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Pulmonary arterial hypertension (PAH) is a disorder characterized by elevated vascular
resistance in pulmonary arterioles. Progressive increases in pulmonary vascular resistance
and pulmonary artery pressures result in right heart failure and reduced cardiac output.
Patients experience progressive exertional dyspnea, right heart failure, syncope, and
ultimately death. The common pathophysiological features of PAH include pulmonary
vasoconstriction, intimal and smooth muscle proliferation, in situ thrombosis, and
pathological remodeling of pulmonary arterial circulation. While the origin of PAH is
multifactorial, impairments in vasodilator (nitric oxide and prostaglandin signaling) and
vasoconstrictor (endothelin-1, reactive oxygen species, angiotensin II) pathways underlie the
evolution of early disease.1 Based on this knowledge, drugs that enhance the NO signaling
pathways (phosphodiesterase 5 inhibitors), the prostenoids, and endothelin receptor
blockers, have been developed and approved for PAH specific therapy.

Inhaled nitric oxide (NO) gas can alleviate vasoconstriction and may modulate cellular
proliferative responses, but NO therapy is limited by the need for continuous inhalation, NO
reactions with oxygen to form nitrogen dioxide, and special delivery devices. It is now
appreciated that inorganic nitrite and nitrate are bio-transformed to NO via the nitrate-to-
nitrite-to-NO pathway,2 leading to studies with inhaled nitrite as an alternative to NO gas
inhalation.3, 4 In this issue of Circulation, Baliga and colleagues investigate the nitrate-to-
nitrite-to-NO pathway by studying the effects of oral nitrite and nitrate on pre-clinical mouse
and rat models of PAH, and then attempt to characterize the enzymes that regulate
bioconversion of nitrite to NO. They find that both nitrate and nitrite delivered in drinking
water can prevent and reverse experimental PAH in the hypoxic and bleomycin mouse
models; consistent with published models for in vivo conversion of nitrite to NO.5-7 They
also provide unexpected evidence that eNOS may have nitrite reductase activity in the
diseased lung, with experiments demonstrating that eNOS null mice with hypoxic PH do not
significantly respond to oral nitrate and nitrite treatment.

The therapeutic effects of nitrate and nitrite have been investigated in several disease models
(recently reviewed2). Nitrite can induce vasodilation, reduce blood pressure, act as a
cytoprotectant in ischemia-reperfusion induced injury, and modulate mitochondrial
respiration, energetics and exercise efficiency.2, 8, 9 Nitrate also mediates these effects via
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conversion to nitrite in the oral cavity by commensal bacteria containing efficient nitrate
reductase enzyme systems.10-12

In PAH sheep, mouse, and rat models nitrite acts as a pulmonary vasodilator and produces
therapeutic vascular remodeling. Inhalation of nebulized nitrite decreases pulmonary arterial
pressure induced by hypoxia and thromboxane4 and can prevent or reverse established right
ventricle (RV) pressure increases, RV hypertrophy, and pulmonary vascular remodeling in
hypoxia- or monocrotaline- induced PAH.3 Similarly, injection of sodium nitrite attenuates
PAH induced by monocrotaline,13 hypoxia, and/or thromboxane.2, 14 Baliga and colleagues
now report the effect of oral nitrite and nitrate on hypoxia-induced PAH. Their data
demonstrate that oral nitrate or nitrite treatment decrease RV pressure, RV mass, and
pulmonary vascular remodeling induced by hypoxia and bleomycin. The protective effects
of oral nitrate and nitrite administration correlate to elevated plasma nitrite and cGMP
concentrations, providing a potential orally-active therapy for PAH via the nitrate-nitrite-NO
pathway.

Mammals can utilize two pathways to produce NO and regulate blood pressure and blood
flow: the well-established arginine-to-NO pathway and the more recently characterized
nitrate-to-nitrite-to-NO pathway.2 In the arginine-to-NO pathway, the nitric oxide synthase
(NOS) enzymes catalyze NO production. The nitrate-to-nitrite-to-NO pathway is less
completely understood, as the molecular mechanisms involved in each interconversion and
in each organ system are yet to be fully elucidated. However, the upstream pathways for
conversion of nitrate to nitrite have been clearly defined since early studies first described
this pathways involvement in stomach NO level regulation, shown to be important in
regulating stomach mucosal integrity, mucosal host defense, and later mucosal blood
flow.10, 12, 15 The two NO biosynthesis pathways respond to oxygen concentration
differently: the arginine-to-NO pathway requires oxygen as a substrate for NO formation;
conversely, the nitrate-to-nitrite-to-NO pathway is oxygen independent and is actually
potentiated under hypoxic conditions (Figure 1). Because the nitrate-to-nitrite-to-NO
pathway exhibits increased potency under lower oxygen tensions, a role for nitrite as an
effector of hypoxic signaling and vasodilation has been considered.2, 5, 7

