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Abstract
We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array
in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm
movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to
predict the arm’s velocity on to the SNN using the Neural Engineering Framework and simulated
it using Nengo, a freely available software package. A 20,000-neuron network matched the
standard decoder’s prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-
neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These
results demonstrate that a SNN can implement a statistical signal processing algorithm widely
used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar
results with just a few thousand neurons. Hardware SNN implementations—neuromorphic chips
—may offer power savings, essential for realizing fully-implantable cortically controlled
prostheses.

I. Cortically-Controlled Motor Prostheses
Neural prostheses aim to restore functions lost to neurological disease and injury. Motor
prostheses aim to help disabled patients by translating neural signals from the brain into
control signals for prosthetic limbs or computer cursors. We recently reported a closed-loop
cortically-controlled motor prosthesis capable of producing quick, accurate, and robust
computer cursor movements by decoding action potentials from a 96-electrode array in
rhesus macaque premotor/motor cortex [1]–[4]. This design and previous high-performance
designs as well (e.g., [5]) employ versions of the Kalman filter, ubiquitous in statistical
signal processing.
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While these recent advances are encouraging, true clinical viability awaits fully-implanted
systems which, in turn, impose severe power dissipation constraints. For example, to avoid
heating the brain by more than 1°C, which is believed to be important for long term cell
health, a 6×6mm2 implant must dissipate less than 10mW [6]. Running the 96-electrode to 2
degree-of-freedom Kalman-filter on a 3.06GHz Core Duo Intel processor took 0.985μs/
update, or 6,030 flops/update, which, at 66.3Mflops/watt, consumes 1.82mW for 20 updates/
sec. This lack of low-power circuits for neural decoding is a major obstacle to the successful
translation of this new class of motor prostheses.

We focus here on a new approach to implementing the Kalman filter that is capable of
meeting these power constraints: the neuromorphic approach. The neuromorphic approach
combines digital’s and analog’s best features—programmability and efficiency—offering
potentially greater robustness than either [7], [8]. At 50nW per silicon neuron [9], a
neuromorphic chip with 1,600 spiking neurons would consume 80μW. To exploit this
energy-efficient approach to build a fully implantable and programmable decoder chip, the
first step is to explore the feasibility of implementing existing decoder algorithms with
spiking neural networks (SNN) in software. We did this for the Kalman-filter based decoder
[1]–[4] using Nengo, a freely available simulator [10].

II. Kalman-filter Decoder
The concept behind the Kalman filter is to track the state of a dynamical system throughout
time using a model of its dynamics as well as noisy measurements. The model gives an
estimate of the system’s state at the next time step. This estimate is then corrected using the
measurements at this time step. The relative weights for these two pieces of information are
given by the Kalman gain, K [11], [12].

For neural applications, the cursor’s kinematics define the system’s state vector,

; the constant 1 allows for a fixed offset compensation. The neural spike rate
(spike counts in each time step) of 96 channels of action-potential threshold crossings
defines the measurements vector, yt. And the system’s dynamics are modeled by:

(1)

(2)

where A is the state matrix, C is the observation matrix, and wt and qt are additive, Gaussian
noise sources with wt ~ N(0,W) and qt ~ N(0,Q). The model parameters (A, C, W and Q)
are fit with training data.

Assuming the system is stationary, we estimate the current system state by combining the
estimate at the previous time step with the noisy measurements using the Kalman gain K =
(I + WCQ−1C)−1 W C Q−1. This yields:

(3)

III. Neural Engineering Framework
Neural engineers have developed a formal methodology for mapping control-theory
algorithms onto a computational fabric consisting of a highly heterogeneous population of
spiking neurons simply by programming the strengths of their connections [10]. These
artificial neurons are characterized by a nonlinear multi-dimensional-vector-to-spikerate
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function—ai(x(t)) for the ith neuron—with parameters (preferred direction, gain, and
threshold) drawn randomly from a wide distribution (standard deviation ≈ mean).

The neural engineering approach to configuring SNNs to perform arbitrary computations
involves representation, transformation, and dynamics [10], [13]–[15]:

• Representation is defined by nonlinear encoding of x(t) as a spike rate, ai(x(t)),
combined with weighted linear decoding of ai(x(t)) to recover an estimate of x(t),

. The decoding weights, , are obtained by minimizing the
mean squared error.

• Transformation is performed by using alternate decoding weights in the decoding
operation to map transformations of x(t) directly into transformations of ai(x(t)).
For example, y(t) = Ax(t) is represented by the spike rates bj(Ax̂(t)), where unit j’s

input is computed directly from unit i’s output using , an
alternative linear weighting.

