trajectory with the first four time points, and used the number on the trajectory at the 5th time 
point as the same response value.
5 Averaged standard errors were compared to the corresponding standard deviations (or empirical standard errors), and the overall 
discrepancy was minimal (i.e., less than 1% on average). The standard deviation of each parameter estimate over the replications of a 
simulation study is considered population standard errors when the number of replication is large (Muthén & Muthén, 2002).
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Group 4; the standard errors of the mean and variance of the intercept were slightly inflated. 

Results from the same response data condition are shown under the ‘Same’ column in Table 

1. Overall, point estimates and standard errors were also similar to the results of the standard 

and the mixture multi-group procedures under the ‘Generated’ column in Table 1. The point 

estimates and the standard errors of the intercept and linear slope in Group 4 changed a bit, 

though the differences were small in magnitude.

Table 2 provides the Monte Carlo estimates when each design factor varied, while holding 

the other factors at their normative values. The patterns of the results were very similar to 

those in Table 1 across the following four different conditions: (1) when a quadratic slope 

was added, (2) when a continuous covariate was added, (3) when the missing proportion was 

increased up to 50%, and (4) when the sample size was decreased to 300. First, the results of 

the mixture multi-group procedure were the same as those of the standard multi-group 

procedure with generated data sets. Second, the results were still very comparable when the 

missing data and same response data conditions were manipulated. The results of Groups 1, 

2, and 3 were the same or nearly the same regardless of the conditions. The results of Group 

4 that had the missing data or the same response data conditions had somewhat different 

growth factor estimates, though the differences were minimal.

The Monte Carlo estimates for the condition of completely missing data at two time points 

in one group or two groups are provided in Table 3. Regardless of whether this condition 

was limited to one group or two groups, the mean estimates of intercepts and slopes, as well 

as standard errors, were very similar to the results from the generated data sets without 

missing data. The standard errors in parentheses were slightly different, though the 

differences were very small. The Monte Carlo estimates for the condition of both the 

completely missing data and the same response data are provided in Table 4. The results 

were still very comparable to the findings from the generated data sets, whether the two 

kinds of data problems occurred in one group or two groups.

Real Data Analysis

In this section, the mixture multi-group approach is applied to a real data set with one of the 

identified data problems as an alternative to the standard multi-group approach. We show a 

case of the same response problem in this example, because an example of the missing data 

problem was briefly described in the previous section (White et al., 2012). We present this 

analysis example to show the feasibility of the mixture multi-group procedure under these 

problematic data situations and to show that we can calculate a χ2 difference test statistic for 

invariance tests that are typically implemented in a standard multi-group analysis using 

provided log likelihood values in the results. It should be noted that the example provided is 

for the purpose of demonstration and thus no serious substantive conclusions should be 

construed from the findings. The Mplus code is provided in the Appendix.

The data used in this analysis are from a large placebo-controlled, comparative effectiveness 

smoking cessation clinical trial conducted at the University of Wisconsin Center for Tobacco 

Research and Intervention (Bolt et al., 2011; Piper et al., 2009, 2011). This study was 

designed to test the efficacy of five cessation pharmacotherapy treatments (nicotine lozenge, 
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nicotine patch, sustained-release bupropion, nicotine patch plus nicotine lozenge, and 

bupropion plus nicotine lozenge) versus placebo (see Piper et al., 2009 for more details 

about study methods and main results). As part of the study assessment, intensive 

longitudinal data (ILD) were collected via EMA. Study participants completed four daily 

EMA reports (just after waking, prior to going to bed, and two additional reports timed to 

occur randomly during the day) for one week prior to making a quit attempt and for two 

weeks after the quit day. Participants made ratings of nicotine withdrawal symptoms, self-

efficacy, motivation, cessation fatigue, smoking, alcohol use, stress, and context (situational 

factors that may increase risk of smoking). The EMA methodology is described in more 

detail in Bolt et al. (2011) and Piper et al. (2011).

For a growth model, we utilized seven waves of daily negative affect (NA) ratings in the 

cessation clinical trial, from quit day to one week postquit. The main outcome measure, NA, 

was an average score of two 5-point (1 to 5) Likert-type scale items: one item was “upset” 

and the other was “distressed.” Therefore, NA ranged from 1 to 5, in increment of 0.5. The 

group variable of interest was marital status that was assessed using six categories (Married: 

n = 565,46.3%; Divorced: n = 263,21.5%; Widowed: n = 34,2.8%; Separated: n = 29,2.4%; 

Never married: n = 222,18.2%; Domestic partner: n =108,8.8%). Descriptive statistics for 

the indicator variables and frequencies of responses are presented in Table 5.

