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Abstract

In this work, we present a novel, automated, registration method to fuse magnetic resonance 

imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology 

consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate 

location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic 

model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) 

diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy 

cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better 

able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. 

MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the 

biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. 

The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive 

biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined 

fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is 

dependent on the reader’s ability to determine fiducials or prostate surfaces with minimal error, 

which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion 

method represents a significant advance over the current state-of-the-art because it does not 

require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. 

delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We 

evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. 

Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the 

urethra, calcifications, and the centroids of CaP nodules) of 3.39 ± 0.85 mm.
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2. INTRODUCTION

Prostate needle biopsy guided by transrectal ultrasound (TRUS) is the current gold standard 

for prostate cancer (CaP) diagnosis.1 TRUS-guided needle biopsy is typically performed 

using a blinded sextant procedure where the prostate is divided into 6 regions, and a biopsy 

is taken form each region.2 Approximately 40% of CaP lesions appear isoechoic on TRUS; 

hence are difficult to target on TRUS-guided needle biopsy.3, 4 TRUS-guided needle biopsy 

has a low detection rate of 20–25%.5 Because of a low CaP detection rate for TRUS-guided 

biopsy more than 1/3 of men biopsies undergo a repeat biopsy procedure.6

Comparatively, multi-parametric magnetic resonance imaging (MP-MRI) has a high positive 

predictive value (PPV) for CaP detection.7 T2-weighted (T2w) MRI is able to provide 

anatomical information about the prostate in addition to structural information about CaP.8 

Other MRI protocols provide complementary functional information, such as dynamic 

contrast enhanced (DCE)9 and diffusion weighted imaging (DWI),10 or metabolic 

information, such as magnetic resonance spectroscopy (MRS).11 MRI-guided biopsies have 

40–55% CaP detection rates.12, 13 However, these procedures require specialized equipment 

and technicians, are expensive, time-consuming, and stressful for many patients.12, 13

MRI-TRUS fusion, that spatially aligns MRI to TRUS, allows anatomical, structural, 

functional, and metabolic information obtained from MP-MRI and anatomical information 

obtained from TRUS to potentially be utilized to guide needle biopsy. In such protocols, 

MRI of the prostate is performed prior to the biopsy procedure, hence no need exists for 

specialized biopsy equipment. During the subsequent TRUS-guided biopsy, information 

from the MRI is transferred to the TRUS image. Utilizing both MRI and TRUS to guide 

biopsy at least doubles the positive yield of biopsy.14–17 However unique challenges exist 

for MRI-TRUS registration. First, intensity-based metrics are inappropriate because of the 

poor correlation between intensities on MRI and TRUS.18 Previous work has shown that 

Mutual Information alone cannot accurately align MRI to TRUS.18 Second, differences exist 

in prostate shape caused by the difference deformations induced by the TRUS probe and, 

when present, the MRI endorectal coil.19 Figure 5 illustrates an example showing fusion of 

prostate MRI and TRUS for one patient; no MRI endorectal coil was used resulting in 

pronounced differences in prostate shape.

State-of-the-art MRI-TRUS fusion methods require manual intervention to establish spatial 

correspondence between MRI and TRUS imagery.14, 15 Labanaris et. al. performed a study 

that divided 260 patients into two groups: (1) an 18-core TRUS-guided biopsy with no MRI 

information added, and (2) a similar biopsy procedure with additional cores sampled from 

regions suspicious for CaP as determined by T2w MRI.14 The location of the additional 

cores was determined by manual inspection of the MRI and TRUS images. For the group 

undergoing only TRUS-guided biopsy, the CaP detection rate was 19.4%; the group with 

additional biopsy samples from CaP suspicious regions suspicious had a CaP detection rate 

of 74.9%. Hadaschik et. al. obtained a 59.4% CaP detection rate when using a semi-

automated MRI-TRUS fusion system to guide the biopsy in 106 patients.15 Unfortunately, 

methods that require manual intervention may lead to longer examination times, and 

increase patient discomfort during or after TRUS acquisition.
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In this work, we present a registration algorithm that is automated for all steps after TRUS 

acquisition. Our registration method may be well suited to MRI-TRUS fusion for guided 

biopsies because no time intensive manual interventions are required. In the remainder of 

the paper, Section 3 discusses previous work in MRI-TRUS fusion in greater detail as well 

as our novel contributions; Section 4 provides details of our novel MRI-TRUS fusion 

system; Section 5 describes our experimental design for evaluating our system and Section 6 

presents our experimental results; We provide concluding remarks in Section 7.

