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Abstract

It has been suggested that the considerable noise in single-cell responses to a stimulus can be overcome by pooling
information from a large population. Theoretical studies indicated that correlations in trial-to-trial fluctuations in the
responses of different neurons may limit the improvement due to pooling. Subsequent theoretical studies have suggested
that inherent neuronal diversity, i.e., the heterogeneity of tuning curves and other response properties of neurons
preferentially tuned to the same stimulus, can provide a means to overcome this limit. Here we study the effect of spike-
count correlations and the inherent neuronal heterogeneity on the ability to extract information from large neural
populations. We use electrophysiological data from the guinea pig Inferior-Colliculus to capture inherent neuronal
heterogeneity and single cell statistics, and introduce response correlations artificially. To this end, we generate pseudo-
population responses, based on single-cell recording of neurons responding to auditory stimuli with varying binaural
correlations. Typically, when pseudo-populations are generated from single cell data, the responses within the population
are statistically independent. As a result, the information content of the population will increase indefinitely with its size. In
contrast, here we apply a simple algorithm that enables us to generate pseudo-population responses with variable spike-
count correlations. This enables us to study the effect of neuronal correlations on the accuracy of conventional rate codes.
We show that in a homogenous population, in the presence of even low-level correlations, information content is bounded.
In contrast, utilizing a simple linear readout, that takes into account the natural heterogeneity, even of neurons
preferentially tuned to the same stimulus, within the neural population, one can overcome the correlated noise and obtain
a readout whose accuracy grows linearly with the size of the population.
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Introduction

In mammals, at low frequencies, sound source localization in

the horizontal plane relies on interaural time differences [1]. Some

models suggest that the first stages of the computation of interaural

time differences are based on the detection of binaural correlations

(BC) and tuning to BC has been observed in the auditory system

[2–4].

Evidence from many brain regions, including the auditory

system and in particular the inferior colliculus, show that the trial-

to-trial fluctuations in the responses of different neurons are

correlated [5–9]. Noise-correlations have been reported to be

positively biased, although some debate still remains [10].Theo-

retical studies revealed that these correlations can have a

considerably detrimental effect on the amount of information that

can be encoded by the population response [11–13]. It is common

to distinguish two types of correlations [7,14]. One is the ‘‘signal

correlations’’ that measures the correlation between the mean

responses of different cells. For example, two cells with very similar

tuning curves will show high signal correlations. Thus, the

distribution of signal correlations can measure the heterogeneity

within the neural population. The second is termed the ‘‘spike-

count correlations’’ and measures the correlation between the

fluctuations from the mean responses across different trials. The

specific nature of interaction between these two types of

correlations can lead to different results in terms of information

content of the neural response [11,13,15–20]. Empirical studies

report that noise-correlations also have a functionally dependent

component, i.e., neurons with higher signal-correlations tend to

show higher noise-correlation [8,9,21,22] (however, the indis-

criminant correlation is typically larger than the functional

dependence). Theory has shown that the functional dependence

of noise-correlations can have a major detrimental effect on the

information capacity of the neural population [23].

Previously, Shamir and Sompolinsky [18] pointed out that the

inherent neuronal heterogeneity may provide means to overcome

the correlated noise. They studied the Fisher information and

provided a perturbation-approach analysis that yielded a bound

on the accuracy of a simple linear estimator, using a framework of

a hypothesized statistical model for the neural responses. More

recently Ecker and colleagues [20] provided an extended analysis

of the Fisher information of a heterogeneous neural population,
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also in a modeling study. However, it is not clear how real neural

heterogeneity will affect a simple biologically plausible readout

mechanism such as a linear estimator, as both the perturbation

approach and the Fisher information have been shown to yield a

very poor estimate of such a readout [18,20].

Here we use single cell recordings from the inferior colliculus

(IC) of the guinea pig in response to different BC levels [2], to

evaluate the effect of correlations and heterogeneity on the

accuracy of a linear estimator. The utility of studying a linear

estimator is twofold. One, it is generally assumed that a similar

readout can be implemented by the central nervous system. Two,

it provides a clear notion of signal and noise which enable a better

understanding of the effects of correlations and heterogeneity. As

the single cell recordings are not simultaneous, we cannot asses the

true correlations. To study the effect of correlations based on

single cell recordings, we employ an algorithm that generates a

pseudo-population response with varying levels of correlations and

heterogeneity, while preserving the marginal distribution of the

cells and the inherent heterogeneity.

The outline of the paper is as follows. First we define our

algorithm and apply it to study coding accuracy in homogeneous

populations. Then we turn to investigate the case of a heteroge-

neous population. The homogeneous population is comprised of

Figure 1. Neuronal heterogeneity. The conditional mean (over 200–500 trials for given stimulus BC) firing rate is plotted as a function of the
binaural correlation level for the 30 different cells in the data set. The error bars depict the standard deviation of the firing rate. The firing rates were
computed for the period of 100 ms following stimulus onset. Typically, the tuning curves are monotonic in the BC and approximately linear.
doi:10.1371/journal.pone.0081660.g001

Figure 2. Signal correlations. The signal correlations, i.e., the
Pearson correlations between the tuning curves of the different
neurons, are shown in color code.
doi:10.1371/journal.pone.0081660.g002

Effect of Correlations and Heterogeneity

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e81660



neurons which are identical in every way (they are, in fact

responses from the same recorded neuron). The heterogeneous

population is formed from all the neurons in our data set. Finally,

we summarize our results and discuss the generality of our

findings. The data used here were described in detail by

Shackleton and colleagues [2,24,25] and their information

theoretical properties were analyzed by Gordon et al. [26].

