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Abstract

The crystal structure of Rad4/Rad23, the yeast homolog of the human nucleotide excision repair
(NER) lesion recognition factor XPC-RAD23B (Min and Pavletich, (2007) Nature 449:570–575)
reveals that the lesion-partner base is flipped out of the helix and binds the protein. This suggests
the hypothesis that flipping of this partner base must overcome a free energy barrier, which
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constitutes one element contributing to changes in the thermodynamic properties induced by the
DNA damage and sensed by the recognition protein. We explored this hypothesis by computing
complete flipping free energy profiles for two lesions derived from the procarcinogenic polycyclic
aromatic hydrocarbons (PAHs), dibenzo[a,l]pyrene (DB[a,l]P) and benzo[a]pyrene (B[a]P), R-
trans-anti-DB[a,l]P-N6-dA (R-DB[a,l]P-dA) and R-trans-anti-B[a]P-N6-dA (R-B[a]P-dA), and
the corresponding unmodified duplex. The DB[a,l]P and B[a]P adducts differ in number and
organization of their aromatic rings. We integrate these results with prior profiles for the R-trans-
anti-DB[a,l]P-dG adduct (Zheng et al., (2010) Chem. Res. Toxicol. 23:1868–1870). All adopt
conformational themes involving intercalation of the PAH aromatic ring system into the DNA
duplex; however, R-DB[a,l]P-dA and R-B[a]P-dA intercalate from the major groove, while R-
DB[a,l]P-dG intercalates from the minor groove. These structural differences produce different
computed van der Waals stacking interaction energies between the flipping partner base with the
lesion aromatic ring system and adjacent bases; we find that the better the stacking, the higher the
relative flipping free energy barrier and hence lower flipping probability. The better relative NER
susceptibilities correlate with greater ease of flipping in these three differently intercalated lesions.
In addition to partner base-flipping, the Rad4/Rad23 crystal structure shows that a protein-β-
hairpin, BHD3, intrudes from the major groove side between the DNA strands at the lesion site.
We present a molecular modeling study for the R-DB[a,l]P-dG lesion in Rad4/Rad23 showing
BHD3 β-hairpin intrusion with lesion eviction, and we hypothesize that lesion steric effects play a
role in the recognition of intercalated adducts.
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INTRODUCTION
DNA duplexes covalently damaged by metabolically activated polycyclic aromatic
hydrocarbons (PAH) have provided a rich model system for investigating the nucleotide
excision repair (NER) susceptibility of lesion-containing DNAs.1–5 These bulky adducts are
repaired by the NER machinery with remarkably different susceptibilities.6,7 However, the
underlying origins of these differences remain unclear.6,8 Lesion recognition in NER is
performed by XPC-RAD23B in an initial step9 that is rate limiting for NER,10 and therefore
governs the success of subsequent downstream stages of the process. The crystal structure of
Rad4/Rad23, the S. cerevisiae homologue of XPC-RAD23B shows that a β-hairpin loop,
BHD3, of this recognition factor inserts from the major groove side between the two strands
of the DNA duplex at the site of a cis-syn thymine dimer lesion, and two opposite bases that
are mismatched thymines are flipped into the protein.11 These structural studies suggest that
insertion of this BHD3 β-hairpin through the double helix occurs cooperatively with binding
to the two nucleotides which flip, and that local thermodynamic destabilization of the
damaged duplex4,12–14 facilitates the cooperative flipping and β-hairpin intrusion.
Accordingly, flipping free energy profiles of partner bases to the damage site may yield
clues to differential NER susceptibilities of bulky lesions.

In the present study we are focusing on lesions derived from dibenzo[a,l]pyrene (DB[a,l]P)
and benzo[a]pyrene (B[a]P). DB[a,l]P is the most potent polycylic aromatic hydrocarbon
(PAH) tumorigen yet identified,15–19 and the International Agency for Research on Cancer
(IARC)20 has classified B[a]P as a human carcinogen. DB[a,l]P is a member of the “fjord
region” (defined in Figure 1A) PAH family; in this family there is steric hinderance
(between carbon 1 and 14 in the case of DB[a,l]P), producing non-planarity with a twist
across the fjord region.21,22 B[a]P is a member of the “bay region” (defined in Figure 1A)
family and is planar. Metabolic activation through the well-studied diol epoxide
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pathway18,23–25 of both DB[a,l]P and B[a]P yields stereoisomeric adducts to adenine and
guanine that are mutagenic.18,26,27 Structural studies involving high resolution NMR and
molecular modeling with molecular dynamics (MD) simulations have been employed to
obtain structures for various members of these adduct families in duplex DNA.28–33

