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Abstract

Objective: This study aimed to construct a model for using in differentiating benign and malignant nodules with the
artificial neural network and to increase the objective diagnostic accuracy of US.

Materials and methods: 618 consecutive patients (528 women, 161 men) with 689 thyroid nodules (425 malignant and 264
benign nodules) were enrolled in the present study. The presence and absence of each sonographic feature was assessed
for each nodule - shape, margin, echogenicity, internal composition, presence of calcifications, peripheral halo and
vascularity on color Doppler. The variables meet the following criteria: important sonographic features and statistically
significant difference were selected as the input layer to build the ANN for predicting the malignancy of nodules.

Results: Six sonographic features including shape (Taller than wide, p,0.001), margin (Not Well-circumscribed, p,0.001),
echogenicity (Hypoechogenicity, p,0.001), internal composition (Solid, p,0.001), presence of calcifications (Microcalci-
fication, p,0.001) and peripheral halo (Absent, p,0.001) were significantly associated with malignant nodules. A three-layer
6-8-1 feed-forward ANN model was built. In the training cohort, the accuracy of the ANN in predicting malignancy of thyroid
nodules was 82.3% (AUROC = 0.818), the sensitivity and specificity was 84.5% and 79.1%, respectively. In the validation
cohort, the accuracy, sensitivity and specificity was 83.1%, 83.8% and 81.8%, respectively. The AUROC was 0.828.

Conclusion: ANN constructed by sonographic features can discriminate benign and malignant thyroid nodules with high
diagnostic accuracy.
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Introduction

Nodular thyroid disease is a common finding in the general

population, particularly in iodine-deficient areas. The prevalence

of palpable nodules in population is 3% to 4%, and the prevalence

of nonpalpable nodules incidentally identified on imaging

approaches 40% to 50% after the age of 60 years[1–5]. The

diagnosis of thyroid cancer relies on cervical ultrasound and fine-

needle aspiration (FNA) biopsy, which collects cells for cytological

examination [6,7]. FNA cytology is currently the most reliable

diagnostic tool for evaluation of thyroid nodules. It provides a

definitive diagnosis of benign or malignant thyroid disease in most

cases. However, in 20% to 30% of nodules, FNA cytology cannot

reliably rule out cancer, and such cases are reported as

indeterminate for malignancy [8,9]. To improve the diagnosis

accuracy, new diagnostic approaches combined FNA cytology and

molecular biomarkers were proposed in recent years [10–12]. In

additional, CT and MRI have a limited role in the initial

evaluation of solitary nodule and their indications include

suspected tracheal involvement, either by invasion or compression,

extension into the mediastinum, or recurrent disease[5,13–15].

Though FNA biopsy can differentiate malignant and benign

nodules in most cases, it is an invasive procedure after all and

uncomfortable for the patient [14,15]. Ultrasonography (US) is a

powerful imaging technique for identifying thyroid nodules, which

are very common in clinical practice. It is a cost-effective,

noninvasive, portable, and safe imaging modality in the evaluation

for detection of nonpalpable thyroid cancers, it has barely

drawbacks expect for its low sensitivity. The incidence of thyroid

nodules detected by US ranges from 10% to 67% [16–19]. The

great majority of nodules are benign, yet the clinical importance

lies in the detection of malignancy, which comprises approxi-

mately 2.7–17% of all thyroid nodules. US has been widely used to

distinguish benign from malignant nodules using several sono-

graphic characteristics. However, no single ultrasound feature has

the adequate diagnostic accuracy for diagnosing malignant

nodules.

The artificial neural network (ANN) is a novel computer model

inspired by the working of the human brain. It can build nonlinear
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statistical models to deal with complex biological systems. ANN

models have several advantages of over statistical methods. It can

rapidly recognize linear patterns, non-linear patterns with

threshold impacts, categorical, step-wise linear, or even contin-

gency effects[20]. Analyses by ANN need not start with a

hypothesis or a priori identification of potentially key variables,

so undocumented or quantitated potential prognostic factors can

be determinate if they already exist in the masses of datasets,

though they might have been overlooked in the past. It can build

nonlinear statistical models to deal with complex biological

systems. In recent years, ANN models have been introduced in

clinical medicine for clinical validations [21–23]. In this study, we

aimed to construct a model for using in differentiating benign and

malignant nodules with the artificial neural network and to

increase the objective diagnostic accuracy of US.

Materials and Methods

Patients
We conducted our retrospective study extend from January

2010 and December 2012. 618 consecutive patients with 689

thyroid nodules were enrolled in the present study. All the patients

had undergone US and US-guided FNAB preoperatively and

subsequently undertook surgery. Pathological results were used as

the reference standards. The enrollment criteria for the patients

were as follows: (1) there was no thyroid diseases history. (2) There

was no radiation history on neck. (3) All patients underwent US

and FNAB examinations. All the patients were from eastern China

(most of the patients were from Wenzhou City) and received

primary treatment in our hospital.