3. PREVIOUS WORK IN MRI-TRUS FUSION AND NOVEL CONTRIBUTIONS

Table 3 briefly describes current state-of-the-art MRI-TRUS fusion methods listing the 

commercial system, technical work, whether the work was performed for planar (2D) or 

volumetric (3D) imagery, the type of manual intervention required, the number of studies, 

and the reported root mean squared error (RMSE). RMSE, when reported, ranges from 2 to 

3 mm. Directly comparing RMSE between studies can be difficult, because RMSE is not 

always calculated over the same set of fiducials. For instance, Reynier et. al. only report 

RMSE for the prostate surface and the urethra, therefore in this study it is unclear how well 

other internal structures of the prostate align. Comparing between clinical patient studies 

(18, 20, 22, 24) and phantom studies (21, 23) is not possible. Phantom studies may not be able to 

appropriately model realistic deformations in the prostate between image modalities in 

clinical studies. Additionally, when using phantoms corresponding fiducials are easy to 

identify while on patient data accurately determining corresponding fiducials may be a more 

difficult problem. Mitra et. al. have the lowest reported RMSE of 1.60 ± 1.17 mm, however 

this study was performed only on corresponding 2D axial imagery. RMSE error would be 

expected to increase for 3D studies, as for these studies an additional dimension over which 

fiducials could be misaligned is introduced.

MRI-TRUS fusion methods require manual intervention after TRUS acquisition to 

determine the location of the prostate.16, 18, 20–25 Manual intervention requires either 

selecting fiducials or delineating the prostate surface. Overall, MRI-TRUS fusion methods 

can be divided into (a) fiducial-based,18, 20, 23, 25 (b) surface-based,16, 21, 22 and (c) model-

based methods according to the underlying structures being aligned between the MRI and 

TRUS imagery.24

Fiducial-based methods attempt to find a transformation that minimizes the distance 

between corresponding fiducials on MRI and TRUS.18, 20, 23, 25 Early work by Kaplan et. 

al.25 used manually selected fiducials to determine a rigid transformation between MRI and 

TRUS imagery. In this study only qualitative alignment was assessed between 2 MRI-TRUS 

studies. Mitra et. al.18 extracted the prostate surface and internal fiducials from a manual 

segmentation of the prostate; fiducials were used to determine a diffeomorphic 

transformation between MRI and TRUS on manually identified corresponding 2D axial 

images.

Xu et. al.23 used fiducials extracted from an automatic segmentation of the prostate to 

determine an affine transformation; however, the authors manually refined this segmentation 

as necessary to improve registration accuracy. Pinto et. al.26 found MRI-TRUS biopsy 
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guidance using this method resulted in CaP detection in 55 out of 101 patients. Furthermore 

Pinto et. al.26 found 19 regions determined to be highly suspicious for CaP on MRI, 17 of 

which were confirmed as containing CaP on biopsy.

Reynier et. al.20 used fiducials extracted from a manual segmentation of the prostate to 

calculate an elastic transformation. They reported RMSE of 1.11±0.54 mm between prostate 

surfaces and 2.07±1.57 mm between the urethra.20 The very low RMSE between prostate 

surfaces is to be expected as this method is aligning fiducials extracted from the prostate 

surface. The increase in RMSE for the urethra suggests other internal anatomical structure 

may have a greater misalignment than the prostate surface. Further work has used this 

methodology to guide brachytherapy27 and biopsy.17 Rud et. al.17 studied 80 patients with 

suspicious MRI; MRI-TRUS-guided biopsy found CaP in 54 cases.