Results

Figure 1 shows tuning curves of all the cells within the analyzed

data set (mean 6std). Typically, the mean firing rate, r, is a

monotonic function of BC and can be approximated by a linear

function: r BCð Þ~ravzDr:BC, where rav is the average firing rate

across trials and across different stimulus conditions, and Dr
represents the modulation amplitude of the tuning curve with BC.

Although qualitatively the tuning curves of many IC neurons are

similar, quantitatively they are different. This inherent diversity,

can be characterized by the distribution of the parameters rav and

Dr. For example most cells are characterized by tuning curves with

positive slopes; however about 15% of the cells (4 cells out of 30)

have tuning curves with negative slopes. Alternatively, one can

characterize the diversity by the signal correlations, which are the

Pearson correlations between the tuning curves of the different

neurons. Figure 2 shows the signal correlations within the different

neurons in our dataset. As can be seen from the Figure, the dataset

is composed of two subpopulations: one with positive slope tuning

curves and the other with negative slope. Within each subpopu-

lation the signal correlations are very high, and are close to one for

the population with positive slopes. On the other hand, signal

correlations between the two populations are very negative.

Signal correlations measure the similarity of the mean response.

However, the neural responses fluctuate around their mean from

trial to trial. To distinguish between the BC, that characterize the

physical stimulus, and the correlations between the fluctuations of

the neural responses we shall term the neural response correlations

‘spike-count correlations’. We shall refer to the correlations of the

auditory stimulus between the two ears only by the term BC (or

model parameter h). The spike-count fluctuations and their

correlations limit the amount of information that can be extracted

from the neural responses. Here, we study the effect of spike-count

correlations on the ability to accumulate information from large

populations of neurons. Below, we will first demonstrate the strong

detrimental effect of spike-count correlations on the information

content of a homogeneous population. Then, we will analyze the

information content of the neural responses in a heterogeneous

population and show that, in this case, information content is not

limited by the spike-count correlations.

Correlations in an homogenous population
A full description of the algorithm used to generate the

correlated responses appears in the Methods section. Here we

briefly describe our approach. Correlations in our algorithm are

modeled as a doubly stochastic process. The correlations are

inserted via hypothetical input variables that are continuous

Gaussian random variables with pre-defined uniform (unless

otherwise stated) correlation structure; thus, the correlation

coefficient between the Gaussian input to cell i and the input to

a different cell j is c for all i=j. The continuous input variables are

then translated to spike-counts via a non-linear transformation,

based on matching the cumulative distribution of input variable

and the spike-count of the neuron, Figure 3 (see also step 2 of the

algorithm in Methods). This transformation retains the marginal

spike-count distribution of the neuron. As a result, the input

correlations, c, generate correlations between the spike-counts, csc,

of the neurons via this non-linear transformation. As the

transformation from input variables to firing rates is not linear,

in general, csc=c. Figure 4 shows the dependence of the firing-rate

correlations, csc, on the input correlation level, c, in homogenous

populations for different marginal response distributions (in the

different panels). The relation between the input correlations, c,

and the resultant spike count correlations, csc, is: monotonic,

increasing, with csc(c~0)~0 and csc(c~1)~1, and in many cases

can be approximated by: csc~c. A few cells showed a more

considerable deviation from linearity (cells 1&11 Figure 4).

Figure 5 shows a typical example of the correlation matrices for

the pseudo-population for different levels of input correlations

(based on the response of cell 9 of Figure 1). The correlation

structure of the neural responses for a homogeneous population is

uniform, i.e., the spike-count correlations between every two

different neurons in the pseudo-population is the same and

deviations result only from the estimation of the spike-count

correlations using a finite dataset.

It is useful to analyze the matrix of spike-count correlations into

their principle components. These are the groups of cells which

fluctuate together, i.e. in a ‘‘collective mode’’, and which, in

statistical analysis, are ordered so that successive components

account for decreasing magnitudes of variance. The advantage of

this grouping into ‘‘collective modes’’ is that they are uncorrelated

with each other (i.e. orthogonal) so are simpler to examine than

the mutually correlated neural responses. The structure of each

‘‘collective mode’’ is given by an eigenvector of the correlation

matrix, and the magnitude of its fluctuation (variance) is given by

the corresponding eigenvalue [27]. The collection of eigenvalues is

known as the spectrum of the correlation matrix (e.g. Figure 6A),

and allows the magnitude of the different modes to be compared.

The eigenvector gives the structure of the mode. For example, a

Figure 3. Illustration of Step 2 of our algorithm: translating the
continuous input variable to the discrete neural response. The
figure depicts the two cumulative distribution functions, G(V ) [left,
cumulative distribution of Gaussian input variable] and F (r) [right,
empirical cumulative distribution of neuronal spike-count]. In the
specific example shown in the figure, the random input variable is
Vi~1. The cumulative distribution of having input of equal or less than
Vi is in this case G(V )&0:8. To translate the input variable to spike
count we choose the number of spikes that corresponds to the same
cumulative distribution. In the specific example of the illustration, this
corresponds to firing of four spikes, ri~4.
doi:10.1371/journal.pone.0081660.g003
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uniform eigenvector, i.e. one in which each component is equal

(e.g. solid blue line in Figure 6B), represents a collective mode in

which the entire population fluctuates above (or below) its mean

firing rate together. Alternatively, one can think of the uniform

eigenvector as representing the fluctuations of the ‘‘center of mass’’

of the neural responses.

