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Abstract

Multi-atlas segmentation is an effective approach for automatically labeling objects of interest in 

biomedical images. In this approach, multiple expert-segmented example images, called atlases, 

are registered to a target image, and deformed atlas segmentations are combined using label 

fusion. Among the proposed label fusion strategies, weighted voting with spatially varying weight 

distributions derived from atlas-target intensity similarity have been particularly successful. 

However, one limitation of these strategies is that the weights are computed independently for 

each atlas, without taking into account the fact that different atlases may produce similar label 

errors. To address this limitation, we propose a new solution for the label fusion problem, in which 

weighted voting is formulated in terms of minimizing the total expectation of labeling error, and in 

which pairwise dependency between atlases is explicitly modeled as the joint probability of two 

atlases making a segmentation error at a voxel. This probability is approximated using intensity 

similarity between a pair of atlases and the target image in the neighborhood of each voxel. We 

validate our method in two medical image segmentation problems: hippocampus segmentation and 

hippocampus subfield segmentation in magnetic resonance (MR) images. For both problems, we 

show consistent and significant improvement over label fusion strategies that assign atlas weights 

independently.

Index Terms

multi-atlas label fusion segmentation; dependence; hippocampal segmentation

I. Introduction

Atlas-based segmentation is motivated by the observation that segmentation strongly 

correlates with image appearance. A target image can be segmented by referring to atlases, 

i.e. expert-labeled sample images. After warping the atlas to the target image via deformable 

registration, one can directly transfer labels from the atlas to the target image. As an 

extension, multi-atlas based segmentation makes use of more than one atlas to compensate 
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for potential bias associated with using a single atlas and applies label fusion to produce the 

final segmentation. This method requires higher computational costs but, as extensive 

empirical studies have verified in the recent literature, e.g. [16], [3], [22], it is more accurate 

than single atlas based segmentation. Enabled by availability and low cost of multi-core 

processors, multi-atlas label fusion (MALF) is becoming more accessible to the medical 

image analysis community. Recently, the concept has also been applied in computer vision 

for segmenting natural images [37], [21].

Errors produced by atlas-based segmentation can be attributed to dissimilarity in the 

structure (e.g., anatomy) and appearance between the atlas and the target image. Recent 

research has been focusing on addressing this problem. For instance, such errors can be 

reduced by optimally constructing a single atlas that is the most representative of the 

population using training data [12], [11], [18]. Constructing multiple representative atlases 

from training data has been considered as well and usually works better than single-atlas 

based approaches. Multi-atlas construction is done either by constructing one representative 

atlas for each mode obtained from clustering training images [5], [2], [32] or by simply 

selecting the most relevant atlases for the unknown image on-the-fly [30], [1], [41]. Either 

way, one needs to combine the segmentation results obtained by referring to different atlases 

to produce the final solution.

Most existing label fusion methods are based on weighted voting, [30], [16], [3], [17], [33], 

where each atlas contributes to the final solution according to a non-negative weight, with 

atlases more similar to the target image receiving larger weights. Among weighted voting 

methods, those that derive weights from local similarity between the atlas and target, and 

thus allow the weights to vary spatially, have been most successful in practice [3], [17], [33]. 

One common property of these spatially variable weighted voting MALF methods is that the 

weights for each atlas are computed independently, only taking into consideration the 

similarity between the warped atlas and the target image. As such, these methods are less 

effective when the label errors produced by the atlases are not independent, e.g. most atlases 

produce similar errors. As a simple example, suppose that a single atlas is duplicated 

multiple times in the atlas set. If weights are derived only from atlas-target similarity, the 

total contribution of the repeated atlas to the consensus segmentation will increase in 

proportion to the number of times the atlas is repeated, making it more difficult to correct 

the label error produced by the duplicated atlas. Likewise, if the atlas set is dominated by a 

certain kind of anatomical feature or configuration, there will be an inherent bias towards 

that feature, even when segmenting target images which do not share that feature. As the 

result, the quality of the segmentation for the less frequent anatomical features/

configurations may be reduced.

Another class of label fusion methods perform majority voting among a small subset of 

atlases that globally or locally best match the target image, discarding the information from 

poor matching atlases [3], [7]. These methods are less susceptible to the problem described, 

since the atlas appearing multiple times would only be included in the voting if it is similar 

to the target image. However, by completely discarding information from poorer matches, 

these methods lose the attractive property of voting arising from the central limit theorem. In 

particular, when all atlases are roughly equally similar to the target image, performing 
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voting only among the few best atlases will have greater expected error than voting between 

all atlases.

This paper derives a novel label fusion strategy that aims to reduce the bias due to the fact 

that atlases may produce correlated segmentation errors, without sacrificing the attractive 

properties of voting. The strategy is derived from formulating the weighted voting problem 

as an optimization problem over unknown voting weights, with the expected total error of 

the consensus segmentation relative to the unknown true segmentation being minimized. 

This formulation requires the joint distribution of label errors produced by any pair of 

atlases in the neighborhood of each voxel to be known. In practice, this distribution is 

unknown, and we estimate it using image intensity similarity. However, unlike previous 

methods, similarity with the target image is not measured independently at each atlas. 