Surface-based methods eliminate the need to select fiducials by finding a transformation that 

minimizes the distance between prostate surfaces on MRI and TRUS.16, 21, 22 Narayanan et. 

al.21 aligned prostate surfaces, obtained using a semi-automated segmentation requiring 

manual selection of 4 or more fiducials on the prostate surface, using a deformable adaptive 

focus model. Karnik et. al.22 used Thin Plate Splines (TPS) to align prostate surfaces, 

obtained using a semi-automated segmentation requiring manual selection of 10 or more 

fiducials on the prostate surface. Natarajan et. al.16 extended this approach to (a) require 

only 4 − 6 fiducials on the prostate surface as well as (b) incorporate elastic interpolation 

when aligning MRI and TRUS.16 They used this system to guide biopsy in 56 patients and 

achieved a CaP detection rate of 23%, compared to 7% for systematic, nontargeted 

biopsies.16 Sonn et. al.28 found a CaP detection rate of 53% in 171 men; for patients with 

highly suspicious MRI findings 15 out of 16 patients were found to have a positive CaP 

biopsy. The difference in CaP detection rates between Natarajan et. al.16 and Sonn et. al.28 

possibly reflects the different patient populations considered in each study; Sonn et. al.28 

considered patients with persistently increased PSA, hence this study selected patients at an 

increased risk for CaP.

Hu et. al.24 performed MRI-TRUS fusion using a model-based method, where a patient-

specific finite element model (FEM) of the prostate on MRI was constructed and used to 

determine a deformable transformation. Model initialization on the TRUS image required 

specifying two fiducials identifying the base and apex of the prostate. In addition, manual 

adjustment of filter parameters was required.

A significant limitation of the current state-of-the-art MRI-TRUS fusion methods is the need 

for manual intervention after TRUS acquisition. All of the presented methods rely on user 

interaction to identify the location of the prostate either by selecting fiducials or delineating 

the prostate.16, 18, 20–25 TRUS acquisition occurs just prior to needle biopsy, hence, the need 

for manual intervention represents a significant disadvantage, in terms of time and 

efficiency. Inaccuracies in defining landmarks or prostate boundaries manually may also 

introduce error into the registration. For instance, manual prostate delineation, on either MRI 

or TRUS, has been documented to have inter-observer variability of 1.7 to 2.5 mm.19
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3.1 Novel Contribution

The primary novel contribution of this work is a method for MRI-TRUS fusion that is 

automated for all steps after TRUS acquisition. Unlike current state-of-the-art methods, our 

method does not require identifying landmarks or segmenting the prostate on TRUS. The 

registration workflow consists of the following modules: (1) delineating the prostate on MRI 

(to be performed prior to TRUS acquisition), (2) constructing a probabilistic model of the 

prostate location on TRUS using intensity and texture features, and (3) aligning the MRI 

prostate segmentation to the TRUS probabilistic model via a novel image metric. The only 

required manual pre-processing is prostate segmentation on MRI, which can be performed 

offline prior to TRUS acquisition.

To construct the probabilistic model of the prostate location on TRUS we introduce two 

novel methods (1) a novel application of attenuation correction for improved registration 

accuracy on TRUS and (2) a novel method to determine the location of the prostate on 

TRUS by calculating a probabilistic model using texture and spatial features. Finally a novel 

registration metric to align a mask to a probabilistic model is introduced to allow for 

registration of the T2w MRI segmentation to the probabilistic model of prostate locations on 

TRUS.

4. METHODOLOGY

Table 2 lists the notation used throughout this paper. Figure 1 displays a flowchart of our 

methodology which consists of the following three modules:

• Module 1: Determine prostate location on MRI. Prior to TRUS acquisition an 

expert manually delineated the prostate on T2w MRI.

• Module 2: Create a probabilistic model of prostate location on TRUS. As an initial 

step attenuation correction is performed on the TRUS imagery. The probabilistic 

model is created by, (a) estimated the likely location of the prostate on TRUS, (b) 

extracting texture and intensity features, and (c) estimating the probability of each 

pixel belonging to the prostate using the features extracted in steps a and b.

• Module 3: Register MRI prostate segmentation and TRUS probabilistic model. 

Registration is performed by (a) affine registration to account for translation, 

rotation, and scale differences between images followed by (b) elastic registration 

to account for differences in prostate deformation.

4.1 Module 1: Prostate Segmentation on MRI

A 3D MRI volume M = (CM, fM) is defined by a set of 3D Cartesian coordinates CM and 

the image intensity function fM(c) : c ∈ CM. Modules 1 determines a 3D prostate 

segmentation ℳM = (CM, gM) such that gM(c) = i for a pixel c belonging to class i where i = 

1 represents prostate and i = 0 represents background. In this work, the prostate is manually 

delineated on M to obtain ℳM.
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4.2 Module 2: Probabilistic Model of Prostate Location on TRUS

A 3D TRUS volume T = (CT, fT) is defined in a similar way as M (Section 4.1). From T 

a model P,i = (CT, Pi(c)) is calculated, where Pi(c) : c ∈ CT is the probability of the pixel c 

belonging to class i. As an initial step attenuation correction29 is performed on T to account 

for spatial variations in image intensity. Pi(c) is then calculated by (i) extraction of texture 

and intensity features defined as FT (c), and (ii) construction of Pi(c).