Figure 6A, shows the eigenvalue spectrum and eigenvectors,

respectively, of a correlation matrix with c~0:2 and c~0:05. The

spectrum of the correlation matrix is composed of one large

eigenvalue that grows linearly with the population size (Figure 6A

inset) and its corresponding eigenvector (Figure 6B thick blue line)

has approximately equal components, i.e. representing a uniform

mode of fluctuations in which all neurons fire above or below their

mean together. The rest of the eigenvectors are degenerate, with

values which vary randomly from cell to cell (Figure 6B), and

remain on the order of one as the population size grows (Figure 6A

inset). Thus, the trial-to-trial fluctuations of the population

response are dominated by a collective uniform fluctuation with

a magnitude that scales linearly with the population size, whereas

the noise in all other orthogonal directions remains of the same

order even as the population size increases. In other words this

correlation matrix is well modeled by a single principle compo-

nent. Note, that the correlations do not alter the total noise in the

population, as the sum of all eigenvalues equals the sum of all

diagonal elements of the correlation matrix, which is equal to the

number of neurons in the population. Only the distribution of noise

is affected by the correlations.

Linear readout accuracy in correlated homogenous
populations

Throughout this paper we will use the accuracy of a simple

linear readout as a measure of the information content of the

population response. Specifically, we will quantify the accuracy in

terms of the reciprocal of the mean square estimation error of the

linear readout. The squared estimation error is composed of a sum

of two contributions (see Methods). One is the square of the bias,

which measures the systematic error and how accurate the

estimator is on average. The second is the variance of the

estimator that quantifies its trial-to-trial fluctuations. As the bias is

deterministic, in many cases, it is ignored. Here, for example, if the

tuning curves of the neurons were exactly linear one could obtain

an unbiased estimator.

A linear readout for the BC, h, is a linear function of the neural

responses ĥh frign
i~1

� �
~
Pn
i~1

wirizw0; where ri is the response of

neuron i(i~1,:::n, with n the number of neurons in the

population), rif g the response set, and fwign
i~1 is the set of linear

weights and offset, w0. The optimal linear estimator (OLE) is a

Figure 4. Mean spike-count correlation coefficient (csc) as function of input correlation (c) for homogeneous pseudo-populations.
Pseudo-population responses of n~30 neurons were generated based on the response distribution of each of the 30 neurons in our data set, shown
by the different panels. To compute the spike count correlations we simulated the response of the pseudo population for 1000 trials for every
stimulus condition. The correlation coefficient matrix was averaged across all 21 different BC levels in our data set. The red line shows a linear fit that
is forced through zero, for comparison, and the black line is the identity line.
doi:10.1371/journal.pone.0081660.g004
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linear readout with the specific choice of weights that minimizes

the mean squared estimation error [28]. The OLE is determined

by two factors: noise and signal (see Methods). The noise is

quantified by the correlations (analyzed above). The signal

measures the sensitivity of the neural responses to changes in the

stimulus, e.g., the tuning curves of the neurons in the population.

Specifically, for a linear readout, such as the OLE, the signal is

embedded in the covariance of the mean neural responses (i.e.,

tuning curves) with the stimulus. In a homogeneous population, a

change in the stimulus will induce the exact same change in the

responses of all neurons in the population, Figure 7. Hence, the

signal will reside only in the uniform direction, Figure 7 inset.

Figure 8 shows the accuracy of the OLE (A) and the

contribution of the bias (B) and variance (C) for a typical

homogeneous population (defined by the marginal response

distribution of cell number 13), as function of population size for

different input correlation levels (shown by the different colors) as a

function of the population size. The top blue line shows the OLE

accuracy in the case of uncorrelated population response. As can

be seen from the figure, OLE accuracy saturates even in the

absence of correlations. However, examining the two components

of the OLE error, i.e., bias and variance, Figure 8B & C, reveals

that in the uncorrelated case (blue dots) it is only limited by the

bias, which results from the non-linearity of the tuning curves of

the neurons and can be easily overcome using a deterministic

mapping for large population in the uncorrelated case, c~0. In

this case (zero correlations), the variance of the trial-to-trial

fluctuations of the OLE decays to zero algebraically in N.

On the other hand, the OLE accuracy, in the correlated case

(cw0), is limited by the variance component, which saturates to a

finite value, as does the bias. This trial-to-trial variability cannot be

overcome by a deterministic transformation. Thus, even in the

presence of low correlation levels the accuracy of the OLE

saturates to a finite value. These and similar findings suggested

that information content of neural populations is limited due to

spike count correlations, which have been empirically observed.

Correlations in a heterogeneous population
Figure 9 shows examples of the resultant correlation matrices in

a heterogeneous pseudo-population for four different input

correlation levels, as generated by the algorithm. As the

transformation of input correlations to spike count correlations

depends on the specific details of the response statistics of each

neuron, the spike count correlations in a heterogeneous population

are not identically uniform (c.f. Figure 5). The relation between the

input correlation strength and the resultant mean (across the

heterogeneous population cell pairs) spike count correlations is

zero for input correlations of zero, monotonic, and approximately

linearly increasing, see Figure 10 and compare with Figure 4. Note

that for heterogeneous populations we do not expect the spike

count correlations to reach one, even for perfectly correlated

inputs. This results from the discontinuous mapping of the

Figure 5. Spike count correlation coefficient (csc) matrices for different levels of input correlation (c~0,0:3,0:6,0:9) in a homogenous
pseudo-population, using the response distribution of cell 9. The correlation coefficients were averaged over all stimulus conditions,
BC~{1,{0:9, . . . 1. For each stimulus condition the correlation coefficient matrix was estimated by generating 10,000 trials for the pseudo
population response for the given stimulus.
doi:10.1371/journal.pone.0081660.g005
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continuous input variables to the discrete output (spike count)

variable of each cell.

