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Glioblastoma (GBM) is the most 
aggressive primary brain tumor in 

human. Recent studies on high-grade 
pediatric GBM have identified two recur-
rent mutations (K27M and G34R/V) in 
genes encoding histone H3 (H3F3A for 
H3.3 and HIST1H3B for H3.1).1,2 The 
two histone H3 mutations are mutually 
exclusive and give rise to tumors in dif-
ferent brain compartments.3 Recently, 
we4 and others5 have shown that the 
histone H3 K27M mutation specifi-
cally altered the di- and tri-methylation 
of endogenous histone H3 at Lys27. 
Genome-wide studies using ChIP-seq 
on H3.3K27M patient samples indicate 
a global reduction of H3K27me3 on 
chromatin. Remarkably, we also found 
a dramatic enrichment of H3K27me3 
and EZH2 (the catalytic subunit H3K27 
methyltransferase) at hundreds of gene 
loci in H3.3K27M patient cells. Here, we 
discuss potential mechanisms whereby 
H3K27me3 is enriched at chromatin 
loci in cells expressing the H3.3K27M 
mutation and report effects of Lys-to-
Met mutations of other well-studied 
lysine residues of histone H3.1/H3.3 and 
H4 on the corresponding endogenous 
lysine methylation. We suggest that 
mutation(s) on histones may be found 
in a variety of human diseases, and the 
expression of mutant histones may help 
to address the function of histone lysine 
methylation and possibly other modifica-
tions in mammalian cells.

Genetic and Epigenetic 
Alterations in Cancers

Mutations that activate oncogenes and 
inactivate tumor suppressor genes are the 
driving forces of tumorigenesis. In the 
past decade, people have begun to appre-
ciate that epigenetic change including 
changes in DNA methylation pattern, and 
posttranslational modifications on histone 
proteins also play critical roles in variety of 
pathologies.6-10 One typical example is the 
epigenetic silencing of BRCA1 in sporadic 
breast cancer cases.11-13 In addition, muta-
tions on genes encoding histone-modi-
fying enzymes have been identified in a 
number of different cancers. For example, 
MLL family, the histone methyltransfer-
ases responsible for the methylation of 
histone H3 at Lys4, is often mutated in 
myeloid/lymphoid or mixed-lineage leu-
kemia cases.14,15 Mutations at EZH2, the 
catalytic subunit of the PRC2 complex 
responsible for the methylation of histone 
H3 at Lys27, were found in diffuse large 
B-cell lymphoma16-18. Recent studies using 
the next generation sequencing (NGS) 
technologies have identified for the first 
time mutations on histone genes.1,2  These 
two recurrent somatic mutations (K27M 
and G34R/V) are on histone genes encod-
ing histone H3 variant H3.319-21 in high-
grade pediatric brain tumors, including 
diffuse intrinsic pontine glioma (DIPG) 
and glioblastoma multiforme (GBM).22 
These examples reveal the important 
roles of histone modifications in human 
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diseases and potential intimate connec-
tions between genetic mutations and epi-
genetic changes in tumorigenesis.

Expression of H3.3K27M  
Mutant Results in Reduction  
of Endogenous H3K27me2 

and H3K27me3

Lysine residues on histone H3 and 
H4 are often post-translationally modi-
fied to regulate chromatin structure and 
gene expression. For instance, mono-
methylation of H3 Lys27 is enriched in 
gene bodies of highly expressed genes.23 
In contrast, di- and tri-methylation of 
H3 Lys27 is associated with silencing of 
developmental regulated genes, and the 
repressive histone mark “H3K27me3” also 
coats the inactivated X chromosome (Xi) 
in female mammals.24-26 Furthermore, H3 

Lys27 can also be acetylated, and this 
modification is enriched at enhancers and 
linked to gene activation.27,28

To determine whether the lysine 27 
to methionine mutation found in DIPG 
patients affect histone modifications, we 
examined the levels of a variety of histone 
modifications by western blot. We found 
that the levels of di- and tri-methylation 
of histone H3 at Lys27 (H3K27me2 and 
H3K27me3) were greatly reduced in 
two H3.3K27M DIPG patient cell lines 
(SF7761and SF862829), but the meth-
ylation of other lysine residues on his-
tone H3, such as Lys4 and Lys9, were not 
affected. To confirm that the reduction of 
methylation on Lys27 is the direct effect 
of K27M mutant H3, we expressed H3.1/
H3.3 K27M mutant proteins in two dif-
ferent human cell lines and mouse embry-
onic fibroblast cell (MEF). We found that 