4.2.1 Attenuation Correction—Ultrasound imagery may have attenuation artifacts, 

where pixels closer to the ultrasound probe appear brighter than pixels far away. Attenuation 

is caused by signal loss as the ultrasound waves propagate through tissue.29, 30 As the TRUS 

probe is circular, variations in image intensity will be along radial lines from the probe. To 

account for these changes attenuation correction methods similar to MRI bias field 

correction have been presented.29 Attenuation correction of TRUS imagery has been 

demonstrated to be important for segmentation.29, 31 To the best of our knowledge, 

attenuation correction has not been applied in the context of facilitating and improving 

registration.

Attenuation correction is performed as follows. For each pixel c ∈ CT with a set of 3D 

Cartesian coordinates expressed as (x, y, z) such that the probe center is defined as x = 0, y = 

0, z = 0, we calculate a set of corresponding polar coordinates as follows,

(1)

Image attenuation is modeled within the polar coordinated reference frame as,

(2)

where f̃(r, θ, z) is the true, unknown TRUS signal associated with the location (r, θ, z). η(r, 

θ, z) is additive white Gaussian noise assumed to be independent of f̃(r, θ, z). Similar to 

Cohen et. al.,32 β(r, θ, z) may be estimated via convolution of a smoothing Gaussian kernel 

with the image, i.e. a low-pass filtering of the signal. The true underlying signal may then be 

recovered using the equation,

(3)

where lpf is a low-pass filter. f̃(r, θ, z) is then converted back into 3D Cartesian coordinates, 

f ̃(c) : c ∈ CT.

4.2.2 Feature Extraction—For each pixel f̃(c) : c ∈ CT a set of texture and intensity 

features FT (c) are calculated. FT (c) is calculated using each feature in Table 3 

independently. The features chosen describe (a) intensity for a pixel or a region (mean, 

median), (b) intensity variation in a region (range), (c) intensity variation assuming either a 

Gaussian (variance), Rayleigh (variance), or Nakagami (m-parameter) distribution. Rayleigh 

and Nakagami distributions were considered because of their utility in describing the 

statistics of ultrasound imagery.33, 34
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4.2.3 Probabilistic Model Calculation—The probability of pixel c belong to class i 

defined as Pi(c) is dependent on the location of c and the feature set FT (c). We define the 

probability of a location c belonging to tissue class i is Pi(c). Similarly the probability of a 

set of features FT (c) belonging to tissue class i is Pi(FT (c)). We assume Pi(c) and Pi(FT (c)) 

are independent, and hence the final probability Pi(c) may be expressed as

(4)

For the remainder of this section we describe the calculation of Pi(c) and Pi(FT (c)).

Spatial Prior: Pi(c), referred to as the spatial prior, is the likelihood of pixel c belonging to 

class i based on its location. Pi(c) is calculated from a set of J training studies T,j : j ∈ {1, 

…, J}, where for each study the prostate has been delineated by an expert, giving the 3D 

prostate segmentation ℳT,j. The prostate segmentation is defined ℳT,j = (CT, gT,j) such that 

gT,j(c) = i for a pixel c belonging to class i where i = 1 represents prostate and i = 0 

represents background. The origin for each study is set as the center of the TRUS probe, so 

that the location of pixel c has a consistent position relative to the TRUS probe across all 

studies. Pi(c) is defined as,

(5)

Hence Pi(c) is the frequency of pixel c being located in the prostate across J training studies.

Feature Set Probability: The probability Pi(FT (c)) is the likelihood of a set of features FT 

(c) associated with pixel c belonging to class i. In this work, we assume FT (c) may be 

accurately modeled as a multivariate Gaussian distribution with a mean vector of μF,i and a 

covariance matrix ΣF,i for the ith class. Given the Gaussian distribution parameters μF,i and 

ΣF,i, the probability Pi(FT (c)) is calculated as,

(6)

where k is the number of features in FT (c). However μF,i and ΣF,i are unknown therefore 

these parameters must be estimated.