The objective of this multi-group analysis was to examine whether or not the six growth 

trajectories corresponding to the six groups were comparable to one another. One problem in 

this typical multi-group latent growth model was that all subjects in the Separated group had 

the same response at Wave 7 (i.e., all 1s; see Table 5). Substantively or conceptually, the fact 

that all participants had the same response is not a problem. However, with this sameness in 

a data set, SEM programs, including Mplus, will not initiate the estimation process. For 

example, Mplus outputs an error message, “One or more variables have a variance of zero. 

Check your data and format statement.” Thus, we implemented the mixture multi-group 

procedure with one latent class and six known classes, which then estimated all different 

growth factor means and variances across the six marital groups. The results are provided in 

Table 6a, and the growth trajectories are shown in Figure 3a. One of the important purposes 

of estimating a typical multi-group latent growth model is to test whether some of the 

growth factors are invariant across groups. Thus, we also ran the same multi-group model 

with the constraint of the same slope means across the six groups using the mixture 

procedure.6 The results of the restricted model are presented in Table 6b, and the growth 

trajectories are shown in Figure 3b.

A likelihood ratio test was then performed to test the invariance of the slopes (H0 : The six 

marital groups have the same slopes vs. H1 : At least one slope is different from the others). 

Since maximum likelihood estimation with robust standard errors (MLR; Muthén & 

Muthén, 2010) was used in Mplus 6, scaling correction factors were adjusted to calculate the 

χ2 difference statistic (see Satorra, 2000; Satorra & Bentler, 2001). Given the simpler 

model’s log likelihood (lls), scaling correction factor (scfs), and number of parameters (ps), 

6 In a substantive study, a constraint can be applied to some but not all groups, depending on the hypothesis tested.
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and given the more complex model’s log likelihood (llc), scaling correction factor (scfc), and 

number of parameters (pc), the χ2 difference statistic is calculated as:

(9)

and the  follows the χ2 distribution with pc − ps degrees of freedom. In our particular 

example,

(10)

and this statistic was compared to the χ2 distribution with 5 degrees of freedom (i.e., 2 7– 22 

= 5). The p -value was 0.3173, suggesting that growth slopes were not different across the 

six groups. Likewise, when the standard multi-group procedure was not feasible because of 

problematic data situations, the mixture multi-group procedure provided not only the 

trajectory estimates across the groups but also the χ2 difference statistic for invariance tests, 

just like a standard multi-group analysis without any problematic data conditions.

Discussion and Conclusion

The purpose of the present study was to show how to circumvent an estimation problem for 

a multi-group latent growth model when an indicator variable or variables had no variance in 

any of the groups examined. Since a multi-group analysis in the SEM framework initiates its 

estimation process with the complete check of covariance structures for all groups, the 

parameters for a multi-group model are not estimable when a group has completely missing 

data (or just one response) or same response data on an indicator variable or variables. This 

situation can be quite common in cohort sequential longitudinal studies (or accelerated 

longitudinal studies) or in a complex longitudinal model with multiple distinct phases, 

because data are likely to be sparser as the time moves farther from a baseline or an 

intervention point. If a target group of interest is small in size, these data problems can occur 

more often than in other groups with a larger number of observations because participants in 

a small, homogeneous group are more likely to have a similar experience at a given time 

point. The mixture multi-group approach provided tangible results with problematic data 

sets by applying a creative, straightforward adjustment to an existing mixture modeling 

approach.

Theoretically and empirically, the mixture multi-group procedure can provide valid and 

reliable results when used as an alternative to the standard multi-group procedure under the 

problematic data situations. However, without a Monte Carlo simulation study, it is hard to 

know how closely those estimates from the mixture approach match the results from the 

standard multi-group LGM. When there was no data problem, the mixture multi-group 

estimation procedure showed exactly the same results, in terms of means and variances of 
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growth factors, as the standard multi-group estimation procedure. When the generated data 

sets were manipulated to simulate the problematic data examples, the mixture multi-group 

approach provided quite reliable results. Although the Monte Carlo study showed very 

reassuring results of the mixture estimation procedure, one should also note that this was a 

simulation study and the scope and thoroughness of the conditions simulated were limited.

Upon verifying that the mixture multi-group procedure showed valid and reliable results in 

the Monte Carlo study, we then checked whether this mixture approach could be used as an 

alternative to the standard multi-group approach in the aspect of a real data analysis. In other 

words, we demonstrated that the mixture approach could be used for the χ2 difference test to 

check various types of measurement invariance as conducted in a standard multi-group 

analysis. Through the results of the real data example utilizing negative affect data collected 

over one week postquit in a real smoking cessation clinical trial, we demonstrated that the 

provided log likelihood values from the two models, one of which was the more restricted 

model (i.e., the model with the same slopes), could be used to test the slope invariance 

across the six marital groups.