expression of low levels of the H3K27M 
transgene reduced the endogenous his-
tone H3K27me2 and H3K27me3 in all 
these cell types, suggesting that the loss 
of H3K27me2 and H3K27me3 is due to 
the expression of the H3K27M transgene, 
and that this loss is cell type-indepen-
dent.4 Interestingly, we also observed the 
dramatic loss of H3K27me3 on the inac-
tive X-chromosome (Xi) in female MEFs 
expressing the H3.1 or H3.3 K27M trans-
gene (Fig.  1). Most of genes on Xi are 
epigenetically silenced to compensate the 
gene dosage between XX female and XY 
male mammals. H3K27me3 is not essen-
tial for the maintenance of Xi silencing. 
However, recruitment of PCR2 complex 
by XIST RNA and subsequent methylation 
of H3K27 is critical for the establishment 
of Xi silencing.30-33 These results demon-
strate that expression of H3K27M trans-
gene can also lead to a dramatic reduction 
in the levels of H3K27me3 localized at Xi, 
and suggest that Xi is possibly also coated 
with histone variant H3.3. We also found 
that the levels of EZH2 on chromatin were 
not affected in cells expressing H3K27M 
mutations using a chromatin fractionation 
assay (Fig. 2). Together, these results are 
consistent with the idea that the H3K27M 
mutation plays a dominant-negative role 
in regulating H3K27me2 and H3K27me3 
levels in cells.

In an independent study, the Allis 
group5 also reported that the reduction 
of H3K27me2 and H3K27me3 in DIPG 
cancer cells as well as in cells expressing 
H3K27M transgene. Importantly, they 
show that the K27M mutant inhibits the 
PRC2 methyltransferase activity via inter-
action with the EZH2 active site. In vitro 
binding assays showed that EZH2, but not 
the other PRC2 subunits, binds to K27M 
peptides. Structure-functional analy-
ses of the K27M-EZH2 reveal that the 
K27M histone has less inhibitory effect 
on a mutant EZH2 with a Tyrosine (Y) to 
Asparagine (N) substitution on one of the 
key residues in the aromatic cage of the 
active site.5 Remarkably, H3K27I mutant 
is a more potent inhibitor against PCR2 
than H3K27M. Together, these studies 
indicate that the hydrophobic interactions 
between the methionine side chain and the 
aromatic amino acid residues at the EZH2 
active sites are crucial for K27M to inhibit 

Figure 1. The histone H3K27M mutation reduces H3K27 methylation on Xi. Co- Immunofluorescence 
staining of H3K27me3 (red) and Flag (green) in iMEF cells expressed the Flag-tagged H3.3 WT or 
H3.3K27M histone proteins. Arrowheads indicate the Xi in iMEF expressed the Flag-tagged his-
tones. Arrows denote Xi in un-transfected cells. Scale bar, 5 μm.

Figure  2. K27M mutants do not alter the whole EZH2 binding to the chromatin. The whole-
cell lysates, cytosol, or nuclear fractions from 293T cells expressing histone wild-type (WT) H3.3, 
H3.3K27R, H3.3K27M, or H3.3G34R mutant transgene were prepared, and proteins in these fractions 
were analyzed by western blotting.
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Figure 3. Proposed model of H3K27me3 and EZH2 peaks detected in H3.3K27M DIPG patient cells. 
(A) Cartoons depicting the two effects of H3K27me3 levels observed in DIPG cells. Upper panel: A 
global loss of H3K27me2 and H3K27me3 was observed in DIPG patient samples. The loss of repres-
sive H3K27 methylation mark leads to reactivation of epigenetically silenced genes. Lower panel: 
A local gain of H3K27me3 was found in DIPG samples at hundreds of loci. Genes with the gain of 
H3K27me3 marks results in gene silencing. (B) Two models explaining gaining of H3K27me3 in 
DIPG cells. (model 1) The K27M mutant proteins have higher binding affinity to EZH2. This leads to 
the initial recruitment/retention of the EZH2 to the K27M nucleosomes. The initial recruitment of 
EZH2 will serve as a nucleation site for the spreading of PRC2 complex to a large chromatin domain. 
(model 2) unknown such as non-coding RNA and/or DNA sequence specific binding factor (yellow) 
recruit PCR2 complex and subsequent the spreading of PCR2 complex to the gene loci devoid of 
nucleosomes containing H3.3. 