We assume an initial rigid transformation Tr (Section 4.3) which provides an estimate of the 

alignment between MRI and TRUS. An estimated prostate segmentation may then be 

defined as ℳ̂T = Tr(ℳM) where ℳT̂ = (CT, ĝT) and ĝT (c) = i for a pixel c estimated to 

belong in class i. μF,i and ΣF,i are then calculated as, , where ΩT,i 

is the collection of pixels in CT belonging to class i according to ĝT (c) and | · | is the 

cardinality of a pixel set. ΣF,i is similarly defined for a covariance matrix of FT (d) for ΩT,i.
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4.3 Module 3: Registration of MRI Segmentation and TRUS Probabilistic Model

The goal of registration in this work is to find a transformation T to spatially map M onto 

T. In this work T is calculated to align ℳM and T. T is calculated via the equation,

(7)

where S(T (ℳM), T) is a similarity metric between T (ℳM) and T. R(T) is a regularization 

function which penalized T which are not smoothly varying and α determines the weight of 

R relative to S(·, ·).

The similarity metric S(·, ·) is calculated as,

(8)

where ΩM,i is the collection of pixels in CM belonging to class i. T is initialized with a rigid 

transformation Tr such that overlap between ℳM and P1(c) is maximized calculated as

(9)

Given the initial alignment Tr, an affine registration Ta followed by an elastic registration Te 

was used to align the MRI and TRUS images.

4.3.1 Affine Registration—An affine transformation (translation, rotation, and scale) 

defined as Ta was used to align the MRI and TRUS. No regularization R(T) was used for 

affine registration, as this transformation by definition is smoothly varying. Not defining 

R(T) is equivalent to setting α = 0.

4.3.2 Elastic Registration—An elastic B-spline-based transformation Te was used to 

recover differences in prostate deformation between MRI and TRUS.36 Te is defined by a set 

of control points which determine the transformation Te for all c ∈ CM. Each control point, 

defined by its location p ∈ CM, is allowed to move independently.

The term R(T) is added to constrain Te to only those transformations which are likely to 

occur. R(T) is calculated as , where p is the location 

of a B-Spline control point and E[p] is the maximum likelihood estimate of where p should 

be located. In this work E[p] was estimated as  where (p) is the 

set of control points which neighbor p and | · | is the cardinality of a set. Thus E[p] is the 

average over the set of knots which neighbor the knot at location p. Figure 2 gives a 2D 

pictorial representation of our regularization approach.

R(T) is defined such that if p = E[p] then the knot p will contribute 0 to the value of R(T). As 

p moves farther from E[p], the value of (1 − exp−∥(p − E[p])∥) increases, and contributes 

more to the value of R(T). Hence R(T) is lower for evenly spaced, smoothly varying control 

points than for randomly spaced, erratically varying control points. Deformations that are 
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not evenly spaced and smoothly varying will only occur if they improve the similarity 

metric S(·, ·).

5. EXPERIMENTAL DESIGN AND RESULTS

5.1 Dataset Description

T2-weighted MRI imagery was acquired using a Siemens 1.5 T scanner and a pelvic phased-

array coil for 7 patients under IRB approval. 3D TRUS imagery was acquired using a bi-

planar side-firing transrectal probe for each patient. For each pair of images an expert 

radiologist manually selected corresponding fiducials. Corresponding fiducials included, the 

urethra, the center of regions suspicious for CaP, and the center of small calcifications. In 

addition, an expert radiologist manually delineated the prostate boundary on MRI and 

TRUS.

5.2 Evaluation Measures

RMSE is a measure of how well two corresponding sets of fiducials align; a RMSE of 0 

represents perfect alignment. A manually selected set of fiducials on MRI is defined as 

. Similarly, a set of fiducials on TRUS is defined as , 

such that the  corresponds to . RMSE is calculated as .

5.3 Implementation Details

All methods described in this paper were implemented using the Insight Segmentation and 

Registration Toolkit (ITK) version 4.3.37 All texture features were calculated using a (c) 

of a spherical neighbourhood of size 1 mm3. Both affine and elastic transformations were 

optimized at a single resolution using a Powell optimization scheme.38 The regularization 

weight was set as α = 1, such that the similarity metric and regularization function were 

given equal weights.