Ethics
Written informed consent was obtained from the patient for

publication of this report. The study was approved by the Ethics

Committee of The First Affiliated Hospital of Wenzhou Medical

College, Wenzhou, China.

Clinicopathological and US features
Thyroid ultrasound examinations were performed by two

experience technicians with an Acuson Sequoia and 128XP

sonographic scanners (Siemens Medical Solutions, Mountain

View, CA) equipped with commercially available 8- to 13-MHz

linear probes. The following sonographic features were assessed

for each nodule: shape, margin, echogenicity, internal composi-

tion, presence of calcifications, peripheral halo and vascularity on

color Doppler. The shape of the nodule was classified as taller than

width measured in transverse dimension or wider than tall.

Margins of nodules were categorized as well circumscribed when

clear demarcation with normal thyroid was noted, and as not well

circumscribed, which included irregular and microlobulated

margins. The echogenicity of each nodule was classified as hypo-

, iso- or hyperechoic in comparison with the normal background

thyroid tissue. A nodule was defined as marked hypoechoic, when

a nodule was hypoechoic relative to adjacent strap muscles. The

echo structure was defined as solid, cystic or predominantly cystic.

Predominantly cystic nodules were those containing cystic

components that constituted more than an estimated 50% of the

lesion. The presence of micro- and macrocalcifications was

documented. Microcalcifications were defined as tiny, punctuate

echogenic foci of 1 mm or less either with or without posterior

shadowing. Microcalcifications were defined as larger than 1 mm.

The vascularity on color Doppler was classified as absent, present

flow. The status of nodules was confirmed by a final histological

examination after surgery.

Statistical Analysis and Neural Network analysis
Statistical analysis was performed using SPSS 20.0 software

(SPSS Inc., Chicago, IL, USA). Continuous variables were

expressed by mean 6 standard deviation and compared using

student’s t-test when necessary. Categorical variables were

described by proportions or count and compared using propor-

tions chi-square test or the Fisher’s exact test when necessary.

Univariate analysis was applied to assess the relationship between

sonographic features (input variables) and malignancy (output

variables). The variables we selected as the input layer to build the

ANN for predicting the malignancy of nodules were required to

meet the following criteria: important sonographic features and

statistically significant difference.

In this study, we built an ANN by using the Matlab 8.0 (The

Match Works Inc., Natick, USA) Variables found to be

significantly related to the malignancy of nodules were selected

to build the ANN. 689 eligible nodules were assigned to a training

cohort (n = 464; 67%) and a validation cohort (n = 225; 33%)

randomly using rv.bernoulli method. One of the major limitations of

ANN is over-training, which can lead to good performance on

training sets but poor performance on relatively independent

validation sets. To avoid over-training during building of the

ANN, 332 patients (72%) were again randomly selected from the

training group to train the network and the remaining 132 (28%)

were used for cross-validation. The learning mechanism applied

on this ANN was BP by calculating the errors between output

value and desired output value. Then, the weight of the

connections was altered between neurons to decrease the overall

errors of the network. Training was terminated when the sum of

square errors was at minimum, compared with the cross-validation

data set. The activation function, representing the outcomes of

ANN, was used with continuous outputs on the interval from 0 to

1, in which 0 = benign, 1 = malignant. To avoid different inter

nodules variability, we repeated the process only excluding

nodules derived from the same patient and total 561 nodules

were taking in the study.

Results

Baseline characteristic of thyroid nodules
A total of 689 thyroid nodules were enrolled in the study. The

clinicopathologic data of all patients was listed in Table 1. The size

of the nodules ranged from 4 mm to 52 mm (mean size 13.3 mm

66.5). We found no statistical difference between the benign and

malignant nodules with regard to size. A taller than wide shape

was found more frequently in malignant nodules (56.5%) than in

benign nodules (23.5%). Hypoechogenicity (including the sub-

group of markedly hypoechoic nodules) was a sonographic feature

to be found in a substantial number of malignant nodules (81.4%).

The frequency of hypoechogenicity in benign nodules was low

(50.8%). The presence of microcalcifications and intranodular

vascularity on Doppler examination in malignant nodules was

significantly higher than in benign ones. However, no significant

difference was found on intranodular vascularity on Doppler

examination between benign and malignant nodules (Table 1).

Specific characteristics of the training and validation cohorts used

to build and test the ANN are described in Table 2.