Instead, intensity similarity between the target and each pair of images is considered, which 

leads to an ability to explicitly estimate the probability that a pair of atlases produce the 

same segmentation error. We hypothesize that this strategy will improve segmentation 

accuracy over existing techniques that consider atlas-target similarity independently [3], 

[33]. To test this hypothesis, we perform cross-validation segmentation experiments in 

manually labeled MRI datasets, and report significant improvements over earlier methods.

Preliminary versions of this work appeared in [39], [38].

II. Multi-Atlas Based Segmentation

We start with a brief overview of MALF. Let FT be a target image to be segmented and A1 = 

(F1, S1),…,An = (Fn, Sn) be n atlases. Fi and Si denote the ith warped atlas image and the 

corresponding warped manual segmentation of this atlas, obtained by performing 

deformable image registration to the target image. Each atlas produces one candidate 

segmentation for the target image. Each of the candidate segmentations may contain some 

segmentation errors. Label fusion is the process of integrating the candidate segmentations 

produced by all atlases to improve the segmentation accuracy in the final solution.

Errors produced in atlas-based segmentation are mainly due to registration errors, i.e. 

registration associates wrong regions from an atlas to the target image. Under the 

assumption that the errors produced by using different atlases are not identical, employing 

multiple atlases can effectively reduce label errors. For example, the majority voting method 

[13], [19] simply counts the votes for each label from each warped atlas and chooses the 

label receiving the most votes to produce the final segmentation ŜT:

(1)

where l indexes through labels and L is the number of all possible labels, x indexes through 

image pixels.  is the vote for label l produced by the ith atlas, defined by:

(2)
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The power of voting in removing independent noise has been long recognized. For instance, 

for a simple binary (yes/no) voting problem, in a group of 23 voters, if three voters always 

give the same vote and the remaining voters vote randomly, the chance that the final voting 

result is consistent with what the three resolute voters choose is ~75% [28]. For multi-way 

voting problems, majority voting is even more powerful in removing independent noise. In 

our problem, suppose that atlas Ai produces correct labels for the target image with 

probability pi. The probability that the atlas will produce any particular wrong label can be 

roughly estimated by (1−pi)/(L−1). When pi > (1−pi)/(L−1), the atlas works better than 

random guess. When segmentation errors produced by different atlases are independent, the 

probability that multiple atlases agree on the same wrong label is exponentially suppressed 

compared to the probability that they agree on the same correct label. Hence, the combined 

results are expected to produce significantly fewer errors than those produced by any single 

atlas.

Since majority voting assigns equal weights to different atlases, it makes a strong 

assumption that different atlases produce equally accurate segmentations for the target 

image. However, as a complex optimization problem, the performance of deformable 

registration is sensitive to the input images. Hence, it is common that different atlases may 

produce different registration qualities, therefore segmentations with different qualities, for 

the same target image.

To improve label fusion accuracy, recent work focuses on developing segmentation quality 

estimations based on local appearance similarity and assigning greater weights to more 

accurate segmentations. For instance, the votes received by label l can be estimated by:

(3)

wi(x) is a local weight assigned to the ith atlas, with . One way to estimate the 

weight is based on local image similarity under the assumption that images with similar 

appearance are more likely to have similar segmentations. When the summed squared 

distance (SSD) and a Gaussian weighting model are used [33]1, the weights can be 

estimated by:

(4)

where (x) defines a neighborhood around x and Z(x) is a normalization constant. In our 

experiment, we use a (2r +1)×(2r +1)×(2r +1) cube-shaped neighborhood specified by the 

radius r. Since segmentation quality usually is nonuniform over the entire image, the 

estimation is applied based on local appearance dissimilarity. The inverse distance 

weighting has been applied as well [3], [17]2:

1[33] proposes a general method with multiple specific implementations. Here, we refer to the “local weighted voting” 
implementation, i.e. equation (6) and (10) in [33].
2The equation corresponds to the local weighted voting with mean squared distance metric (LWV-MSD) in [3]. This paper also 
evaluated other metrics and found that MSD was a top performer.
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(5)

where σ and β are model parameters controlling the weight distribution.

Despite the highly competitive performance produced by these image similarity based local 

weighted voting approaches [16], [3], [22], the key limitation of these methods is that they 

assign voting weights to each atlas independently, and thus cannot account for the fact label 

errors produced by different atlases may be correlated, as pointed out in the Introduction. 

Next, we introduce a method to address this limitation.

III. Joint Label Fusion

For simplicity, in the theoretical exposition that follows, we consider binary segmentation, 

i.e. segmentation into foreground and background labels. We assume that each voxel in the 

target image is labeled 0 or 1, and that each atlas segmentation also assigns 0 or 1 to each 

voxel. Probabilistic segmentation (where each voxel is assigned a probability of having a 

given label) can also be achieved in practice by using the same weighting scheme as we 

develop below. Likewise, a segmentation problem with more than two labels can be 

decomposed into multiple binary segmentation problems, i.e. segmenting each label from 

the remaining labels. Our method can be applied to multi-label segmentation problems by 

producing weight maps as described below, using weighted voting to compute a consensus 

segmentation for each label, and selecting at each voxel the label with the highest value of 

the consensus segmentation.