5.4 Experiment 1: Effect of Attenuation Correction

It is our hypothesis that subtle differences in intensity characteristics across the TRUS image 

can lead to a probabilistic model Pi(c) that does not accurately model the prostate location. 

Incorrect estimation of Pi(c) can result in sub-optimal image registration. In this experiment 

we evaluate the effect of attenuation correction as described in Section 4.2.1 on registration 

accuracy, in terms of RMSE. We evaluate RMSE for MRI alignment to TRUS imagery with 

and without attenuation correction.

5.5 Experiment 2: Selection of TRUS Model Feature Set

A set of intensity and texture features F(c) are used to calculate the probabilistic model Pi(c) 

that guides registration as described in Sections 4.2.2 and 4.2.3. The accuracy of Pi(c) 

depends on the choice of features in F(c); those features which are best able to distinguish 

prostate tissue from non-prostate tissue will lead to a more accurate Pi(c) and will lead to a 

more accurate image registration. In this paper we evaluated 7 features described in Table 3 

in terms of RMSE.
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6. EXPERIMENTAL RESULTS

6.1 Experiment 1: Effect of Attenuation Correction

Table 4 presents quantitative results for Ta and Te, with and without attenuation correction 

for all 7 features. Figure 3 shows an study where attenuation correction improved the results 

by over 1 mm, qualitatively the attenuation corrected TRUS (h) more accurately aligns to 

the MRI to the non-attenuation corrected TRUS (d).

In all cases, except range and standard deviation features, attenuation correction prior to 

feature extraction resulted in improvement of the registration accuracy, as evaluated by 

RMSE. For many cases, attenuation correction improved RMSE by 1 mm. The m-parameter 

is a special case, where without attenuation correction the registration failed to align the 

images. This feature is particularly sensitive to noise, and the presence of attenuation 

artifacts results in Pi(FT (c)) evaluated for the m-parameter feature being unable to 

distinguish between pixels belonging to the prostate and the background.

6.2 Experiment 2: Selection of TRUS Model Feature Set

Table 4 presents quantitative results for Ta and Te for all 7 features evaluated. The best 

performing features are derived from two features types (a) descriptions of the expected 

intensity value (mean and median) and (b) ultrasound specific descriptions of the intensity 

variance (Rayleigh variance, Nakagami m-parameter). The median feature performed 

slightly better than the mean feature, most likely because the median is more robust to pixels 

with outlier intensities compared to the mean.39 Similarly, the Nakagami m-parameter 

performed better than the Rayleigh variance, as the Nakagami distribution is a generalized 

form of the Rayleigh distribution therefore the Nakagami m-parameter should be better able 

to model the underlying distribution of pixel intensities.34 In comparison, image features 

which describe the variance in the data which are not ultrasound specific (range, standard 

deviation), performed poorly in terms of registration accuracy. This is most likely because 

these measures are not able to accurately model the distribution of pixel intensities in TRUS 

imagery.

Figure 5(c) displays an example of a qualitative registration result using the Nakagami m-

parameter. Clear misalignment of the prostate near the rectum (red arrow) was apparent after 

Ta because of the differences in prostate deformation caused by no MRI endorectal coil and 

the TRUS probe. Hence, a need exists for Te to account for the differences in prostate 

deformation between MRI and TRUS. Figure 5(d) displays MRI and TRUS images after Te 

was applied; the prostate boundary near the rectum is better aligned between MRI and 

TRUS.

To further evaluate our registration accuracy we created surface renderings of the prostate 

surface as shown in Figure 4, such that blue represents regions where the MRI image was 

misaligned external to the prostate surface on TRUS and red represents regions where the 

MRI image was misaligned internal to the prostate surface on TRUS. In the qualitative 

example shown there are two regions of misalignment, near the rectal wall (yellow) and near 

the bladder (blue). In figure 4(b) an axial plane of the TRUS is displayed with two 

boundaries overlaid, (1) the axial cross section of the surface rendering shown in figure 4 
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and the true prostate boundary (brown line). The hyperechoic region distal to the TRUS 

probe results in Pi(c) being unable to appropriately model the location of the prostate, hence 

the large registration error of ≈ 4 mm. Similarly Figure 4(c) a different axial plane of the 

TRUS is displayed with the cross section of the surface rendering shown in figure 4 and the 

true prostate boundary (brown line). First note that this misalignment is much less 

pronounced, representing a registration error of ≈ 1 mm. Near the rectal wall the error is 

primarily because Te is unable to fully account for the subtle differences in prostate 

deformation.