We have investigated the fjord 14R-DB[a,l]P-dA and the bay 10R-B[a]P-dA adducts (Figure
1B), with the former containing five aromatic rings and the latter possessing four. These
both adopt classical intercalation structures in which the aromatic ring system is intercalated
from the major groove, on the 5′-side of the damaged base, through duplex stretching and
unwinding (Figure 2A).33–37 Watson-Crick base pairing is distorted but not ruptured.
However, the adaptable fjord region twist of the 14R-DB[a,l]P-dA34 adduct allows better
accommodation in the intercalation pocket than the planar, rigid bay region of the 10R-
B[a]P-dA adduct. NER in human HeLa cell extracts has shown that the 14R-DB[a,l]P-dA
adduct is repair-resistant38 while the 10R-B[a]P-dA adduct is modestly repaired. 33, 38–40

We have obtained complete free energy profiles for partner base flipping in damaged DNA
duplexes for these two adducts as well as their corresponding unmodified duplexes (Figure
2B). Previously, we had obtained flipping free energy profiles41 for the well-repaired 14R-
DB[a,l]P-dG adduct38 and its corresponding unmodified duplex (Figure 2B). This adduct
also adopts an intercalative conformation, but it is intercalated from the minor groove, and
on the 3′-side of the damaged base (Figure 2A); as recently shown by Tang et al,42 the
Watson-Crick partner bases at the lesion site are stretched apart so that they are not in
hydrogen bonding range, but they remain stacked with the PAH aromatic ring system. The
previous work41 together with our current studies provide a set of data for lesions that are
members of intercalative conformational families, but with differing local structural and
energetic properties. These data provide an opportunity to examine the hypothesis that
flipping barriers for the partner base are one component of the energetic properties that are
sensed by the recognition protein. More broadly, an opportunity for further elucidating
structural and energetic elements that contribute to determining relative NER susceptibilities
is afforded, including consideration of the adduct structures in relation to that of the Rad4/
Rad23 yeast homolog of XPC.

MATERIALS AND METHODS
Adduct structural models

For the 14R-DB[a,l]P-dA adduct, a duplex 11-mer model had previously been
constructed;34, 43 it was based on the high resolution NMR solution structure of the
benzo[c]phenanthrene (B[c]Ph)-derived fjord region analogue with the same
stereochemistry at the linkage site, the 1R (+)-trans-anti-B[c]Ph-N6-dA adduct,35 by adding
two aromatic rings, followed by 30.0 ns of MD simulations.34 As discussed previously,34 an
intercalative conformation for the 14R-DB[a,l]P-dA adduct is supported by a red-shifted UV
absorbance maximum.44 For the 10R-B[a]P-dA adduct, an initial structure that was based on
the NMR solution structure of this adduct37 with remodeling of the sequence33 (Figure 2B)
had been previously subjected to MD simulations, as had the corresponding unmodified
duplex.32 We note that a number of 10R-B[a]P-dA adduct NMR solution structures have all
revealed similar 5′-intercalated structures in a number of sequence contexts.33, 36, 37, 45 We
utilized 30 ns from the MD ensembles for analyses of helix structural properties using MD
Toolchest,46, 47 for van der Waals stacking energy analyses using the ANAL module of the
AMBER 11 simulation package,48 as well as to obtain the best representative structures49

(shown in Figure 2A), which were used to initiate the flipping studies. The computed Rise
and Twist values at the lesion site were between base pairs comprising the intercalation
pocket: for the 5′-intercalated dA adducts and their corresponding unmodified duplex,
between C5:G18 and A6:T17, and for the 3′-intercalated dG adduct and its corresponding
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unmodified duplex, between G6:C17 and C7:G16. For the van der Waals stacking
interaction energies of the flipping partner base, we computed interactions between the
flipping base T17/C17 with the bases C5, C7, G16, G18, A6/G6 and the lesion aromatic
rings. Analyses for the 14R-DB[a,l]P-dG adduct42 given in the present work are based on
the ensemble of five structures, derived from the 1 ns NMR restrained MD simulations, that
were selected to best represent the NMR data42 [PDB50 ID: 2LZK].