In binary segmentation, we can model segmentation errors produced in atlas-based 

segmentation as follows:

(6)

where δi(x) is the label difference between the ith atlas and the target image at x. δi(x) ∈ {−1, 

0} when Si(x) = 1 and δi(x) ∈ {0, 1} when Si(x) = 0. We model the label difference as a 

discrete random variable, characterized by the following distribution:

(7)

We adopt the weighted voting framework, where at each x, a consensus segmentation S̅(x) is 

generated as the weighted sum

(8)

where wi(x) are spatially varying weight maps that add up to 1 at each x. Note that whereas 

the candidate and target segmentations are taken to be binary, the consensus segmentation S̅
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(x) is not. Our aim is to find the set of voting weights that minimize the total expected error 

between S̅(x) and the true segmentation ST (x), given by

(9)

(10)

where wx = [w1(x);…;wn(x)], and t stands for transpose. Mx is a pairwise dependency matrix 

with:

(11)

(12)

Mx(i, j) estimates how likely atlases i and j are to both produce wrong segmentations for the 

target image, given the observed feature images. Note that the product δi(x)δj(x) can only 

take values 0 or 1, with δi(x)δj(x) = 1 if and only if both atlases produce a label different 

from the target segmentation.

Under this formulation, to achieve optimal label fusion, the voting weights should be 

selected such that the expectation of the combined label difference is minimized, i.e.,

(13)

Using Lagrange multipliers, we can derive a closed-form solution to this minimization 

problem, given by

(14)

where 1n = [1; 1;…; 1] is a vector of size n. When Mx is not full rank, the weights can be 

estimated using quadratic programming optimization [27]. However, the weights that 

minimize (13) are not unique. We take an alternative solution by always adding an identity 

matrix weighted by a small positive number α to Mx. With the conditioning matrix, we 

minimize the following objective function instead:

(15)

Hence, adding a small conditioning identity matrix can be interpreted as enforcing a 

regularization term that prefers more similar voting weights assigned to different atlases.
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To make sure that the added conditioning matrix is sufficient to avoid inverting an ill-

conditioned matrix and the resulting voting weights also give a solution close to the global 

minimum of the original objective function, , α should be chosen with respect to 

the scale of the estimated dependency matrix Mx. We found that setting α ≃ 1–2% of the 

maximal scale of estimated Mx works well. In our experiments, we estimate Mx using 

normalized intensity patches and the estimated Mx is in the range of [0, 4] (see below). We 

apply conditioning identity matrices with a fixed weight α=0.1 in all of our experiments.

A. Toy example

Suppose that a pair of atlases A1 and A2 produce statistically independent label errors for a 

given target image. If A1 produces a wrong label 50% of the time and A2 produces a wrong 

label 20% of the time, we have

The optimal voting weights computed by (14) are w = [0.2, 0.8]t. Using (14) with a 

conditioning matrix with α = 0.01 produces a solution w = [0.2115, 0.7885]t. By contrast, if 

we compute weights independently for each atlas, e.g., wi ∝ p(|δi| = 1)−1, we obtain w = 

[2/7, 5/7]t. The expected total segmentation errors (9) for these three weight vectors are 

0.18, 0.1801, and 0.1837, respectively.

Now suppose that another atlas A3, which is identical to A1, is added to the atlas library. A1 

and A3 produce identical label errors for the target image, i.e., p(δ1(x)δ3(x) = 1) = p(|δ1(x)| = 

1) = p(|δ3(x)| = 1). Then

and the optimal voting weights are not unique any more, but obey the following constraint: 

w1 + w3 = 0.2 and w2 = 0.8. The total weight assigned to the duplicated atlas remains the 

same. Using (14) with a conditioning matrix with α = 0.01 produces a solution w = [0.1068, 

0.7864, 0.1068]t. By contrast, if we compute weights independently for each atlas, e.g., wi ∝ 

p(|δi| = 1)−1, we obtain the weight vector [2/9, 5/9, 2/9]t, with the weight for A2 substantially 

reduced and the weight for the repeated atlas A1/A3 boosted. The total expected errors for the 

three weighting strategies are 0.18, 0.1801 and 0.2099, respectively. Thus, unlike the 

scheme that assigns weights to atlases independently, the accuracy of the proposed scheme 

does not suffer from adding an atlas with redundant information. The same holds true even 

if atlases A1 and A3 are not identical, but strongly correlated.

B. Estimating Mx from intensity similarity

Our approach relies on knowing Mx, the matrix of expected pairwise joint label differences 

between the atlases and the target image. Note that these terms are conditioned on the target 
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image and all atlas images. Assuming that given the target image and the atlas images in 

consideration, the pairwise joint label difference term is conditionally independent from the 

remaining atlas images, we simplify the term as follows:

(16)

Furthermore, by assuming that given the image patches centered around the location in 

consideration, the pairwise joint label difference term is conditionally independent from 

distant voxels, we have:

(17)

In the image registration and segmentation literature, it is a common practice to use local 

image information between two images to predict their label difference. To make our 

method more comparable to previous label fusion methods, we propose to adapt the inverse 

distance function (5) to estimate the probability of pairwise joint label difference as follows:

(18)

The constant of proportionality in (18) is irrelevant, since multiplying Mx by a positive 

constant does not change the solution w. Note that when i = j,

i.e., Mx(i, i) is the inverse of the voting weight defined by inverse distance weighting 

function (5). Intuitively, our approximation is based on the assumption that the expectation 

of the label difference produced by one atlas is large when the image intensity difference 

between the warped atlas and the target image is large. Similarly, the expectation of any two 

atlases both producing a label difference is large only when both atlases have large intensity 

differences from the target image and the error patterns are strongly correlated.