7. CONCLUDING REMARKS

This paper describes a novel method to spatially align MRI and TRUS images of the 

prostate so that no manual intervention is required after TRUS acquisition. RMSE for our 

method in 7 patient studies was 3.39±0.85 mm. Unlike previously described 

methods,16, 18, 20–25 our method requires no manual intervention.

The biggest limitation of the current implementation is the requirement to segment the MRI 

prior to TRUS acquisition. Therefore, planned future work will incorporate an automated 

prostate segmentation scheme that has been developed by our group40 to delineate the 

prostate in Module 1 (Section 4.1). An additional limitation of this work is the use of the B-

Spline transformations in Module 3 (Section 4.3), which recover non-linear deformations 

with few additional constraints, to account for the difference in deformation of the prostate 

between MRI and TRUS imagery. In this work we imposed an additional regularization 

constraint to ensure the underlying deformation in the prostate was smoothly varying. 

However, other transformations such as Finite Element Models (FEM), which allow for 

explicit modeling of tissue physics, could also potentially be used to drive the MRI-TRUS 

fusion.24 In future work we will consider other deformation transformations and 

regularization constraints to model the differences in deformation of the prostate between 

MRI and TRUS imagery.

Finally an extended analysis of the presented method is planned to include further evaluation 

of, (a) optimization schemes such as evolutionary,41 and gradient descent38 optimization 

methods may be better able to find the transformation maximum. (b) additional features 

such as Haralick texture features42 and additional ultrasound specific features43 may provide 

greater ability to distinguish between prostate and non prostate tissues, (c) combinations of 

multiple features to build the probability model may lead to a more accurate and robust 

estimate of the prostate location on TRUS.
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Figure 1. 
Flowchart for our registration algorithm consisting of the following modules: (1) Prostate 

delineation on MRI (prostate boundary shown in green); (2) Construction of probabilistic 

model of prostate location on TRUS where blue corresponds to pixels most unlikely to 

belong to the prostate, red corresponds to pixels most likely to belong to the prostate. The 

model consists of estimating (a) likely location of prostate on TRUS (spatial prior) and (b) 

likely appearance of prostate on TRUS (texture and intensity features); (3) Registration of 

MRI segmentation to TRUS model by (a) affine (translation, rotation, scale) registration and 

(b) elastic registration.
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Figure 2. 
A graphical example of B-Spline regularization. The control point of interest p is 

highlighted in orange. Control points corresponding to (p) are highlighted in green. 

According to our formulation for E[p], the expected location of p is shown by an open red 

circle. (a), (c) Example where R(T) would have a high value because p is far from E[p]. (b) 

and (d) would both give a low R(T) value because p is near E[p]. For (c), (d) the deformation 

not local to p is not taken into account when considering E[p], however other control points 

may result in a higher R(T) compared to (b).
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Figure 3. 
Example of a TRUS image (a) without and (e) with attenuation correction; the 

corresponding median feature (b), (f); the corresponding probability models (c), (g), where 

blue corresponds to those pixels most unlikely to belong to the prostate, red corresponds to 

those pixels most likely to belong to the prostate; and the final registration results (d), (h). 

Blue arrows in (d) and (h) show boundary regions which are well aligned on MRI and 

TRUS, while red arrows show boundary regions which are misaligned. The region 

highlighted by the red circle in (b) and (f) show regions where attenuation correction 

improved the feature contrast between the prostate and background pixels. The 

corresponding region on the probability models is highlighted by the black circle (c), (g). 

Note the image with attenuation correction (g) is better able to distinguish between pixels 

belonging to the prostate from the background, resulting in a more accurate registration.
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Figure 4. 
(a) Prostate surface rendering such that the prostate base is facing toward the right, where 

blue represents regions where the MRI image was misaligned external to the prostate surface 

on TRUS and red represents regions where the MRI image was misaligned internal to the 

prostate surface on TRUS. (b) 2D axial image on TRUS displaying a region of large 

misalignment distal to the TRUS probe, where brown represents the expert delineation of 

the prostate on TRUS. (c) 2D axial image on TRUS displaying a region of misalignment 

near the TRUS probe, where brown represents the expert delineation of the prostate on 

TRUS.
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Figure 5. 
(a) T2-w MRI of the prostate. (b) TRUS of the prostate. (c) MRI-TRUS fusion using the 

Nakagami m-parameter for Ta displayed as a checkerboard image. Blue arrows shows 

boundary regions which are well aligned on MRI and TRUS, while red arrows show 

boundary regions which are misaligned. (d) MRI-TRUS fusion using the Nakagami m-

parameter for Te displayed as a checkerboard image.
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Table 2

Description of notation used throughout this paper.