Due to the heterogeneity of the population, the correlation

structure of the neural responses is not completely flat; compare

Figure 5 and Figure 9. Nevertheless, the eigenvalues spectrum and

eigenvector structure (Figure 11A) show similar characteristics to

the homogeneous case (Figure 6A). As in the homogeneous case,

the spectrum of the correlation matrix is composed of a single

eigenvalue that grows linearly with the population size, whereas

the rest of the eigenvalues reach a size independent limit of order

one (Figure 11A inset). Inspection of the eigenvector that

corresponds to the largest eigenvalue (Figure 11B thick blue line)

reveals a vector with nearly constant coefficients, i.e. it has a high

overlap with the uniform vector. Thus, although the correlation

matrix in the heterogeneous case is not completely flat, its

structure remains the same. The noise in the population response

is composed of a single collective mode of fluctuation (the principal

component) that is relatively uniform with a magnitude that

increases linearly with population size whereas the magnitude of

the rest of the eigenvalues do not scale with the population size.

Information content of a heterogeneous population
We next studied the information content of the neural responses

in a heterogeneous population. In contrast with the noise that is

very similar to the homogeneous case, the signal is qualitatively

different, Figure 12. Due to the heterogeneity, the signal is no

longer uniform. Figure 12 inset shows the distribution of the signal

over the different modes (eigenvectors) of the correlation matrix.

Although the signal distribution peaks at the uniform direction (the

principle component), only about 15% of the signal resides in that

mode. Hence, a considerable portion of the signal resides in modes

in which the noise does not increase with the population size.

The accuracy of the OLE, in terms of the reciprocal of the

mean squared estimation error and its components, i.e., the

reciprocal of the bias and the reciprocal of the variance, are shown

as a function of the population size for different levels of mean

correlation, Figure 13. In contrast with the case of homogenous

population (Figure 8), the OLE accuracy increases with the

population size, and the two components of the OLE accuracy

(i.e., bias and variance, Figure 13 B and C, respectively), scale

approximately linearly with population size even at high levels of

correlation. Thus, even in the presence of high correlation levels

the accuracy of the OLE does not saturate to a finite value and

Figure 6. Eigenvalue spectrum and eigenvectors of the spike count correlation coefficient (csc) matrix. (A) The spectrum of the
correlation matrix of a homogenous pseudo-population of 30 neurons, with input correlations of c~0:2, and c~0:05 is shown,. The inset shows the
largest eigenvalue (circle) and mean of all other eigenvalue (diamond) as function of population size. (B) The eigenvectors of the correlation matrices
A are shown by the different colors. The thick blue lines show the eigenvector that corresponds to the largest eigenvalue.
doi:10.1371/journal.pone.0081660.g006
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keeps growing linearly with population size. These and similar

findings suggested that for a linear estimator that is fine-tuned to

the heterogeneity of a population, information content is not

limited by the empirically observed spike count correlations.

Empirical studies reported that in many cases noise-correlations

are functionally-dependent. This functional dependence gives rise

to collective modes of fluctuations that look like the signal. In a

homogeneous population coding for BC there is only one

preferred stimulus, and as a result functionally-dependent corre-

lations are homogeneous correlations. Neurons in our data set can

be thought of as originating from two distinct columns. One

column with preferred BC of 1 (about 85% of the neurons), and

the other with preferred BC of 21 (about 15%). We tested the

effect of functionally-dependent correlations on the accuracy of the

OLE in a heterogeneous population, Figure 14 A (see also

Methods). Figures 14 B–E show the spike-count correlation matrix

for varying levels of functionally-dependent correlations. Note the

similarity between the noise correlation of e.g. Figure 14 E and

signal correlations, Figure 2. The noise in the neuronal response,

in this example, is composed of a single collective mode that grows

linearly with the population size, Figure 14 F, and the structure of

the largest collective mode respects the functional distance

between the neurons, Figure 14 G. The distribution of the signal

across the different eigenvectors of spike-count correlation matrix

is shown in Figure 14 H. The mode (in the meaning of the most

common value in the distribution) of the signal distribution is in

the principle component with 30%, compare with 15% in the case

of uniform correlations Figure 12. However, due to the

heterogeneity of the neural responses 70% of the signal is

distributed in directions in which the spike-count correlations do

not grow with the population size. Thus, although the effect of

correlations is larger than in the case of uniform correlations

(compare with Figure 13) the distribution of the signal enables the

accuracy of the OLE to grow linearly with the population size.

Discussion

There is abundant evidence for neural response correlations in

the central nervous system [7,13,21,29–32]. However, only few

studies have investigated spike count correlations between different

neurons in the IC, yet there are findings suggesting that the

responses of different cells in the auditory system and in particular

in the IC display correlation [5,33]. Correlation values in many

cortical areas are found over a relatively broad range, from 0.02 to

0.26, although the value of correlation seems to be sensitive to the

methods of measurement [7,10].