Construction of ANN
As shown in Table 1, the sonographic features including shape

(Taller than wide, p,0.001), margin (Not Well-circumscribed,

p,0.001), echogenicity (Hypoechogenicity, p,0.001), internal

composition (Solid, p,0.001), presence of calcifications (Micro-

calcification, p,0.001) and peripheral halo (Absent, p,0.001)
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were significantly associated with malignant nodules at the

Univariate analysis which were all used to build the ANN.

Multilayer perceptron (MLP) is one of the most popular and

mature ANN architectures with a feed forward neural network

where processing neurons are grouped into layers and connected

by weighted links. We therefore established an ANN model using

MLP. In this present study, MLP included the input, hidden and

output layers. Neurons were linked with weighted connections

Table 1. Patients characteristics and ultrasonographic Features of Benign and Malignant Thyroid Nodules.

Characteristics Benign Nodules Malignant Nodules P Value

Total Number 264 425

Age at diagnosis 48.2610.8 47.4611.1 0.350

,45 111 (42.0) 174 (40.9) 0.775

$45 153 (58.0) 251 (59.1)

Sex 0.048

Female 213 (80.7) 315 (74.1)

Male 51 (19.3) 110 (25.9)

Shape ,0.001

Taller than wide 62 (23.5) 240 (56.5)

Wider than tall 202 (76.5) 185 (43.5)

Composition ,0.001

Solid 151 (57.2) 410 (96.5)

Cystic or mixed 113 (42.8) 15 (3.5)

Echogenicity ,0.001

Hyperechogenicity/Isoechoic 130 (49.2) 79 (18.6)

Hypoechogenicity 134 (50.8) 346 (81.4)

Calcification ,0.001

Absence 193 (73.1) 128 (30.1)

Microcalcification 36 (13.6) 265 (62.4)

Other calcification 35 (13.3) 32 (7.5)

Margin ,0.001

Well-circumscribed 236 (89.4) 278 (65.4)

Not Well-circumscribed 28 (10.6) 147 (34.6)

Vascularity 0.469

Absent 233 (88.3) 367 (86.4)

Present 31 (11.7) 58 (13.6)

Peripheral Halo ,0.001

Absent 5 (1.9) 137 (32.2)

Present 259 (98.1) 288 (67.8)

doi:10.1371/journal.pone.0082211.t001

Table 2. Baseline characteristics of the study nodules stratified by ANN cohorts.

Characteristics Training Group Validation Group P Value

Total Number 464 225

Shape (Taller than wide) 205 (44.2) 97 (43.1) 0.791

Composition (Solid) 378 (81.5) 183 (81.3) 0.967

Echogenicity (Hypoechogenicity) 322 (69.4) 158 (70.2) 0.825

Calcification 0.484

Microcalcification 196 (42.2) 105 (46.7)

Other calcification 48 (10.3) 19 (8.4)

Margin (Not Well-circumscribed) 123 (26.5) 52 (23.1) 0.337

Peripheral Halo (Present) 365 (78.7) 182 (80.9) 0.498

doi:10.1371/journal.pone.0082211.t002
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(Fig. 1). In general, the number of input variables and output

variables were respectively equal to the number of sonographic

features and malignancy of thyroid nodules we set. As Fig. 1

shows, the MLP has six input neurons and one output neuron.

After the debugging and testing five times, eight hidden neurons

were added to the hidden layer to increase the MLP’s

performance.

Assessment of the predictive accuracy of ANN
In the training cohort, the accuracy of the ANN in predicting

malignancy of thyroid nodules was 82.3% (AUROC = 0.818, 95%

CI: 0.780–0.852, p,0.001), the sensitivity, specificity malignancy

predictive value (positive predictive value, PPV) and benignity

predictive value (negative predictive value, NPV) was 84.5%,

79.1%, 85.7% and 77.5%, respectively (Table 3, Fig. 2). When the

ANN was finally evaluated in the validation cohort, the accuracy,

sensitivity, specificity, PPV and NPV was 83.1%, 83.8%, 81.8%,

89.9% and 72.4%, respectively (Table 3). The AUROC was

0.828, 95% CI: 0.772–0.875, p,0.001 (Fig. 2). When excluding

nodules derived from the same patient, total 561 nodules were

enrolled in study, we obtained a similar results (Table 4).

Discussion

It is well known that none of the single sonographic features

allows to differentiate malignant from benign thyroid lesions.

However, finding in US image of nodule one or more than one

suspicious features, correlates well with the risk of malignancy[19].

In our study, we found that six sonographic features, including

shape, margin, echogenicity, internal composition, presence of

calcifications and peripheral halo, could be used for the

discrimination of the thyroid nodules.