Flipping free energy profiles
The best representative structures from the 30 ns MD simulations of the 14R-DB[a,l]P-dA
and 10R-B[a]P-dA adducts (shown in Figure 2) and the corresponding unmodified duplex,
were the initial models for the flipping studies. These modified and unmodified 11-mer
duplexes were subjected to 2 ns of unrestrained MD simulations for the subsequent free
energy profile calculations. Next, utilizing a restraint force constant of 1 × 104 kcal/
(mol×radian2), 0.5 ps simulations were performed serially for 72 windows at 5 degree
intervals of the reaction coordinate (Figure 3) as the partner nucleotide dT17 (Figure 2A) is
extruded, employing the last structure of the previous window to initialize the current
window. This protocol provided the structures to begin the 3 ns MD simulations for
sampling each umbrella window. The AMBER 10 software package51 modified for base
flipping along the pseudo-dihedral angle reaction coordinate52–54 (definition shown in
Figure 3A) was employed. Random snapshots from the MD simulations of the 14R-
DB[a,l]P-dA duplex along different reaction coordinate values (−180°, −90°, 0°, 90°) are
depicted in Figure 3B. The free energy profiles were computed with data collected between
1.0 and 3.0 ns with a 1.0 fs time step. Thus, a total of 2 × 106 structures were utilized to
compute the free energy profile for each window; for the 72 windows, the total number of
structures was 1.44 × 108. The statistical errors were calculated based on the differences
among different time periods (1–2 ns versus 1 – 3 ns, 2 –3 ns versus 1 – 3 ns) (Figure S2,
Supporting Information). The force constants for the 72 windows were in the range of 20 to
200 kcal/(mol×radian2) to ensure sufficient overlap between the windows. The free energy
profiles along the reaction coordinate were obtained with the weighted histogram analysis
method (WHAM).55

Modeling Rad4/Rad23 in complex with DNA containing the 14R-DB[a,l]P-dG adduct
Loop filling—Residues 518 to 525 were missing in a β-hairpin loop (BH2) of the crystal
structure of Rad4/Rad23 (PDB50 ID: 2QSG11 ) (Figure S1, Supporting Information). We
used BLAST (http://blast.ncbi.nlm.nih.gov/) to homology model the sequence of residues
511 to 532. Using the BLOSUM45 matrix for scoring, the PDB structure that provided the
best alignment, with an e-value of 1.8, was residues 61 to 70 of phosphoglycerate kinase
from B. anthracis with PDB ID:3UWD.56 The missing loop (amino acids: grpkgeae) of
Rad4 was modeled based on this homology sequence (amino acids: grpkgqav) from the
phosphoglycerate kinase structure. The loop structure of the homology sequence was
modeled to Rad4 using Discovery Studio 2. The terminus of the loop was adjusted to
covalently bond to the terminus of the broken chain, and analogous residues were mutated to
those in the missing loop of Rad4. Side chains and ϕ/ψ torsion angles were adjusted to avoid
clashing with other residues in Rad4 and the DNA duplex.

Starting model for lesion-containing DNA in Rad4/Rad23—In the Rad4/Rad23-
DNA complex structure (PDB ID: 2QSG11 ), the cyclobutane pyrimidine dimer (CPD)
lesion is missing, resulting in a gap of two nucleotides in the damaged strand (Figure S1,
Supporting Information). We modeled to this gap the dinucleotide containing the 14R-
DB[a,l]P-dG adduct with its 3′-side neighboring base dC; it was cut from the NMR refined
structure of the 14R-DB[a,l]P-dG adduct.42 There is very limited space to fit the lesion and
its neighboring nucleotide into the gap. Utilizing Insight II from Accelrys Inc, we placed the
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excised dinucleotide containing the lesion so that it was as close as possible to forming the
missing covalent bonds in the gapped crystal structure, while having minimum collisions.
The bond distances at this stage were about 3 Å too long. We used steepest descent energy
minimization with the AMBER 11 simulation package48 to form the bond, followed by 10
ns of MD, to further equilibrate the model.

Force field
The Cornell et al. force field,57 the parm99 parameter set,58 the parmbsc0 DNA
parameters,59 and force field parameters developed for the 14R-DB[a,l]P-dA and 10R-
B[a]P-dA adducts were utilized, together with explicit solvent and counterions. These partial
charges and other added parameters for the 14R-DB[a,l]P-dA34 and 10R-B[a]P-dA60

adducts on the nucleoside level were reported previously.