Here, we used the coding of BC by IC neurons as a convenient

framework to study the effect of correlated noise and neuronal

heterogeneity on the ability to accumulate information from large

Figure 7. The signal in a homogeneous population. The signal, in
terms of the covariance between the neural response and the stimulus
is shown as a function of the neuron number in a homogeneous
population based on the responses of cell 13. As the population is
homogeneous the signal is distributed homogeneously in the
responses of the different neurons in the population. The inset shows
the distribution of the signal over the different eigenvectors of the
neural spike-count correlation matrix (with uniform correlation coeffi-
cient of 0.2), as a function of the rank of their eigenvalue. The inset
shows the projection of the signal vector on each eigenvalue in
percent. Note that the first eigenvector corresponds to the uniform
vector (cf Figure 7). The signal and the correlation matrix were
estimated using 10,000 repetitions for every stimulus value
(BC~{1,{0:9:::1).
doi:10.1371/journal.pone.0081660.g007

Figure 8. OLE accuracy in a homogeneous pseudo population.
The OLE accuracy is shown in terms of: A one over the mean square
estimation error, and its components: B the inverse of the bias and C
the inverse of the variance, as a function of the number of cells for
different levels of uniform correlations, by the different colors. The dots
show the estimated OLE accuracy that was measured by first training
the OLE weights using 10500 trials of psedo-population response (i.e.,
500 trials per stimulus condition) and estimating the accuracy over
10500 trials of generalization, this procedure was repeated and
averaged 100 times. Note that as the pseudo-populations are
homogeneous and are uniquely determined by the marginal response
distribution of a single neuron, there is no need to average over
different realizations of the population. Specifically, here we have used
the response distribution of cell 13 (Figure 1) to define the population
response.
doi:10.1371/journal.pone.0081660.g008
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populations of neurons. The BC of the stimulus is represented by a

continuous parameter with values in the range from minus one to

one, and is characterized with tuning curves that are relatively

linear.

We find that uniform correlations in a homogeneous population

limit the information content of the neural responses. The reason

is that since all cells are identical they encode information about

the stimulus in exactly the same manner. Thus only the mode in

which all cells move together, i.e. are equally weighted, gives

information about BC. Said differently, due to symmetry the only

direction in the phase space of the neural responses of a

homogenous population that encodes information about the

stimulus is the uniform direction, i.e., only the ‘center of mass’

of the neural responses carries information about the BC.

However, due to the correlations, the noise in the uniform

direction grows linearly with the population size (see inset of

Figure 6A), i.e., the ‘center of mass’ of the neural responses is the

principle component of the noise fluctuations with a variance that

grows linearly with the population size. Other directions do not

encode information that can be ‘‘read out’’ by linear readout

mechanisms.

In contrast, in a heterogeneous population the accuracy of the

OLE grows linearly with the population size, even in the presence

of correlations. Comparing Figures 6 and 11, it is clear that the

noise structure is similar in both cases. Hence, the ability of the

OLE to overcome the correlated noise in the heterogeneous case

results from the different distribution of the signal, i.e., the modes

of the network that are sensitive to the stimulus. Since the

heterogeneity information on the BC is not limited to the uniform

direction, and, as a result, information about the stimulus can be

extracted also from non-uniform directions of the neural response,

in which the noise remains finite (Figure 11A inset). This is

illustrated in Figure 15 that shows the relative weight of the ‘center

of mass’ (uniform direction) in the OLE, as a function of the

number of cells in the population. In an uncorrelated population,

c~0, (blue) there is a considerable contribution to the optimal

weights from the center of mass, as the center of mass contains

most, but not all, of the signal. On the other hand, in the presence

of uniform correlations, the noise in the center of mass grows with

the population size (Figure 11). As a result, the contribution of the

center of mass to the OLE decreases as the number of neurons

increase (Figure 15, green).

We, and others, reported uniform correlations increase coding

accuracy, whereas ‘limited range’ correlations have been reported

to have detrimental effect on coding accuracy [11,15,34]. How

can these seemingly contradicting finding be explained?

Previous studies focused on the coding of an angular stimulus-

variable by a hypercolumn population of neurons with preferred

stimuli that are evenly distributed on the ring from 2180u to

+180u. The term homogeneous has been used loosely in the

Figure 9. Spike count correlation coefficient (csc) matrices for a specific realization of a heterogeneous population of neurons for
different levels of input correlation, c~0,0:3,0:6,0:9 from bottom to top. The correlation coefficients matrix was computed for
heterogeneous pseudo-population of n~30 neurons composed of all 30 neurons in the data set. The correlation coefficient matrix was computed by
averaging over all stimulus conditions. For each stimulus (BC level), the conditional correlation coefficient matrix was estimated by generating 10,000
realizations of the pseudo population response.
doi:10.1371/journal.pone.0081660.g009
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context of a hypercolumn model to mean neurons which have

different preferred stimuli, but all other parameters (e.g. tuning

width and maximum firing rate) are the same. We would term this

property isotropy, as clearly neurons with different preferred

stimuli respond differently. Due to the identical parameters and

the uniform distribution of preferred stimuli on the ring, there is

no signal in the uniform mode. Adding correlations does not add

noise, as the total noise in the system is fixed – it only re-distributes

the noise. Thus, adding uniform correlations in an isotropic

hypercolumn channels the noise to a mode that has no signal in it.

As a result less noise will remain in other modes of the system;

hence, the accuracy will increase [11].

We define long range correlations to be such that every neuron

is strongly correlated with a fraction of the entire population;

hence, generate collective modes of fluctuations. The term ‘limited

range’ has been used in the context of a hypercolumn model to

describe correlations that are stronger for pairs of neurons with

closer preferred orientations. As limited range correlations are (or

may be) also long range, a better terminology would be

‘functionally dependent’, that is correlations that depend on the

functional distance between neurons (e.g., the difference in their

preferred stimuli). When long range correlations are also

functionally dependent the collective modes overlap the region

where the signal resides in an isotropic hypercolumn; hence, will

yield finite signal to noise ratio and a saturation of the accuracy

[11,18].

The noise-correlations in this study are artificial. As we do not

have simultaneous recordings we cannot determine their true

structure. Thus, the correlations in this work reflect our choice of

structure and not necessarily a ‘‘real’’ one. On the other hand, this

choice allowed us to focus on the type of correlations that, in the

absence of heterogeneity, are the most detrimental ones in terms of

coding accuracy. This raises an interesting question regarding the

correlations structure and its effect on information capacity of the

network: Can correlations increase the information capacity of the

system, and if so then what are the optimal correlations?