PRC2, providing a mechanism whereby 
expression of H3K27M mutant results in 
reduced H3K27me2 and H3K27me3 lev-
els in DIPG cells or any other cell types.

H3K27me3 Peaks Were Detected 
at 100 Loci in DIPG Cells

To gain additional insight into the 
effect of the H3.3K27M mutation, we 
also analyzed the localization patterns 
of H3K27me3, H3K4me3, and EZH2 
using ChIP-seq. In general, H3K4me3 
was not affected in DIPG H3.3K27M 
patient cells (SF7761), in reference to 
human neural stem cells (NSC). ChIP-
seq results revealed that in addition to a 
global reduction of H3K27me3, “gain” of 
H3K27me3 in hundreds of genomic loci 
in SF7761 cells was observed compared 
with NSC control (Fig. 3A).4 These gained 
H3K27me3-EZH2 peaks in SF7761 have 
several features. First, the H3K27me3 
peaks unique in DIPG patient cells display 
a much “broader” genomic occupancy 
compared with normal H3K27me3 peaks 
found in NSCs and other cell types.34 
Second, these H3K27me3 “board” peaks 
mirror image the EZH2 localization pat-
tern. These results strongly indicate that 
the gain of H3K27me3 peaks is due to the 
recruitment of PCR2 complex to these 
chromatin loci.

We have shown that more EZH2 binds 
to H3K27M containing mononucleo-
somes.4 Peptide pull-down assays reported 
by the Allis group5 demonstrated the 
increased binding affinity of the H3K27M 
to EZH2. These results appear to sug-
gest that the gain of H3K27me3 peaks 
is due to the recruitment of H3K27M 
proteins to these peaks. However, this 
explanation cannot account for the fact 
that expression of H3K27M transgene 
results in reduced levels of H3K27me3 
globally, and H3K27M mutant proteins 
inhibit the activity of EZH2 in vitro. We 
propose 2 non-exclusive models, whereby 
H3K27me3 peaks are detected at hun-
dreds loci in DIPG cells containing the 
H3.3K27M mutation (Fig.  3B). First, 
H3K27M mutant proteins are incorpo-
rated at these loci locally, which leads to 
the initial recruitment of EZH2 to a define 
site. The initial recruitment of EZH2 will 
serve as a nucleation site for the spreading 

of PRC2 complex to a large chromatin 
domain. We speculate that the spread-
ing of PRC2 complex should be indepen-
dent of H3K27M mutation. In this way, 
PRC2 complex can be recruited to a large 
chromatin domain and methylate histone 
H3K27 in this chromatin domain. Sec-
ond, the H3K27me3 peaks detected in 
H3.3K27M DIPG cells are chromatin 
domains that are devoid of H3.3 and/
or H3.3K27M proteins. A specific factor 
including non-coding RNA and/or DNA 
sequence specific binding factors will 
recruit PCR2 complex and subsequent 

spreading of PCR2 complex to this 
domain. Further studies are needed to test 
these models to determine to what extent 
the EZH2 and H3K27me3 enriched peaks 
depends on the presence of H3.3K27M 
proteins. Whatever the mechanism is, we 
suspect that the H3K27me3 peaks in cells 
expressing H3.3K27M mutation may be 
cell type-specific. In addition, determi-
nation of the mechanism by which these 
unique H3K27me3 peaks are formed will 
help us understand how the H3.3K27M 
mutation reprograms H3K27methylation 
and gene expression in DIPG tumor.
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Rewiring of H3K27 Methylation 
Is Associated with Changes 
in Gene Expression: Implica-

tions for the Development and 
Treatment of DIPG Tumors

To determine whether gain or loss 
of H3K27me2/me3 is associated with 
gene expression, we performed RNA-seq 
experiments. The average expression of 
2975 genes (group A) that exhibit low 
H3K27me3 levels at their promoter in 
DIPG cells in reference to neural stem 
cells is high in DIPG cells compared 
with NSC, whereas the average expres-
sion of 775 genes (group C) with “gain” 
the H3K27me3 was significantly lower 
in cancer cell lines compared with NSC. 
Gene ontology (GO) and KEGG path-
way analyses indicate that Group A genes 
are involved in various neurological pro-
cesses, and Group C genes are involved 
in cancer pathways. Thus, our genome-
wide ChIP-seq and gene expression anal-
yses demonstrate that the H3.3K27M 
mutation rewires H3K27 methylation 
and gene expression. Further studies are 
needed to determine whether genes with 
increased/reduced expression or both 
contribute to tumorigenesis. In addition, 
our findings have implications for the 
development of a treatment strategy for 
patients with deadly DIPG. For instance, 
if genes with the “gain” of H3K27me3 
observed in cells expressing H3K27M 
mutation is the primary driver to tumori-
genesis, one would expect that cancer cells 
treated with inhibitors against EZH235,36 