C. Refining label fusion by local patch search

Registration errors (i.e., failure by the registration algorithm to correctly recover 

correspondences between objects in images) are the principal source of error in MALF. 

Because of the regularization constraints involved in registration, and for other reasons, such 

as failure to reach a global optimum of the registration objective function, the 

correspondences computed by registration may not always give maximum local similarity 

between image patches. That is, given a patch FT [ (x)] in the target image and the patch 

Fi[ (x)] in the i-th registered atlas image, it is often possible to find a nearby point x′ such 

that FT [ (x)] is more similar to the patch Fi[ (x′)] than to the patch Fi[ (x)]. As shown 

recently in [8], [39], MALF performance can be moderately improved by using the 
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displaced patch Fi[ (x′)] for computing the consensus segmentation of the target image. 

This local patch search technique can be viewed as refining the point-to-point 

correspondences computed by registration, while relaxing the regularization constraints that 

registration imposes on deformation fields.

Motivated by this observation, we determine the local search correspondence map between 

the atlas i and the target image as follows:

(19)

Note that the domain of the minimization above is restricted to a neighborhood ′(x). 

Again, we use a cubic neighborhood definition, specified by a radius rs. Note that ′ and 

may represent different neighborhoods. Given the set of local search correspondence maps 

{ξi}, we refine the definition of the consensus segmentation (8) as

(20)

To search for the most similar image patches, larger search windows ′ are more desirable. 

However, using larger searching windows more severely compromises the regularization 

constraint on the deformation fields, which makes the task of predicting label differences 

from local appearance similarities more ambiguous. As a result, the approximation (18) may 

become less effective. It is reasonable to expect an optimal search range that balances these 

two factors.

IV. Experiments

In this section, we apply our method to two segmentation problems using two types of 

magnetic resonance (MR) images. The first problem is whole hippocampal segmentation 

using T1-weighted MRI. We choose this problem because hippocampus segmentation is one 

of the most studied problems in brain image analysis. The hippocampus plays an important 

role in memory function [36]. Macroscopic changes in brain anatomy, detected and 

quantified by magnetic resonance imaging (MRI), consistently have been shown to be 

predictive of AD pathology and sensitive to AD progression [34], [9]. Accordingly, 

automatic hippocampus segmentation from MR images has been widely studied e.g. [6], 

[24], [29]. On the other hand, the hippocampus is not a homogeneous structure. It contains 

several distinct subfields with different roles and susceptibilities to pathology. A number of 

recent studies (see overview of the literature in [23]), have proposed imaging techniques and 

manual segmentation protocols aimed at accurately measuring hippocampal subfield 

volumes. Clinical utility of hippocampal subfield volumetry was recently demonstrated in 

dementia (e.g. [25], [26]) and other brain diseases. Hence, automatic hippocampal subfield 

segmentation is attracting more attention. In the second experiment, we apply our label 

fusion method to hippocampal subfield segmentation using focal T2-weighted MRI.
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Since recent empirical studies, e.g. [3], [33], have shown that image similarity based local 

weighted voting is the most effective label fusion approach compared with other benchmark 

segmentation tools such as STAPLE [40] and FreeSurfer [11], in our experiments we focus 

on comparing our joint label fusion method (LWJoint) with similarity-based local weighted 

label fusion. For local weighted label fusion, we apply Gaussian weighting (4) 

(LWGaussian) and inverse distance weighting (5) (LWInverse). We also use majority voting 

(MV) and STAPLE [40] to define the baseline performance.

Our method has three free parameters: r, the radius of the local appearance window  used 

in similarity-based Mx estimation; rs, the radius of the local searching window ′ used in 

remedying registration errors; and β, the parameter used to transfer image similarities in the 

pairwise joint label difference term (18). For each segmentation experiment, the parameters 

are optimized by exhaustive search among a range of values in each parameter (r ∈ {1, 2, 3} 

for whole hippocampus segmentation and r ∈ {3, 4, 5} for subfield segmentation; rs ∈ {0, 1, 

2, 3}; β ∈ {0.5, 1,…, 10}) using the atlases in a leave-one-out cross-validation strategy. We 

measure the average overlap between the automatic segmentation of each atlas obtained via 

the remaining atlases and the reference segmentation of that atlas, and find the optimal 

parameters that maximize this average overlap.

The optimal local appearance window and optimal local searching window are determined 

for LWGaussian and LWInverse methods using cross-validation as well. In addition, the 

optimal parameters for the weight assignment models are also determined for LWGaussian 

and LWInverse, with the searching range σ ∈ [0.05, 0.1,…, 1] and β ∈ [0.5, 1,…,10], 

respectively.