Notation Description Notation Description

M 3D MRI image scene. Pi(FT(c)) Probability of FT (c) belonging to class i.

CM 3D grid of pixels on M. ℳT 3D TRUS prostate segmentation.

fM(c) MRI image intensity function for c ∈ CM. gT(c) TRUS segmentation function for c ∈ CT.

ℳM 3D MRI prostate segmentation. ΩT,i Collection of pixels in CT that belong to class i.

Pi(c) TRUS segmentation function for c ∈ CT. μF,i Mean vector of FT (c) for ΩT,i.

gM(c) MRI segmentation function for c ∈ CM. ΣF,i Covariance matrix of FT (c) for ΩT,i.

T 3D TRUS image scene. ℳ̂
T

Estimated TRUS prostate segmentation.

CT 3D grid of pixels on T. gT(c) Estimated TRUS segmentation function for c ∈ CT.

fT(c) TRUS image intensity function for c ∈ CT. T Transformation function.

P,i 3D probabilistic model for class i. S(T(ℳM), T) Similarity metric for T(ℳM) and CT.

Pi(c) Probability of belonging to class i for c ∈ CT. R(T) Regularization metric for T.

FT(c) Set of intensity and texture based features for c ∈ CT. ΩM,i Collection of pixels in CM that belong to class i.

(r,θ, z) Corresponding polar coordinates for c ∈ CT. p Control point location defined on CT.

f̃T(c) TRUS image intensity function with out signal 
attenuation for c ∈ CT.

E[p] Expected location of control point p.

Pi(c) Spatial prior for c ∈ CT. (p) Set of control points with neighbor p.
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Table 3

Description of intensity and texture features used to constructed the feature set F(c).

Feature Description Formulation

Intensity Intensity value f̃(c)

Mean Average intensity value within neighborhood (c).

Median Median intensity value within neighborhood (c).

Range Range of intensity values within neighborhood 
(c).

Variance Variance of a Gaussian distribution of intensity 
values within (c).

Rayleigh Variance33 Variance of the Rayleigh distribution calculated 
within the neighborhood (c).

m-parameter34 The m-parameter of the Nakagami distribution, 
which controls the shape of the distribution, 
calculated within the neighborhood (c).

We use the method of Greenwood and Durand 35 to estimate m.
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Table 4

RMSE for Ta and Te evaluated using 7 feature sets. The symbol * denotes a spurious registration, where the 

two images had no alignment. The best registration results, obtained from median and Nakagami m-parameter 

features are bolded.

Feature Attenuation
Correction

Transformation

Tr Ta Te

Initial Alignment 5.50 ± 1.49 mm - -

Intensity
No - 4.86 ± 1.58 mm 4.52 ± 1.62 mm

Yes - 4.15 ± 1.06 mm 3.99 ± 1.09 mm

Mean
No - 4.88 ± 2.03 mm 4.61 ± 2.05 mm

Yes - 3.73 ± 1.25 mm 3.54 ± 1.17 mm

Median
No - 4.75 ± 1.82 mm 4.46 ± 1.65 mm

Yes - 3.79 ± 1.29 mm 3.32 ± 1.05 mm

Range
No - 4.42 ± 1.27 mm 4.13 ± 1.34 mm

Yes - 4.60 ± 1.18 mm 4.25 ± 1.22 mm

Variance
No - 4.23 ± 0.98 mm 3.92 ± 1.06 mm

Yes - 4.56 ± 1.38 mm 4.36 ± 1.39 mm

Rayleigh
Variance33

No - 4.54 ± 1.76 mm 4.30 ± 1.76 mm

Yes - 3.72 ± 1.16 mm 3.50 ± 0.90 mm

m-parameter34
No - * *

Yes - 3.79 ± 1.15 mm 3.39 ± 0.85 mm
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