should specifically target cells express-
ing H3K27M mutant. Alternatively, if 
genes with the loss of H3K27methylation 
are the primary driver for tumorigenesis, 
one would expect that inhibitors against 
H3K27 demethylases should help treating 
this deadly disease.37-40 Finally, because of 
the reprogramming of H3K27 methyla-
tion and possibly other epigenetic marks 
in H3.3K27M cancer cells, we hypoth-
esize that these cancer cells will be addic-
tive to other epigenetic regulators for 
proliferation and migration. Therefore, 
discovery of these epigenetic regulators 
will also hold potential for the treatment 
of pediatric GBM as well. We expect that 
future studies aimed at tackling these 
questions/possibilities will yield informa-
tion and treatment strategy of this deadly 
disease.

Effect of Expressing K-to-M  
Mutations of Other Lysine 
Residues on Histone H3 

and H4 Methylation

Expression of the H3K27M mutant 
transgene results in reduced levels of 
H3K27me3 on endogenous histone H3 
histone.4,5 We determined whether the 
same substitution on other lysine residues 
would also specifically affect methyla-
tion of the corresponding lysine residues 
of endogenous histones. To address this, 
we mutated 5 well-studied lysine residues 
on both histone H3.1 and H3.3 (Lys4, 
9, 27, 36, 79) and the Lys20 on histone 
H4 to methionine (Fig.  4), transiently 

expressed each of the transgenes in 
293T, and analyzed the effect on his-
tone methylation (Fig. 5). Expression 
of a transgene containing Lys-to-Met 
substitution of lysine 27 and Lys36 
reduced the levels of the methyla-
tion on the corresponding residues of 
endogenous histone H3 dramatically. 
The Allis group5 has also reported that 
expression of H3K9M and H3K36M 
transgenes also lead to reduction in 
methylation of corresponding endog-
enous lysine residues. In contrast, Lys 
to Met mutation of H3K4, H3K79, 
and H4K20 had no obvious effect 
on the methylation of endogenous 
histone in cells transiently expressing 
each histone mutant (Fig.  5A). We 
have previously shown that it takes 

multiple generations for the H3K27M 
mutant to exert its effect on H3K27me3 
in cells.4 Therefore, we tested whether 
the endogenous methylation is affected 
in cells stably expressing the H3K4M, 
H3K79M, and H4K20M transgene. For 
each mutant, we have examined the lev-
els of histone methylation in at least 2 
independent cell lines. In all lines we have 
tested, we found that the endogenous 
methylation of H3K4, H3K9, H3K79, 
and H4K20 were markedly reduced in 
293T stably expressing the correspond-
ing Lys-to-Met mutant (Fig.  5B–E). 
These data are consistent with the idea 
that different Lys-Met mutants may have 
different inhibition efficiencies on their 
corresponding KMTs in vivo.

Unlike other commonly modified 
lysine residues located at the N-terminal 
tail, H3K79 locates within the histone 
globular domain (Fig.  4). In addition, 
methylation at H3K79 is catalyzed by 
DOT1/DOT1L, which does not have 
the classical SET domain present in other 
lysine methyltransferases.41,42 Our results 
suggest the possibility that all the K-M 
mutants can inhibit the corresponding 
HMT(s) activities, regardless of the loca-
tion of the Lys residues on histones and/
or the catalytic domains used for catalysis.

Perspective

H3.3K27M mutation in DIPG cells 
reprograms H3K27 methylation on 
endogenous wild-type histone. We have 