The trivial answer to the above question is that optimal

correlations, in terms of information content, are correlations with

zero variance. The smaller the noise the larger the signal-to-noise

ratio is. However, this solution is not biological, as we know neural

responses are variable. Thus, our empirical knowledge of biology

indicates it is not optimal. Nevertheless, it is still tempting to ask:

Given the single cell variability, what is the optimal cross

correlation structure?

This question was examined in the framework of a population

of two neurons. As the variances are fixed, the entire correlation

structure is determined by a single parameter, the spike-count

correlation. Figure 16 shows the accuracy of an OLE as a function

of the spike-count correlation between the two cells, for three pairs

of neurons: a homogeneous pair (blue), a pair with low

heterogeneity, i.e., high signal correlations, (red) and a pair with

high heterogeneity (green). In a two dimensional system, the trial-

to-trial fluctuations (normalized by their standard deviations) can

be factored into two collective modes or principle components.

One mode is the uniform mode, i.e., the center of mass, in which

the two neurons fluctuate together, and the orthogonal mode is the

relative mode, in which the two neurons fluctuate with opposite

signs (i.e., when one fires above its mean the other fires below). As

the variances are fixed, the sum of the strengths of the fluctuations

in both modes remains constant. When the correlation coefficient

increases, the strength of the uniform mode of fluctuations

increases, and as a result, the strength of the fluctuations in the

relative mode decreases (improving the SNR on that dimension).

In the homogeneous population (blue), information is embed-

ded only in the uniform direction, i.e., the ‘center of mass’; hence,

the OLE accuracy is a monotonically decreasing function of the

spike-count correlation. In the heterogeneous population with

positive signal correlations, most of the signal resides in the

uniform direction. As the spike-count correlation approaches

minus one, the noise in the uniform mode decreases to zero and

the signal to noise ratio increases, so accuracy increases. In

contrast with the homogeneous case, in a heterogeneous

population there is also some signal in the orthogonal, relative,

mode. For the pair with positive signal correlations (red), the signal

in the orthogonal mode is small, but, as the spike-count correlation

approaches one, the noise in that mode decreases to zero, yielding

increasing signal-to-noise ratio. Thus, the seemingly paradoxical

result that increasing spike-count correlation results in an increase

in accuracy is due to structure of the noise-correlation matrix.

Similar behavior can be observed in the heterogeneous population

with negative signal correlations (green) with the difference that in

the latter case there is more signal in the orthogonal direction than

in the uniform. Thus, we have reached the same trivial answer

albeit in a more sophisticated manner: the optimal correlation

structure is one that has zero variance in some direction with non-

zero signal. Note that this basic explanation using the distribution

of noise and signal in the system accounts for the finding that OLE

accuracy in a heterogeneous population is not necessarily

monotonic in the correlation strength (Figure 16, red curve).

Nevertheless, we emphasize that the question of the strength and

structure of neuronal noise correlations is not a philosophical one,

but rather an empirical one that should be addressed by careful

measurement. With respect to the relation of correlation structure

and readout accuracy, it is interesting to note that attention and

learning have been reported to have a significant effect on the

noise-correlations and their structure [8,35–37].

Throughout this work we focused on the information content of

the neural response in terms of the accuracy of linear readout

Figure 10. Spike count correlation (csc) as function of the input
correlation strength, c, for a heterogeneous pseudo-popula-
tion. Neural responses for a population of 30 neurons containing all the
cells in our data set were generated for all stimulus conditions (i.e., all
21 different BC levels in our data set) and the correlation coefficients for
all the different cell pairs were averaged (blue circles), see Methods. The
error-bars show the standard deviation of the correlation coefficients in
the populations. The solid red line is a linear regression line with slope
of 0.85, forced via the origin. For comparison the dashed black line
shows the identity line.
doi:10.1371/journal.pone.0081660.g010
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mechanisms. A more general readout mechanism may yield a

more accurate estimate of the external stimulus [38,39]. Never-

theless, the computational principles demonstrated here using the

framework of linear readout also hold in general. Thus, although

correlations are measured throughout the brain, we believe that

the inherent neuronal heterogeneity is sufficient to overcome their

detrimental effect. On a broader perspective the theory of

population coding has focused on quantifying the accuracy of

specific hypotheses for the neural readout mechanism. The utility

of that approach has been in its ability to reject certain hypotheses

that cannot account for the behavioral accuracy. However, this

approach cannot assist in discriminating between different possible

mechanisms with sufficient accuracy. New theoretical approaches

for the study of the neural code are now required.

Materials and Methods

Ethics statement
The experiments described in this study were performed under

the terms and conditions of licences issued by the UK Home

Office under the Animals [Scientific Procedures] Act 1986, project

licence number 4003049, and the approval of the ethical review

committee of the University of Nottingham.