In our experiment, we normalize the intensity vector obtained from each local image 

intensity patch, such that the normalized vector has zero mean and a constant norm, for each 

label fusion method. Note that the normalization is applied independently at each image 

location, which may make the resulting voting weights for nearby voxels in an atlas less 

consistent with each other. To enhance the spatial consistencies of voting weights for nearby 

voxels, we apply mean filter smoothing with the smoothing window , the same 

neighborhood used for local appearance patches, to spatially smooth the voting weights for 

each atlas.

A. Segmentation of the hippocampus

We use the data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)3. ADNI MRI 

data include 1.5 T structural MRI from all 800 subjects and 3 T structural MRI from 200 

subjects. Our study is conducted using only 3 T MRI and only includes data from mild 

cognitive impairment (MCI) patients and controls. Overall, the data set contains 139 images 

(57 controls and 82 MCI patients). The images were acquired sagittally, with 1 mm × 1 mm 

3The ADNI (www.loni.ucla.edu/ADNI) was launched in 2003 by the National Institute on Aging (NIA), the National Institute of 
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and 
non-profit organizations, as a $60 million, 5-year publicprivate partnership. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early AD progression is intended to aid researchers 
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.
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in-plane resolution and 1.2 mm slice thickness. To obtain manual segmentation for these 

data, we first apply a landmark based semi-automatic hippocampal segmentation method 

[29] to produce the initial segmentation for each image. Each fully-labeled hippocampus 

was then manually edited using the paintbrush and polygon manual segmentation tools in 

ITK-SNAP [42] by one of the authors (MA) following a previously validated protocol [15].

Segmentation performance is evaluated using cross-validation. Note that cross-validation is 

performed twice, once to separate the dataset into an atlas subset and a test subset, and the 

second time, to search for the optimal value of the label fusion parameters among the atlas 

subset. For outer cross-validation, we randomly select 20 images to be the atlases and 

another 20 images for testing. Image-guided registration is performed between all pairs of 

atlases, and between all atlases and the target image. Global registration was performed 

using the FSL FLIRT tool [35] with six degrees of freedom and using the default parameters 

(normalized mutual information similarity metric; search range from −5 to 5 in x, y and z). 

Deformable registration was performed using the ANTS Symmetric Normalization (SyN) 

algorithm [4], with the cross-correlation similarity metric (with radius 2) and a Gaussian 

regularizer with σ = 3. After registration, reference segmentations from each of the atlases 

were warped into the target image space.

Fig. 1 illustrates optimal label fusion parameter selection for the three methods in the first 

cross-validation experiment. The figure plots the number of voxels mislabeled by the 

automatic segmentation, averaged over 20 inner cross-validation experiments, against the 

value of each parameter. Note that although the figure plots each parameter separately, the 

actual search for optimal parameters considers all possible combinations of parameter 

values. Note that using the appearance window with r = 1, all methods performed 

significantly worse than using larger appearance windows. This indicates that estimation of 

joint atlas error probabilities in (18) is inaccurate for very small appearance windows. For 

this cross-validation experiment, the optimal parameters for LWGaussian, LWInverse and 

LWJoint are (σ= 0.05, r=2, rs = 2), (β= 6, r=2, rs = 2) and (β= 0.5, r=2, rs = 3), respectively.

In all 10 cross-validations, for all three methods the optimal appearance window has radius r 

= 2. Most frequently selected local search windows have radius rs = 2 or rs =3. For 

LWGaussian, the most frequently selected weighting model parameters (σ) are 0.05 or 0.1. 

For LWInverse, the most frequently selected model parameters (β) are located in the range 

[4,6], while for LWJoint, the most frequently selected β are located in the range [0.5,1.5].

Table I shows the segmentation performance of each method in terms of Dice similarity 

coefficient between MALF results and reference segmentations. The Dice similarity 

coefficient is the ratio of the volume of overlap between two segmentations and their 

average volume [10]. Average overlap (and standard deviation) is reported, with averaging 

over all 10 outer cross-validation experiments and over the 20 test images in each 

experiment. In each outer cross-validation experiment, optimal parameters are computed for 

each method using inner cross-validation. In addition to the local weighted voting methods, 

we also show the performance by the STAPLE algorithm [40] and majority voting. Overall, 

STAPLE slightly outperformed majority voting. LWGaussian and LWInverse produced 

similar results, both significantly outperforming majority voting and STAPLE. LWJoint 
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outperformed LWGaussian and LWInverse over 1% Dice overlap. This improvement is 

statistically significant, with p < 0.00001 on the paired Student’s t-test for each cross-

validation experiment. Table I also gives the results produced by each local weighted voting 

method without using local search. Our method produced significant improvement over the 

competing methods without local search as well. See Fig. 2 for a segmentation example 

produced by our method and LWGaussian.

Table II presents the average hippocampal volume in control and MCI cohort obtained using 

different label fusion techniques. The corresponding Cohen’s d effect size [14] is also shown 

(computed as the difference of the sample means of the two cohort, divided by the pooled 

sample standard deviation). To account for differences in head size, the effect size is 

computed after normalizing the hippocampal volumes by the subject’s intracranial volume. 