Minimization and MD protocols
The AMBER 11 simulation package48 was utilized to carry out all minimization and MD
simulations. The LEaP module was used to add hydrogen atoms and neutralize the system
with Na+ counterions. A periodic rectangular box of TIP3P water61 with 10.0 Å buffer was
created around the Rad4/Rad23-DNA-14R-DB[a,l]P-dG complex with the LEaP module.
The box dimensions were approximately 127 Å × 103 Å × 97 Å, with a total of ~32205
water molecules. The following minimization, heating, MD equilibration and production
protocols were utilized: to begin with, the counterions and water molecules were minimized
for 500 steps of steepest descent and 500 steps of conjugate gradient, with 50 kcal/mol
restraints on the solute atoms. Then, 30 ps initial MD at 10 K with 25 kcal/mol restraints on
solute were performed to allow the solvent to relax. Next, the system was heated from 10 K
to 300 K at constant volume over 30 ps with 10 kcal/mol restraint on the protein-DNA
complex. The restraints on the solute were relaxed from 10 kcal/mol (for 30 ps) to 1 kcal/
mol (for 40 ps) to 0.1 kcal/mol (for 50 ps). Subsequently, production MD was conducted at
1 atm, 300 K for 10.0 ns, with 1 ps coupling constant for both pressure and temperature. In
the MD simulations, the Particle-Mesh Ewald62,63 method with 9.0 Å cutoff for the non-
bonded interactions was used. A 2.0 fs time step and the SHAKE algorithm64 were applied
in the MD simulations. All other parameters were default values in the AMBER 11
simulation package.48

RESULTS AND DISCUSSION
Relative flipping free energy barriers of lesion partner bases follow the trend of relative
NER susceptibilities in investigated intercalated lesions

We have determined the complete flipping free energy profiles for the partner base dT17
(Figure 2A) to the damaged adenine in the 14R-DB[a,l]P-dA and the 10R-B[a]P-dA
adducts, and the corresponding unmodified duplex utilizing the Weighted Histogram
Analysis Method (WHAM)55 with a pseudo-dihedral angle reaction coordinate (Figure
3).52,54 We wished to explore the hypothesis that the flipping free energy profiles reflect a
component in the local thermodynamic stability of the lesion-containing duplexes that is
considered to play an important role in their relative NER excision efficiencies.2,4,38,65

These profiles are determined from structural models based on NMR solution data,
molecular modeling and MD simulations as detailed in Methods.

The calculated free energy profiles for the 14R-DB[a,l]P-dA and the 10R-B[a]P-dA adducts,
and the unmodified duplex 11-mers are shown in Figure 4. They have converged reasonably
well as shown in Figure S2, Supporting Information. For the unmodified duplex 11-mer, the
calculated maximal free energy barrier for flipping dT17 is 15.0 ± 0.3 kcal/mol (Figure 4A),
in a similar range to base flipping barriers computed for unmodified duplexes in previous
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studies (~ 15 to 20 kcal/mol);41, 53, 54, 66, 67 barriers for pyrimidines are very similar through
major or minor groove pathways, as also seen in our results (Figure 4). For the 14R-
DB[a,l]P-dA adduct, the calculated maximal free energy barrier is 11.8 ± 0.6 kcal/mol
(Figure 4A), with minor and major groove routes nearly the same. For the 10R-B[a]P-dA
adduct, the calculated maximal free energy barrier is 10.9 ± 0.2 kcal/mol (Figure 4A), and it
is via the minor groove. In prior work,41 we obtained flipping free energy profiles for the
14R-DB[a,l]P-dG adduct and the corresponding unmodified duplex in the otherwise
identical sequence context (Figure 2B). For comparison we show this profile in Figure 4B.
In this case the maximal barrier for flipping the dC17 base in the unmodified duplex is 18.1
± 0.8 kcal/mol, with major and minor groove paths essentially the same, while in the 14R-
DB[a,l]P-dG adduct, it is 10.4 ± 0.6 kcal/mol (Figure 4B). In a recent study of flipping free
energy profiles in several aromatic amine-derived DNA adducts, groove-dependence of
maximum barriers differ in the various lesions and sequences.68

To provide insights on the relative difficulty of flipping the base that is the partner to the
damaged base, we are interested in the maximal barrier differences between the
corresponding damaged and undamaged duplexes, since dC and dT bases must have
intrinsically different barriers in the same duplex sequence context.53 We hence define
ΔΔGFlip = ΔGFlip,mod − ΔGFlip,unmod, where ΔGFlip,mod is the maximal flipping free energy
barrier for the partner base to the lesion in the modified duplex, and ΔGFlip,unmod is the
maximal flipping free energy barrier for the corresponding base in the unmodified duplex.
Table 1 presents barriers for the modified and corresponding unmodified duplexes we have
studied, and their differences, ΔΔGFlip. The base flips more easily the lower its relative
flipping free energy barrier, ΔΔGFlip. The table also presents relative NER efficiencies. We
observe that ΔΔGFlip for the well repaired 14R-DB[a,l]P-dG adduct is lowest in energy,
followed by the modestly repaired 10R-B[a]P-dA, and then the repair-resistant 14R-
DB[a,l]P-dA.