Experimental. The experimental procedure has been described in

detail previously (Shackleton et al 2005). In short, recordings were

made in the right IC of 7 pigmented guinea pigs weighing 342–

779 grams. Animals were anaesthetized with urethane (1.3 g/kg

i.p., in 20% solution in 0.9% saline) and Hypnorm (Janssen;

0.2 ml i.m., comprising fentanyl citrate 0.315 mg/ml and

fluanisone 10 mg/ml). The animals were placed inside a sound

attenuating room in a stereotaxic frame in which hollow plastic

speculae replaced the ear bars to allow sound presentation and

direct visualization of the tympanic membrane. A craniotomy was

performed over the position of the IC. All experiments were

carried out in accordance with the UK Animal (Scientific

Procedures) Act of 1986. Recordings were made from single,

well-isolated neurons, with glass-insulated tungsten electrodes

(Bullock et al. 1988) advanced into the inferior colliculus through

the intact cerebral cortex, in a vertical penetration. Extracellular

action potentials were amplified (Axoprobe 1A; Axon Instruments,

Figure 11. Spectrum and collective modes of fluctuations in a heterogeneous population. (A) Eigenvalue spectrum of the spike count
correlation (csc) matrix of a heterogeneous pseudo-population containing all 30 neurons in our data set, and input correlations of c~0:2 and c~0:05.
The inset shows the largest eigenvalue (circle) and mean of all other eigenvalues (diamond) as function of population size. (B) The different
eigenvectors of the spike-count correlation (csc) matrix (c~0:2 and c~0:05) are shown by different colors. The thick blue line depicts the eigenvector
with the largest eigenvalue.
doi:10.1371/journal.pone.0081660.g011
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Foster City, CA, USA), filtered between 300 Hz and 2 kHz,

discriminated using a level-crossing detector (SD1; Tucker-Davies

Technologies, Alachua, FL), and their time of occurrence was

recorded with a resolution of 1 ms. Stimuli were delivered to each

ear through sealed acoustic systems comprising custom-modified

Realistic 40–1377 tweeters (M. Ravicz, Eaton Peabody Labora-

tory, Boston, MA,USA). All stimuli were digitally synthesized

(System II, Tucker-Davies Technologies) at between 100 and

200 kHz sampling rates and were output through a waveform

reconstruction filter set at one fourth the sampling rate (135 dB/

octave elliptic: Kemo 1608/500/01 modules supported by custom

electronics). Signals were of 50-ms duration and were presented at

20 dB above the uncorrelated noise threshold. A single repeat

consisted of the full range of interaural correlation steps presented

in pseudorandom order. Interaural correlation was controlled

using the well-known ‘‘two-independent noise generator’’ method

(Jeffress and Robinson 1962). Briefly, two independent noise

samples were generated. One of these was presented to the left ear.

The signal presented to the right ear was a sum of that presented

to the left ear, and the other independent noise in the proportion

r :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{r2)

p
(e.g., Culling et al. 2001, Eq. A1).

Data analysis. The conditional mean firing rate of each neuron,

as a function of stimulus BC was estimated from the data by

averaging the spike count during 100 ms following stimulus onset,

over all 200–500 trials for each of the 21 different stimuli

BC~{1,{0:9,{0:8 . . . 1ð : Figure 1). Note the error bars on

Figure 1 give the standard deviation of the neuron’s response and

hence indicate the variability in spike count. To obtain the

standard error (standard deviation of the estimate of the mean) one

has to divide by the square root of the numbers of trials per

stimulus; hence there is a factor of about 15–20 between the shown

standard deviation and the standard error of the mean. The entire

data set was used for the empirical estimation of the neural

cumulative response probability. This distribution was used to

generate the pseudo-population response (see below). As the

correlation coefficients of the responses of different neurons are

not independent of the stimulus, in all presented figure we show

the average correlation coefficient over the 21 stimulus conditions.

Information content of the neural response was measured in

terms of the reciprocal of the mean square estimation error. The

optimal linear estimator (OLE, [28]) is defined by the specific

choice of linear weights that minimizes the mean square

estimation error,

e~SS ĥh{h
� �2

TT~SS
Xn

i~1

wirizw0{h

 !2

TT:

where SSXTT denotes averaging of X with respect to the stimulus

and the neural distribution. The mean square error can be written

as the sum of two components: the (squared) bias and the variance

of the estimator, e~SSb2 hð ÞTTzSSVar hð ÞTT, where the bias is

the conditional mean of the estimator for a given stimulus. The

bias and variance that are shown throughout the paper are

Figure 12. The signal in a heterogeneous population. The signal,
in terms of the covariance between the neural response and the
stimulus is shown as a function of the cell number in a heterogeneous
population based on the responses of all cells in the data set. The inset
shows the distribution of the signal over the different eigenvectors of
the neural spike-count correlation matrix (with uniform correlation
coefficient of 0.2), as a function of the rank of their eigenvalue, in
percent. Note that the first eigenvector corresponds to the uniform
vector (cf Figure 13). The signal and the correlation matrix were
estimated using 10,000 repetitions for every stimulus value
(BC~{1,{0:9:::1).
doi:10.1371/journal.pone.0081660.g012

Figure 13. One over the Mean Square Error (A), bias (B) and
variance (C) of OLE estimation, plotted as function of
population size for heterogeneous pseudo-population with
different input correlation level (different color). All heteroge-
neous pseudo-populations created based on empirical response
statistics of 30 cells. The OLE weights were learned from a training
set of 500 trials per stimulus condition and the accuracy of the readout
was estimated using a generalization set of the same size. For each
value of population size the accuracy was averaged over 100
realizations of the neural population, where the different cells in each
realization were drawn independently with equal probabilities (with
repetitions) from the pool of all neurons.
doi:10.1371/journal.pone.0081660.g013
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averages of the squared bias and the variance over all stimulus

conditions.