Eating nitrate rich foods, such as spinach or beets, increases nitrate levels in saliva, as high
as 8 mM. Approximately one quarter of this nitrate is transformed by bacterial nitrate
reductases to nitrite, which is subsequently swallowed and then transformed into NO, which
is important for host defense, and mucosal integrity and blood flow.10, 12, 15 The
enterosalivary conversion of nitrate to nitrite requires oral bacteria and is inhibited in germ
free mice and with antibiotic or antiseptic therapy.16 Liver xanthine oxidoreductase (XO)
has been reported to convert nitrate to nitrite under certain conditions; however, compared to
the bacterial transformation, the XO catalyzed reaction is inefficient, and a clear pathway for
nitrate reduction in mammalian organs remains uncertain. In the last decade it has become
clear that nitrite not only modulates stomach mucosal function, but is an important
intravascular source of NO. Arterial-to-venous nitrite gradients within the human circulation
lead to early hypotheses that nitrite could be a source of NO in the human circulation.5 Later
studies confirmed that nitrite exhibited potent vasodilatory effects in vivo.7 Since these
initial studies, over 10 years ago, the role of nitrite in regulation of blood flow and pressure
at physiological levels has been clearly demonstration by many research groups.17, 18 The
signaling properties of nitrite are largely mediated by nitrite reduction to NO, which then
activates soluble guanylate cyclase, although the enzyme systems responsible for this
concerted redox reaction in humans remains the focus of very active investigation and
continued controversy.
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Several studies have investigated the possible enzymatic origins for mammalian nitrate and
nitrite reduction. Most other genera of life, such as lower eukaryotes (e.g., plants and yeast)
and prokaryotes (e.g., bacteria), possess efficient nitrate and nitrite reductase enzymes;
however, mammals are believed to lack dedicated homologous enzymes. Still, a number of
enzyme systems have been shown to control nitrite reduction to NO under certain
conditions. As previously mentioned, xanthine oxidoreductase is a molybdenum-dependent
enzymes that has been proposed as a mammalian nitrate and nitrite reductase.19, 20

Interestingly, xanthine oxidase exhibits a remarkable resemblance to the well-characterized
plant nitrate reductases. Furthermore, a number of studies, including the current work by
Baliga and colleagues, have clearly shown that the therapeutic effects of nitrite on PH
require a functional xanthine oxidase system.21, 22 Interestingly, in human studies the
inhibition of xanthine oxidase using oxypurinol does not inhibit nitrite-dependent blood
flow, suggesting that xanthine oxidase does not mediate nitrite-dependent vasodilation in the
human circulation.17

Several other mammalian nitrite reductase candidates have been proposed; these enzymes
can be divided into groups based on active site metal content: molybdenum (xanthine
oxidase and aldehyde oxidoreductase), iron (cytochrome c, eNOS, deoxyhemoglobin,
deoxymyoglobin, neuroglobin), and copper (carbonic anhydrase).23-26 It is also possible that
additional and potentially more effective (catalytic) human nitrate and nitrite reductases
have not been identified.

Nitrite can be converted to nitric oxide by enzyme catalyzed oxidation-reduction (Scheme 1)
or anhydrase (Scheme 2) reactions. The majority of nitrite reductase candidates are predicted
to act as oxidoreductases (Scheme 1), while carbonic anhydrase has also been proposed to
act as nitrite anhydrase. Note that hemoglobin may facilitate both reaction schemes.27 In
Scheme 1, a simple electron and proton transfer reaction, the metal active site of the
oxidoreductase enzyme can be oxidized while nitrite is reduced to nitric oxide. Two types of
metal enzymes have been implicated in nitrite reduction to nitric oxide: molybdenum and
iron. In Scheme 2, two nitrite molecules react to form dinitrogen trioxide (N2O3) and water,
which then forms nitrite and NO spontaneously (non-enzymatic) by disproportionation.

While the current study suggests that both nitrate and nitrite can prevent and reverse
experimental PAH, there are a few caveats and an unexpected result. Firstly, the
concentrations of both nitrate (45 mM) and nitrite (15 mM) in water are very high; by our
estimates approximately 10 mg of nitrate or 3.5 mg of nitrite was ingested by the mice each
day. A 70 kg human would have to ingest 36 grams of nitrate or 9 grams of nitrite each day
to achieve these similar levels. Human research studies have been typically administered
500 to 1000 mg of nitrate each day, comparable to drinking about one liter of beet-root
juice.18 Based on the Baliga study, one would have to drink 30 liters of beetroot juice each
day to achieve similar results in humans with PAH. Moreover, these doses of nitrate and
nitrite may generate significant levels of NO, nitrosothiols and nitrosamines in the stomach
and will need to be carefully evaluated for safety and off-target effects.

The current study also demonstrated that allopurinol can prevent the beneficial effects of
nitrite and nitrate on PAH, which is consistent with the work of other groups.21 However,
the findings that the effects of nitrite are inhibited in eNOS null mice are unexpected and
will require further study to understand. It is important to note that inhibition of eNOS does
not block nitrite-vasodilatory effects in humans.7 Previous studies have shown that under
anaerobic conditions endothelial NOS can reduce nitrite to NO; although, this is only
effective under near-anaerobic conditions.28,29 One explanation is that oxygen tensions in
the diseased lung are sufficiently low to allow nitrite reduction by eNOS, or there is an
unexplained interaction in this system. Alternatively, we have reported that nitrite can also
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be oxidized by hydrogen peroxide or ferric hemoproteins to form oxidative signaling
products, for example nitrogen dioxide. 30 It is possible that XO and eNOS in diseased
vessels and tissues function not as nitrite reductases, but as nitrite oxidases via formation of
superoxide and hydrogen peroxide. Further studies are required to address these important
questions.
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Figure 1.
Nitrite (NO2

−), and nitrate (NO3
−) can treat PAH via biotransformation into nitric oxide

(NO), a potent vasodilator. The nitrate-nitrite-NO pathway dominates under hypoxia (blue
lung), and the arginine-NO pathway under normoxia (red lung). Abbreviations: nitric oxide
synthase (NOS); xanthine oxidoreductase (XO); deoxyhemoglobin (deoxyHgb);
oxyhemoglobin (oxyHgb); ceruloplasmin (CP); guanosine triphosphate (GTP); cytosolic
guanylate cyclase (cGC); cyclic guanosine monophosphate (cGMP).
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Scheme 1.
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Scheme 2.
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