Larger values of Cohen’s d indicate greater effect, i.e., greater ability to tell cohorts apart 

based on hippocampal volume. Our method produced more accurate volume measurements 

than LWGaussian and LWInverse, compared to the reference segmentations. Since volume 

differences produced by different automatic segmentation methods are all proportional to 

that of manual segmentation, the hippocampus volume measured using different methods 

show similar separability between the two population groups. LWJoint yields a slightly 

better effect size than other MALF methods, indicating the volume measurements produced 

by LWJoint find a slightly more significant difference between the two populations. All 

MALF algorithms yield greater effect sizes than manual segmentation, likely due to reduced 

variance in volume estimation.

B. Hippocampal subfield segmentation

To illustrate the performance of LWJoint on a segmentation problem with multiple labels, 

we apply it to the problem of automatic segmentation of the subfields of the hippocampal 

formation from oblique coronal T2-weighted MRI. Our experiments use different similarity 

weighted voting strategies to improve upon the segmentation results presented in our earlier 

work [43]. This earlier work also used MALF with spatially varying similarity-weighted 

label fusion, but the strategy employed there did not consider optimality, and as we show 

below, performed worse than any of the local weighted voting methods considered here.

1) Imaging Data, Manual Segmentation and Experimental Setup—The 

experiments use in vivo MRI from 32 subjects from an aging and dementia study [26]. The 

data were acquired on a Bruker Med-Spec 4T system controlled by a Siemens Trio™ 

console and equipped with a USA instruments eight channel array coil that consisted of a 

separate transmit coil enclosing the eight receiver coils. The following sequences, which 

were part of a larger research imaging and spectroscopy protocol, were acquired: 1. 3D T1-

weighted gradient echo MRI (MPRAGE) TR/TE/TI = 2300/3/950 ms, 7° flip angle, 

1.0×1.0×1.0 mm3 resolution, FOV 256×256×176, acquisition time 5.17 min; 2. high 

resolution T2 weighted fast spin echo sequence (TR/TE: 3990/21 ms, echo train length 15, 

18.6 ms echo spacing, 149° flip angle, 100% oversampling in ky direction, 0.4×0.5 mm2 in 

plane resolution, 2 mm slice thickness, 24 interleaved slices without gap, acquisition time 

3:23 min, oblique coronal slice orientation, angulated perpendicular to the long axis of the 

hippocampal formation.
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The T1-weighted and T2-weighted MR images have complimentary characteristics. The T2- 

weighted MRIs depict details of the internal structure of the hippocampus with high in-slice 

resolution and good contrast between subfields, but these images also have a limited field of 

view and large slice spacing. On the other hand, the T1-weighted images have nearly 

isotropic voxels and cover the entire brain, but lack contrast between subfields. Manual 

segmentation protocols that can reliably subdivide the hippocampus into subregions 

corresponding to its anatomical subfields have been developed for focal T2-weighted data 

[44], [26]. Our manual segmentation protocol is derived from [26]; it has been expanded to 

include more slices and additional subfields. Each hippocampus formation is partitioned into 

anterior (head), posterior (tail), mid-region (body), subiculum (SUB), entorhinal cortex 

(ERC) and parahippocampal gyrus (PHG). The hippocampal body is further divided into 

cornu Ammonis fields 1–3 (CA1-3), dentate gyrus (DG), and a miscellaneous label, which 

contains cysts, arteries, etc. Manual segmentation of hippocampal subfields is unreliable in 

the head and tail. The boundaries between head, tail and the body regions are defined by a 

pair of slices in the MRI image. Overall, there are nine subfields defined. See [43] for more 

detail about the manual subfield segmentation.

As in whole-hippocampus segmentation, we perform a series of 10 cross-validation 

experiments. In each, 22 subjects are randomly selected as atlases, and the remaining 10 are 

selected for testing. Registration between all pairs of subjects is performed using SyN using 

a multi-modality similarity term that assigns equal weight to the T1-weighted image 

similarity and T2-weighted image similarity (see [43] for details). However, as in [43], 

similarity-weighted label fusion is applied only using T2-weighted image intensities. The 

motivation for this is that the T1-weighted MR images mainly serve to align the 

hippocampal region, while the T2-weighted MR image provide details used for subfield 

alignment.

Since the in-plane resolution of the T2-weighted images is much higher than slice thickness, 

instead of the cubic neighborhood definition used in the whole hippocampus segmentation 

experiment, we use an anisotropic neighborhood definition 2r × 2r × 3 for the local 

appearance window and 2rs × 2rs × 3 for the local searching window in this experiment, 

with r and rs specifying the in-plane neighborhood radius. For instance, r = 3 and rs = 3 both 

define a neighborhood of size 7 × 7 × 3.

2) Results—Fig. 3 illustrates some of the parameter selection experiments for the three 

methods using the atlases in the first outer cross-validation experiment. For this cross-

validation experiment, the optimal parameters for LWGaussian, LWInverse and LWJoint 

are (σ= 0.1, r=3, rs = 3), (β= 5, r=3, rs = 3) and (β= 2, r=3, rs = 3), respectively.

In all 10 cross-validations, all three label fusion methods select the same optimal appearance 

window and optimal local searching window, which are r = 3 and rs = 3, respectively. For 

LWGaussian, the most frequently selected weighting model parameters (σ) are 0.1 or 0.15. 