In the case of a heterogeneous population the identity of the

cells in the population was chosen randomly from the pool of

neurons. The cells were drawn from the pool independently with

equal probabilities and with repetitions. For every population size,

the accuracy of the estimator was averaged over 100 realizations of

the neural population

Generating a homogeneous pseudo-population
response

The following procedure generates the response of a statistically

independent homogeneous population of neurons. The procedure

is equivalent to creating a pseudo-population of cells by

independently sampling the responses of the same neuron

repeatedly with replacement. The utility of this formalism is that

it is easier to generalize it in order to implement trial-to-trial

correlations. To simulate the response of a pseudo-population of n

Figure 14. Functionally dependent correlations. (A) One over the Mean Square Error of OLE estimation, plotted as function of population size
for heterogeneous pseudo-population with different functionally dependent input correlation level (different color). All heterogeneous pseudo-
populations created based on empirical response statistics of 30 cells. The OLE weights were learned from a training set of 500 trials per stimulus
condition and the accuracy of the readout was estimated using a generalization set of the same size. For each value of population size the accuracy
was averaged over 100 realizations of the neural population, where the different cells in each realization were drawn independently with equal
probabilities (with repetitions) from the pool of all neurons. (B–E) Four examples of the neuronal noise correlation matrix (in color code) for different
values of functionally dependent input correlations, c~0,0:3,0:6,0:9 respectively. The matrices were estimated by averaging the conditional
correlation coefficient matrices [estimated using 10,000 trials] over all stimulus conditions. (F) Eigenvalue spectrum of the functionally dependent
correlation matrix of a heterogeneous pseudo-population containing all 30 neurons in our data set, and functionally dependent input correlations of
c~0:2. The inset shows the largest eigenvalue (circle) and mean of all other eigenvalues (diamond) as function of population size. (G) The
eigenvectors plotted from output correlation (csc) matrix (c~0:2) of the functionally dependent correlation matrix. Each vector plotted in different
color. The thick blue line shows the eigenvector with the largest eigenvalues. (H) The signal distribution across the eigenvectors of the spike-count
correlation matrix is shown as a function of the eigenvalue rank.
doi:10.1371/journal.pone.0081660.g014
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cells in response to auditory stimulus with BC level of h based on

single cell data of a specific cell x we applied the following two-step

algorithm:

Step 1: for every cell, i[ 1,2, . . . nf g, in the pseudo-population

we generated random variables Vif gn
i~1. The variables Vif gn

i~1

were independent and identically normal Gaussian distributed

Vi*N 0,1ð Þ,i~1 . . . n:

The variable Vi can be thought of as the input to cell i or,

alternatively, as its underlying membrane potential.

Step 2: To translate the input variables Vif gn
i~1 to spike count

rif gn
i~1 while preserving the marginal distribution of the single

neuron x response statistics for a given BC level of h we used the

following procedure, see Figure 3. Denote by G Við Þ the

cumulative distribution of the input variable Vi,

Gi(Vi)~
ÐVi

{?

dvffiffiffiffiffiffi
2p
p e{v2

2 , and by Fx r hjð Þ:Pr rxƒr hjð Þ the cumu-

lative probability that neuron x of the dataset will fire r spikes or

less in response to stimulus h. The spike count of neuron i in the

pseudo population is set to be ri~Fi
{1(G Við ÞDh). Note that as the

spike count ri is a discrete variable we choose ri such that

Fi ri{1ð ÞvG Við ÞƒF rið Þ.

Generating a pseudo-population with spike count
correlations

To model correlations between neurons we modify step 1 of the

algorithm. Correlations in our algorithm are inserted via the

inputs, Vif gn
i~1. In a correlated population, each input Vi is

composed of a sum:

Vi~
ffiffiffiffiffiffiffiffiffiffi
1{c
p

ziz
ffiffiffi
c
p

zc

Where zc,zi~1::nf g are independent and identically distributed

normal Gaussian random variables:

Zc*N(0,1) Z

The term Zc denotes the shared input that is common for all cells.

The term Zi is the independent component of the input to cell i.

The parameter c determines the correlation coefficient between

the inputs to the different cells in the population. Thus the set of

inputs are random Gaussian variables with zero mean, variance of

one and uniform correlation coefficient, c.

To generate functionally dependent correlations we inverted the

sign of the shared\ correlated component of the input variable to

neurons with negative slope tuning curves (neurons 27–30 in

Figure 1). The input to neuron i with positive slope was

Vi~
ffiffiffiffiffiffiffiffiffiffi
1{c
p

ziz
ffiffiffi
c
p

zc, and to neuron j with negative slope

Vj~
ffiffiffiffiffiffiffiffiffiffi
1{c
p

zj{
ffiffiffi
c
p

zc. Thus the collective mode of fluctuations

resembles the vector (1,1,1,1,1,:::::::{1,{1,{1,{1).

Generating a heterogeneous pseudo-population
To generate a heterogeneous pseudo-population we simply used

the cumulative spike-count distributions of different cells in step

two of the algorithm. The different cumulative spiking distribu-

tions fFig, were chosen randomly with equal probabilities with

repetitions in an independent manner. Cell responses in the

pseudo-population preserve the marginal response distributions of

cells from which they were generated by the algorithm; thus

creating a heterogeneous population.
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Figure 15. The overlap between the OLE weights and the
uniform direction. The cosine of the angle between the OLE weights
vector and uniform vector is plotted as function of population size
without correlations (blue) and with input correlation of 0.2 (green), in a
heterogeneous population.
doi:10.1371/journal.pone.0081660.g015

Figure 16. MSE of estimation made by an OLE based on
pseudo-population of two neurons plotted as function of
spike-count correlation (csc) Low heterogeneity pair (red) two
cells generated using cells 28 & 30 response statistics, both
tuning curves has slops that are monotonic and with the same
sign. Homogenous pair (blue) both cells response generated using cell
30 response statistics (cells tuning curves are identical). High
heterogeneity pair (green) response generated based on the response
of cells 30 & 8.
doi:10.1371/journal.pone.0081660.g016
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