Figure 4. Graphical summary of the lysine residues on histone H3.1/H3.3/H4 that were mutated and 
tested in this study. Lys4, 9, 27, 36 of histone H3.1 and H3.3 and Lys20 of histone H4 are located at the 
N-terminal tail. Lys79 of histone H3 is located in the histone core. Some of the lysine methyltransferases 
are listed in the boxes.
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shown here other Lys-Met substitutions 
on histone H3 and H4 also affect the 
endogenous methylation (Fig.  5) and 
possibly alter methylation pattern of the 
corresponding lysine residues and gene 
expression. These findings raise a number 
of questions. First, is it possible to detect 
mutation at other histone lysine residues 
in other tumors and/or diseases? Second, 
in addition to lysine methylation, can 
the substitution of arginine, serine, and 
lysine residues on histones with a spe-
cific amino acid affect arginine methyla-
tion,43-46 serine phosphorylation,47-49 and 
lysine ubiquitination50,51 of endogenous 
histones? Finally, genome-wide studies 
indicate that a histone modification gen-
erally has a unique localization pattern 
on chromatin;52-54 however, it is unknown 
whether the unique localization profile of 
a particular modification has any func-
tional implications. In yeast, it is possible 
to mutate a specific histone residue of 

interest and study the function of indi-
vidual histone modification.55-61 Recently, 
this method has extended to study the 
function of histone modification in Dro-
sophila.62 However, this approach is not 
applicable in mammalian cells because 
of the large number of genes encoding 
the histone proteins.63 For this reason, 
almost all the studies on the function of 
histone modification in mammalian cells 
utilize siRNA knockdown or small-mole-
cule inhibition of the histone-modifying 
enzymes. These approaches have obvi-
ous drawbacks, such as off-target effects 
of siRNA64 and inhibitors. In addition, 
most of histone-modifying enzymes have 
non-histone substrates.65 For example, 
EZH2 generates a methyl degron on non-
histone proteins. These make the analysis 
of the cellular phenotypes difficult and 
possibly generate false positive/negative 
results. Finally, mutations at histones in 
yeast and Drosophila and inhibition of 

enzymes using small-molecule inhibitors 
only reduce the level, but not alter the 
pattern, of a particular modification. Is it 
possible to use the Lys-to-Met mutation 
on histone lysine methylation described 
here and by Lewis et al.5 to specifically 
change the modification pattern of a par-
ticular lysine methylation in cells? Do 
alterations in H3K27me3, H3K4me3, or 
a particular epigenetic landscape in stem 
cells affect stem cell differentiation and 
maintenance? Do changes in patterns in 
H3K36me3 and H4K20me3, 2 histone 
marks that have been documented to be 
important for DNA response and repair, 
affect DNA repair?66,67 We expect that 
studies aimed at addressing these ques-
tions will significantly enrich our under-
standing of the potential functions of 
histone modifications in different cellular 
processes and in disease conditions where 
alterations in histone modifications have 
been linked.

Figure 5. The effect of Lys-to-Met mutation on the methylation of the corresponding lysine residue of endogenous histones (A) Whole-cell lysates 
from 293T cells transiently expressing the “K to M” mutant histone proteins were collected and subjected to western blot. Histone modifications were 
detected with the indicated antibodies. (B–E) Whole-cell lysates from 293T cells stably expressing the indicated mutant histones were collected and 
subjected to western blot. Two independent lines were analyzed for the effect of each mutant on histone methylation.
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Methods and Materials

Cell culture
Female immortalized MEF cells have 

been described.68 293T cells were cultured 
under standard conditions.

Plasmids
Full-length and mutated forms of 

human histone H3.1 and H3.3 cDNA 
were cloned into pQCXIP vector for 
expression in 293T cells and iMEF.

Antibodies
H3K27me2 (#9728), H3K27me3 

(#9733), EZH2 (#5246), H3K36me2 
(#2901). H3K36me3 (#4909) were pur-
chased from Cell Signaling. H3K4me3 
(#07-473) were purchased from Millipore. 
α-Tubulin (#T9026) and Flag (F1804) 
antibodies were purchased from Sigma. 
H3K79me2 (ab3594) was purchased from 
Abcam. H3K9me1, H3K9me3, H3K79Ac, 
H4K20me1, H4K20me2, H4K20me3, and 
histone H3 antibodies have been described.69

Preparation of chromatin and cytosol 
fractions

Cells were harvested in buffer A (10 
mM HEPES [pH 7.9], 10 mM KCl, 1.5 
mM MgCl2, 0.34 M sucrose, 10% glyc-
erol, 0.1% Triton X-100, 1 mM DTT) and 
then incubated on ice for 5 min. Cytoplas-
mic fraction and nuclei were separated by 
centrifugation at 1300 g, 4 °C, 4 min. The 
nuclear pellet was washed once with buf-
fer A and resuspended in Laemmli buffer 
to serve as the chromatin fraction. The 
supernatant was further clarified by cen-
trifugation at 20 000 g, 4 °C, 15 min and 
was treated as the cytoplasmic fraction.
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