• Dynamics are realized by using the synapses’ spike response, h(t), (aka, impulse
response) to capture the system’s dynamics. For example, for h(t) = τ−1e−t/τ, ẋ =
Ax(t) is realized by replacing A with A′ = τA + I. This so-called neurally plausible
matrix yields an equivalent dynamical system: x(t) = h(t)*A′x(t), where
convolution replaces integration.

The nonlinear encoding process—from a multidimensional stimulus, x(t), to a one-
dimensional soma current, Ji, to a firing rate, ai(x(t))—is specified as:

(4)

Here G() is the neurons’ nonlinear current-to-spike-rate function, which is given by

(5)

for the leaky integrate-and-fire model (LIF). This model’s subthreshold behavior is
described by an RC circuit with time constant τRC. When the voltage reaches the threshold,
Vth, the neuron emits a spike δ(t − tn). After this spike, the neuron is reset and rests for τref

seconds (absolute refractory period) before it resumes integrating. Jth = Vth/R is the
minimum input current that produces spiking. Ignoring the soma’s RC time-constant when
specifying the SNN’s dynamics is reasonable because the neurons cross threshold at a rate
that is proportional to their input current, which thus sets the spike rate instantaneously,
without any filtering [10].

The conversion from a multi-dimensional stimulus, x(t), to a one-dimensional soma current,
Ji, is performed by assigning to the neuron a preferred direction, , in the stimulus space
and taking the dot-product:

(6)

where αi is a gain or conversion factor, and  is a bias current that accounts for

background activity. For a 1D space,  is either 1 or −1 (drawn randomly). For a 2D space,
 is uniformly distributed on the unit circle. The resulting tuning curves and spike

responses are illustrated in Fig. 1 for 1D. The information lost by decoding this nonlinear
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representation using simple linear weighting is not severe, and can be alleviated by
increasing the population size [10].

IV. Kalman Filter with Spiking Neurons
To implement the Kalman filter with a SNN by applying the Neural Engineering Framework
(NEF), we first convert (3) from discrete time (DT) to continuous time (CT), then we
replace the CT matrices with neurally plausible ones, and use them to specify the SNN’s
weights (Fig. 2). This yields:

(7)

where

(8)

(9)

 and  are the Kalman matrices, Δt is the discrete time step
(50ms), and τ is the synaptic time constant.

The jth neuron’s input current (see (6)) is computed from the system’s current state, x(t),

which is computed from estimates of the system’s previous state ( ) and

current input ( ) using (7). This yields:

(10)

where  and  are the recurrent and feedforward
weights, respectively.

V. Results
An adult male rhesus macaque (monkey L) was trained to perform variants of a point-to-
point arm movement task in a 3D experimental apparatus for juice reward [1].1 A 96-
electrode silicon array (Blackrock Microsystems) was then implanted in premotor/motor
cortex. Array recordings (−4.5 RMS threshold crossing applied to each electrode’s signal)
yielded tuned activity for the direction and speed of arm movements. As detailed in [1], a
standard Kalman filter model was fit by correlating the observed hand kinematics with the
simultaneously measured neural signals, while the monkey was performing the point-to-
point reaching task (Fig. 3). The resulting model was used online to control an on-screen
cursor in real time. This model and 500 of these trials (2010-03-08) serves as the standard
against which the SNN implementation’s performance is compared.

1Animal protocols were approved by the Stanford IACUC.
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Starting with the matrices obtained by correlating the observed hand kinematics with the
simultaneously measured neural signals, we built a SNN using the NEF methodology and
simulated it in Nengo using the parameter values listed in Table I. We ensured that the time

constants , and  were smaller than the implementation’s time step (50ms).

We had the choice of two network architectures for the aj(t) units: a single 3D integrator or
two 1D integrators (Fig. 4). The latter were more stable, as reported previously [14], and
yielded better results given the available computer resources. We also had the choice of
representing the 96 neural measurements with the bk(t) units (see Fig. 2b) or simply
replacing these units’ spike rates with the measurements (spike counts in 50ms bins). The
latter was more straight forward, avoided error in estimating the measurements, and
conserved computer resources. Replacing bk(t) with y(t)’s kth component is equivalent to

choosing  from a standard basis (i.e., a unit vector with 1 at the kth position and 0
everywhere else), which is what we did.