The mixture estimation procedure appears to be useful in the presence of the data problems 

described. Of the two data problems, however, one needs to differentiate the completely 

missing data problem from the same response data problem. The fact that a group has the 

same response on an indicator variable by chance is not a substantive or design problem but 

an estimation problem. By comparison, the completely missing data can be a substantive 

problem because actual responses for an indicator variable in a group have never been 

observed. If this missingness occurred by a research design as in cohort, sequential 

longitudinal studies, it is reasonable to assume that the missing-at-random (MAR) 

assumption is satisfied (Graham, Hofer, & MacKinnon, 1996). Thus, in this mixture multi-

group analysis, it is assumed that the potential responses in a completely missing data cell 

could lie on an extension of the growth trajectory based on the other valid indicators. If data 

are missing-not-at-random (MNAR; e.g., non-ignorable dropouts of patients from a 

treatment program), then, needless to say, the mixture multi-group approach will not provide 

valid results over unobserved data points. Although, in the simulation study, the results 

showed quite good growth parameter recovery with completely missing data, one should 

carefully check the growth estimates with the completely missing data problem for 

interpretation.

In line with this cautionary note, researchers ought to carefully use the mixture estimation 

approach for a factor analytic model. A latent growth model is fundamentally a factor 

analytic model, and therefore, this mixture approach can also be used for a factor model 

under the same kinds of data problems. However, in a latent growth model, one 

characteristic (e.g., depression) is measured multiple times across time, whereas in a factor 

analytic model, multiple characteristics (e.g., depression, craving, and negative affect) are 

measured only once. It may or may not be relevant to assume that the potential responses of 

completely missing depression scores are comparable realizations of the other indicators, 

e.g., craving and negative affect,7 and that this missing pattern meets MAR. Thus, one 

should be careful when using the mixture multi-group approach with the completely missing 

data problem, especially in a common factor model.
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The present study introduced and demonstrated a modified estimation procedure to 

circumvent some problematic data situations which hinder estimation in a multi-group 

longitudinal data analysis. More specifically, the mixture multi-group procedure was shown 

to reliably estimate a multi-group latent growth model with completely missing data or the 

same response data on an indicator variable(s). Furthermore, the validity of invariance tests 

using likelihood ratios from the mixture analysis output was demonstrated. In the current 

research environment where limited resources are maximized to produce valid inference 

using efficient study designs (e.g., accelerated longitudinal or cohort sequential longitudinal 

designs [Duncan et al., 1996] or planned missing follow-ups [Brown, Indurkhya, & Kellam, 

2000]), the mixture approach maximizes the use of the existing data to answer often critical 

questions in the literature. Thus, this modified mixture approach to a multi-group analysis 

can have important implications for applied research.
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Appendix

Mplue code for a growth mixture model with known classes - A smoking cessation data 

example with six known classes and one true latent class (no slope constraint across six 

marital groups)

Title: A mixture model with known classes-no slope constraint

Data: File is TTURC2_EDData.dat;

     Format is 14f8.2;

Variable: Names are id y1-y7 gender marital educatio

              wages income race;

        Usevar are y1-y7 marital;

        Classes = cg(6) c(1);
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        Knownclass is cg (marital=1 marital=2 marital=3

                       marital=4 marital=5 marital=6

);

        Missing are all(999);

Analysis: Model = nomeanstructure;

        Type = mixture; estimator = mlr;

Model: %Overall%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

    %cg#1.c#1%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

    %cg#2.c#1%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

    %cg#3.c#1%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

    %cg#4.c#1%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

    %cg#5.c#1%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

    %cg#6.c#1%

    i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6;

Plot: Type = plot2;

    Series = y1(0) y2(1) y3(2) y4(3) y5(4) y6(5) y7(6);

Output: Tech9;
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Figure 1. 
A longitudinal, multi-group data example. Depression symptom measures over five time 

points are collected across four race groups. ‘Empty’ represents a completely missing data 

cell, indicating all Native American participants provide no response at T5. ‘Same’ 

represents a same response data cell, indicating all Asian participants provide the same 

response at T4.
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Figure 2. 
A path diagram of growth mixture model with known classes. A LGM in the rectangular 

framework extends to a GMM with the introduction of a latent class variable, which is in the 

circular framework. In turn, a GMM extends to a GMM with known classes with the 

introduction of a known class variable (i.e., manifest group variable).
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Figure 3. 
Growth trajectories of negative affect across the six marital groups without and with 

constraint.
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