For LWInverse, the most frequently selected model parameters (β) are located in the range 

[4,6], while for LWJoint, the most frequently selected β are in the range [1.5,2.5].
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Table III reports the average segmentation accuracy, relative to manual segmentation, 

obtained by majority voting, STAPLE4, our earlier work [43], LWInverse, LWGaussian, 

and LWJoint. For this application, STAPLE performed comparably to majority voting. 

Again, LWGaussian and LWInverse produced similar performance, which is significantly 

better than majority voting and STAPLE. Our method produced the best average Dice 

similarity for all subfields. On average, we outperformed similarity-based label fusion 

methods by ~1% Dice similarity. Improvements made by LWJoint for most subfields are 

statistically significant. Table III also reports the optimal results produced by each local 

weighted voting methods without applying local search, our joint method outperformed the 

competing methods in most subfields as well. Fig. 4 shows some segmentation results 

produced by different methods.

Note that since the same set of cross-validation experiments (with the same atlas/test 

partitions in each) were conducted in [43], the segmentation accuracy reported there can be 

directly compared with our results. In [43], a different local weighting algorithm was 

implemented. Instead of using Gaussian or inverse distance weighting, weights used in [43] 

were normalized by the image similarity rank. Unlike our implementation of image 

similarity based local weighted label fusion, the implementation in [43] did not apply the 

local searching technique. Furthermore, [43] did not select the optimal parameters for each 

cross-validation experiment. As a result, the Dice scores produced by LWInverse and 

LWGaussian similarity-based weighted voting without local search are slightly better than 

those reported in [43], and the results with local search are on average about 1% higher for 

all subfields. Our method outperformed [43] by about ~2% on average.

The manual segmentation protocol in [43] always uses slice boundaries to delimit the 

hippocampal body from the head and tail. This is an artificial boundary, necessitated by the 

anisotropy of the T2 images, for which there is no real anatomical counterpart. In fact, head, 

body and tail do not truly constitute different anatomical regions, but rather separate regions 

of the hippocampus where partitioning into subfields is deemed reliable or unreliable, due to 

the bending and folding of the hippocampus. Thus, to make the comparisons between 

automatic and manual segmentation more fair, [43] allows the automatic algorithm to make 

use of the manual partitioning of slices into head, body, and tail. This is accomplished by a 

heuristic “fix-up” algorithm. For example, if MALF labels a voxel as HEAD, but the slice is 

considered a body slice by the manual rater, the MALF result is changed by choosing the 

body subfield (i.e., CA1-4, DG, or SUB) with the highest label probability. Table IV 

presents the results of LWGaussian, LWInverse and LWJoint label fusion strategies with/

without local search, after applying the fix-up algorithm. Again, LWJoint is the top 

performer, with accuracy for all subfields except TAIL within 1.5% of the inter-rater 

precision.

4The STAPLE algorithm used in this experiment is implemented by CMTK (available at http://www.nitrc.org/projects/cmtk) from 
[31], which has a special function for multi-label fusion. In our experiment, we applied the command imagemath with the option –
mstaple-disputed with 20 iterations
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V. Conclusions and Discussion

We presented a novel formulation to solve the weighted-voting based label fusion problem. 

Unlike previous label fusion techniques that independently assign voting weights to each 

atlas, our method takes the dependencies among the atlases into consideration and attempts 

to directly reduces the expected label error in the combined solution. Provided estimated 

pairwise dependencies among the atlases, the voting weights can be efficiently solved in a 

closed form. In our experiments, we estimated the pairwise dependency terms from local 

image intensities and compared our method with previous label fusion methods in whole 

hippocampus segmentation and hippocampus subfield segmentation using MR images. For 

both problems, our method outperformed competing methods.

a) Comparing to the state of the art in hippocampus segmentation

Since the hippocampus segmentation problem has been widely studied, putting our results in 

the context helps to reveal the significance of our results. Before making a formal 

comparison, we note that, as pointed out in [7], direct comparisons of quantitative 

segmentation results across publications are difficult and not always fair due to the 

inconsistency in the underlying segmentation protocol, the imaging protocol, and the patient 

population. However, the comparisons carried out below indicate the highly competitive 

performance achieved by our label fusion technique.

In the recent hippocampus segmentation literature, some of the best reported accuracy 

results have been obtained using MALF [7], [8], [20]. All three of these best-performing 

methods are based on independent label fusion with similarity-based local weighting. 

Collins et al. [7] and Coupe et al. [8] conduct leave-one-out experiments in a data set 

containing 80 control subjects, i.e. 79 atlases are used in their experiment. They report 

average Dice overlaps of 0.887 and 0.884, respectively. In contrast, we report average Dice 

overlap of 0.900±0.020 for control subjects, more than 1% Dice overlap improvement. For 

patients with MCI, we report Dice overlap of 0.885±0.028. Leung et al. [20] use a template 

library of 55 images. However, for each image in the library, both the original and its flipped 

mirror image are used as atlases. Hence, [20] effectively uses 110 atlases for label fusion. 