Figure 1. Schematic representation of the artificial neural network developed to distinguish malignancy of thyroid nodules.
doi:10.1371/journal.pone.0082211.g001

Table 3. Classification Accuracy of ANN in Training and Validation Groups (689 nodules).

Group by ANN model Group by pathology in training set Group by pathology in validation set

Benign Malignant Benign Malignant

Benign 148 43 63 24

Malignant 39 234 14 124

Total 187 277 77 148

Sensitivity 84.5% (234/277) 83.8% (124/148)

Specificity 79.1% (148/187) 81.8% (63/77)

Accuracy 82.3% (382/464) 83.1% (187/225)

PPV 85.7% (234/273) 89.9% (124/138)

NPV 77.5% (148/191) 72.4% (63/87)

ANN artificial neural network; PPV positive predictive value; NPV negative predictive value.
doi:10.1371/journal.pone.0082211.t003
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In the study of Kim et al [24], suspicious sonographic features

were defined as irregular or microlobulated margin, marked

hypoechogenicity, microcalcifications and a shape that was more

tall than it was wide. In the presence of even one of these

sonographic findings the sensitivity, specificity and accuracy were

93.8%, 66% and 74.8%, respectively. Moon et al [25] evaluated

the diagnostic accuracy of US for the depiction of benign and

malignant thyroid nodules and found that the US criteria

including a shape taller than wide, a spiculated margin, marked

hypoechogenicity, microcalcification and macrocalcification were

helpful for discrimination of malignant nodules from benign ones.

According to their results, the diagnostic accuracy for the nodules

one centimeter or less in size was 77% when one of the five

malignant findings was used. Other studies [26–28] found the

same sonographic features.

Color Doppler sonography can aid in the prediction of thyroid

malignancy. Internal flow is suggestive of malignancy [29,30], but

this technique cannot be used to exclude malignancy. According

to a previous study[30], 14% of solid non-hypervascular nodules

were malignant. In our study, there was no difference found in

vascularity between benign and malignant nodules. Therefore,

Color Doppler imaging was not used in our study.

Many authors [31–34] reported that the combination of

ultrasound features makes the diagnosis of a malignant nodule

more probable. In these previous study, each suspicious US feature

was summed as the same weight, even though each US feature has

Figure 2. Receiver operating characteristic curve analysis of the predictive accuracy of the models to predict malignancy of thyroid
nodules in the training and validation cohorts.
doi:10.1371/journal.pone.0082211.g002

Table 4. Classification Accuracy of ANN in Training and Validation Groups (561 nodules).

Group by ANN model Group by pathology in training set Group by pathology in validation set

Benign Malignant Benign Malignant

Benign 97 33 39 20

Malignant 26 216 9 121

Total 123 249 48 141

Sensitivity 86.7% (216/249) 85.8% (121/141)

Specificity 78.9% (97/123) 81.3% (39/48)

Accuracy 84.1% (313/372) 84.7% (160/189)

PPV 89.3% (216/242) 93.1% (121/130)

NPV 74.6% (97/130) 66.1% (39/59)

ANN artificial neural network; PPV positive predictive value; NPV negative predictive value.
doi:10.1371/journal.pone.0082211.t004
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a different probability of malignancy. Therefore, the risk of

malignancy was higher in a thyroid nodule with one suspicious US

feature, such as a microcalcification or microlobulated margin

than for a thyroid module with 2 suspicious malignant US features

(solid composition and hypoechogenicity). Kwak et al [35]

developed a model that the suspicious US feature had a different

risk score according to their ORs in thyroid malignancy. However,

most of the sonographic features have multidimensional and

nonlinear relationship. So it is ideally difficult to predict the

malignancy with a conventional statistical technique. Neural

networks offer a number of advantages, including requiring less

formal statistical training, ability to implicitly detect complex

nonlinear relationships between dependent and independent

variables, ability to detect all possible interactions between

predictor variables, and the availability of multiple training

algorithms. However, ANN also requires large amounts of training

data and there was no uniform standard in choosing network

structure.

In the present study, six sonographic features including shape,

margin, echogenicity, internal composition, presence of calcifica-

tions and peripheral halo were significantly associated with

malignant nodules. Then we built a three-layer 6-8-1 feed-forward

ANN model including these six sonographic features as input

neurons. In the training cohort, the accuracy of the ANN in

predicting malignancy of thyroid nodules was 82.3%

(AUROC = 0.818), the sensitivity and specificity was 84.5% and

79.1%, respectively. In the validation cohort, the accuracy,

sensitivity and specificity was 83.1%, 83.8% and 81.8%, respec-

tively. The AUROC was 0.828.

In conclusion, ANN constructed by sonographic features can

discriminate benign and malignant thyroid nodules with high

diagnostic accuracy.
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