The SNN performed better as we increased the number of neurons (Fig. 5a,b). For 20,000
neurons, the x and y-velocity decoded from its two 10,000-neuron populations matched the
standard decoder’s prediction to within 0.03% (RMS error normalized by maximum
velocity).2 As reported in [10], the RMS error was roughly inversely proportional to the
square-root of the number of neurons (Fig. 5c,d). There is a tradeoff between accuracy and
computational time. For real-time operation—on a 3GHz PC with a 1ms simulation time-
step—the network size is limited to 1,600 neurons. Encouragingly, this small network’s
error was only 0.27%.

VI. Conclusions and Future Work
The Nengo simulations reported here demonstrate offline output that is virtually ident ical to
that produced by a standard Kalman filter implementation. A 1,600-neuron network’s output
is within 0.3% of the standard implementation, and Nengo can simulate this network in real-
time. Which means we can now proceed to testing our new SNN on-line. This more
challenging setting will enable us to further advance the SNN implementation by
incorporating recently proposed variants of the Kalman filter that have been demonstrated to
further increase performance and robustness during closed-loop, real-time operation [2], [3].
As such a filter and its variants have demonstrated the highest levels of brain-machine
interface performance in both human [5] and monkey users [2], these simulations provide
confidence that similar levels of performance can be attained with a neuromorphic
architecture. Having refined the SNN architecture, we will proceed to our final validation
step: implementing the network on Neurogrid, a hardware platform with sixteen
programmable neuromorphic chips that can simulate a million spiking neurons in real-time
[8].

The ultimate goal of this work is to build a fully implantable and programmable decoder
chip using the neuromorphic approach. Variability among the silicon neurons and the large
number of synaptic connections required present challenges. A distribution of spike-rates
with a CV of 15% (sigma/mean) is typical, due to pronounced transistor mismatch in the
subthreshold region where these nanopower circuits operate [9]. We have shown, however,
that the NEF can effectively exploit even higher degrees of variability. Thus, the only real
remaining challenge is achieving a high degree of connectivity. This one can be addressed
by adopting a columnar organization, whereby nearby neurons share the same inputs, just

2The SNN’s estimates were smoothed with a filter identical to h(t), but with τ set to 5ms instead of 20ms to avoid introducing
significant delay.
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like they do in the cortex—and in Neurogrid. This solution requires extending the NEF to a
columnar architecture, a subject of ongoing research.
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Fig. 1.
a. 1D tuning curves of a population of 50 leaky integrate-and-fire neurons. The maximum
firing rate and x-intercept are chosen from uniform distributions with range 200Hz to 400Hz
and −1 to +1, respectively. b. The neurons’ spike responses to a stimulus x = 0.5 (same color
code).

Dethier et al. Page 7

Int IEEE EMBS Conf Neural Eng. Author manuscript; available in PMC 2013 December 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Implementing a Kalman filter with spiking neurons. a. Original Kalman filter (top) and
neurally plausible version (bottom). The integrator is replaced with the synapses’ spike
response, h(t), and the matrices are replaced with A′ = τA + I and B′ = τB to compensate. b.
Spiking neural network implementation with populations bk (t) and aj (t) representing y(t)
and x(t), respectively, and with feedforward and recurrent weights determined by B′ and A′,
respectively.
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Fig. 3.
Neural and kinematic measurements for one trial. a. The ninety-six cortical recordings that
were fed as input to the Kalman filter and the spiking neural network (spike counts in 50ms
bins). b. Arm x- and y-velocity measurements that were correlated with the neural data to
obtain the Kalman filter’s matrices, which were also used to engineer the neural network.
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Fig. 4.
Spiking neural network architectures. a. 3D integrator: A single population represents three
scalar quantities—x and y-velocity and a constant. b. 1D integrators: A separate population
represents each scalar quantity—x or y-velocity in this case.
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Fig. 5.
Comparing the x and y-velocity estimates decoded from 96 recorded cortical spike trains
(10s of data) by the standard Kalman filter (blue) and the SNN (red). a,b. Networks with
2,000 and 20,000 spiking neurons. c. Dependence of RMS error (between SNN and Kalman
filter) on network size (note log scale). d. Product of RMS error and neuron count’s (NC)
square root is roughly constant (for NC > 200), implying that they are inversely
proportional.
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TABLE I

Model parameters

Symbol Range Description

max G(Jj (x)) 200–400 Hz Maximum firing rate

G(Jj (x)) = 0 −1 to 1 Normalized x-axis intercept

Satisfies first two Bias current

αj Satisfies first two Gain factor

Preferred-direction vector

20 ms RC time constant

1 ms Refractory period

20 ms PSC time constant
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