Leung et al. [20] report results in terms of the Jaccard index ( ), reporting 

an average of 0.80±0.03 for the left side hippocampus in 10 control subjects and 0.81±0.04 

in 10 MCI patients. Our results for the left side hippocampus, in terms of JI, are 0.826±0.031 

for controls and 0.803±0.041 for MCI patients. Overall, we produced results that compare 

favorably to the state-of-the-art, using significantly fewer atlases.

b) Computational complexity

Comparing to independently assigning voting weights to each atlas, our method requires an 

additional step of solving the inverse of the pairwise dependence matrix. Since the number 

of atlases applied in practice is often small, solving the matrix inverse does not substantially 

increase the computational burden for label fusion. In fact, the most time consuming step is 

the local searching algorithm. Without the local searching algorithm, for our hippocampus 

segmentation experiment on ADNI data, our algorithm segments one hippocampus in a few 
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seconds on a single core 2G HZ CPU using our current Matlab implementation. Regardless, 

the vast majority of the computational time is spent performing deformable registration 

between the atlases and the target image, and the cost of label fusion is negligible in 

comparison.

c) Relation to the STAPLE algorithm

Comparing to the popular expectation-maximization based STAPLE algorithms [40], [31], 

there are two key differences in our work. First, like other label fusion methods, the 

STAPLE algorithms also assume that the segmentation errors from different candidate 

segmentations are independent. Hence, they can not reduce consistent bias in the candidate 

segmentations. Second, the classic STAPLE algorithms ignore the appearance information 

in the target image and the atlas images after the registration. This limitation may affect the 

reliability of the estimated accuracy in each candidate segmentation.

d) Estimation of the pairwise dependency matrix

The label fusion accuracy of our method depends on the accuracy of the estimated pairwise 

dependencies between atlases. Hence, one natural way to extend our work is to improve the 

pairwise dependence estimation. Following the common practice, our current method uses 

the image intensity to estimate the segmentation label relations. Since local image 

appearance similarity may be unreliable in predicting registration errors, to further improve 

the performance, one can incorporate prior knowledge that is empirically learned from the 

atlases to compliment the similarity-based estimation. For example, to estimate the optimal 

parameters for label fusion method, we applied a leave-one-out strategy on the set of atlases 

that segments each atlas using the remaining atlases. These leave-one-out experiments also 

provide the error redundancy produced by each pair of the remaining atlases in the native 

space of each segmented atlas. By registering and warping each atlas to a common reference 

space, one can estimate the empirical average error redundancy between any pair of the 

atlases. The empirical estimation complements the local appearance based estimation and 

can be combined with the appearance based estimation for segmenting new images. This is a 

natural direction for future research.
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Fig. 1. 
Optimal label fusion parameter selection for LWGaussian (left), LWInverse (middle) and 

LWJoint (right) using leave-one-out cross-validation. The upper figures plot the average 

number of mislabeled voxels against the local searching radius rs and the appearance 

window radius r. The weighting function parameters σ, β are held fixed in these figures at its 

optimal value for the three methods, respectively. The lower figures plot the average number 

of mislabeled voxels against the local searching radius rs and the weighting function 

parameter, σ and β, respectively. The appearance window radius r is held fixed in this figure 

at its optimal value.
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Fig. 2. 
Sagittal views of a segmentation produced by LWGaussian and our method. Red: reference 

segmentation; Blue: automatic segmentation; Green: overlap between manual and automatic 

segmentation.
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Fig. 3. 
Optimal label fusion parameter selection for LWGaussian (left), LWInverse (middle) and 

LWJoint (right) using leave-one-out cross-validation. The upper figures plot the average 

number of mislabeled voxels against the local searching radius rs and the appearance 

window radius r. The weighting function parameters σ, β are held fixed in these figures at its 

optimal value for the three methods, respectively. The lower figures plot the average number 

of mislabeled voxels against the local searching radius rs and the weighting function 

parameter, σ and β, respectively. The appearance window radius r is held fixed in this figure 

at its optimal value.
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Fig. 4. 
Coronal views of some subfield segmentation results produced by MV, LWGaussian and 

our method. All results are produced with local searching using the optimal parameter for 

each method. Label description: red - CA1; green - CA2; yellow - CA3; blue - DG; light 

brown - miscellaneous label; brown - SUB; cyan - ERC; pink - PHG.
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TABLE I

whole hippocampus segmentation performance for each label fusion method, in terms of Dice similarity 

between MALF results and reference segmentations. Average dice similarity ( ± standard deviation) are 

computed across 10 outer cross-validation experiments, each having 20 test images. The results produced by 

each local weighted voting methods without applying local search are shown in parenthesis. Greatest 

similarity is obtained using the proposed LWJoint method.

Label Fusion Strategy Dice Similarity (Left Hippocampus) Dice Similarity (Right Hippocampus)

Majority Voting 0.836 ± 0.084 0.829 ± 0.069

STAPLE [40] 0.846 ± 0.086 0.841 ± 0.086

LWGaussian (0.885 ± 0.025) 0.886 ± 0.027 (0.873 ± 0.030) 0.875 ± 0.030

LWInverse (0.884 ± 0.026) 0.885 ± 0.027 (0.872 ± 0.030) 0.873 ± 0.030

LWJoint (0.893 ± 0.025) 0.897 ± 0.024 (0.884 ± 0.027) 0.888 ± 0.026
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