Distinct structural features of the intercalated lesions explain differences in partner base
van der Waals stacking interaction energies and ease of flipping, which correlate with
relative NER susceptibilities

Structural and energetic lesion properties can explain the relative flipping barriers. NMR
solution data, molecular modeling and MD simulations were utilized to obtain our structural
models, as described in Methods. The lesion structures are shown in Figure 2A and Movies
S1–3, Supporting Information. Figure 5 shows stacking patterns and predominant van der
Waals interactions involving the flipping partner base for each lesion. Figure S4, Supporting
Information shows stereo views. The repair-resistant38 14R-DB[a,l]P-dA and the modestly
repaired33,39,40 10R-B[a]P-dA adducts are intercalated from the spacious major groove on
the 5′-side of the damaged adenine; however, the 14R-DB[a,l]P-dG adduct is intercalated
from the narrow minor groove on the 3′-side of the damaged guanine. In each case, the
position of the modified amino group in B-DNA determines the groove from which
intercalation occurs (Figure 7A). In the well-repaired38 14R-DB[a,l]P-dG adduct,
intercalation of the bulky aromatic rings from the minor groove causes the lesion-modified
base pair to stretch so that these bases are no longer within Watson-Crick hydrogen bonding
range,42 due to steric crowding caused by the distal aromatic rings (highlighted in grey in
Figure 1B). This stretching is accompanied by unusually enlarged Rise of 9.1 Å, compared
to 7.6 Å in the 14R-DB[a,l]P-dA adduct intercalation pocket (Figure S3, Supporting
Information) and severe unwinding accompanied by minor groove opening (Figure S3,
Supporting Information).42 However, the damaged base pair dG6*:dC17 retains stacking
with the DB[a,l]P aromatic ring system: the C17 base stacks mostly with the 8,9 ring (Figure
1) of the DB[a,l]P moiety, and G6* stacks with the 2,3,4 ring (Figures 1). The flipping C17
also stacks with G18. By contrast, for the 14R-DB[a,l]P-dA adduct, the DB[a,l]P ring
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system is well intercalated from the spacious major groove on the 5′-side, without being
sterically obstructing; Watson-Crick pairs are maintained, and the dT17 partner base
remains well stacked both with the DB[a,l]P rings and the G16 base. These structural
properties explain the ΔΔGFlip values for dT17 in 14R-DB[a,l]P-dA vs dC17 in 14R-
DB[a,l]P-dG of −3.2 kcal/mol and −7.7 kcal/mol, respectively (Figure 6A); thus dT17, with
higher barrier, flips with greater difficulty than dC17. Consistent with the ΔΔGFlip values,
the van der Waals stacking interaction energy between dT17 and surrounding bases and the
DB[a,l]P lesion aromatic rings is −16.6 kcal/mol, while for the dC17 it is only −12.0 kcal/
mol (Figure 6B).

On the other hand, the modestly repaired 10R-B[a]P-dA adduct differs from the repair
resistant 14R-DB[a,l]P-dA adduct in topology: it has a planar and rigid bay region geometry
and contains four aromatic rings, while the five-ring 14R-DB[a,l]P-dA adduct has a flexible
and twisted fjord region, which accommodates to optimize stacking interactions.34 The
rigidity of the bay region causes the intercalation pocket to have a large rise of 8.9 Å,
compared to 7.6 Å for the 14R-DB[a,l]P-dA adduct and the duplex is locally more unwound
(Figure S3, Supporting Information and Figure 2). Accordingly, the van der Waals stacking
interaction energy of the dT17 partner base for the 10R-B[a]P-dA adduct is ~1.5 kcal/mol
less stabilizing than for the 14R-DB[a,l]P-dA adduct (Table 1). This is consistent with easier
flipping, with the ΔΔGFlip being ~1 kcal/mol lower than for the 14R-DB[a,l]P-dA adduct
(Table 1). However, the intercalation from the major groove in the B[a]P case is still better
than for the minor groove intercalated 14R-DB[a,l]P-dG adduct, and the dC17 in the 14R-
DB[a,l]P-dG case is less well stacked than the dT17 in the 10R-B[a]P-dA adduct. Stacking
and other lesion properties are summarized in Table 1. See Figures 2 and 5 for structures.

Figure 6 shows how relative flipping free energy barriers ΔΔGFlip, that reflect ease of
flipping, relate to van der Waals stacking interaction energies involving the flipping base,
and to relative NER susceptibilities. From this figure, it is clear that ΔΔGFlip (Figure 6A)
parallels the stacking interaction energies (Figure 6B), and that these both correlate inversely
with relative NER susceptibilities (Figure 6C). These results support the hypothesis that ease
of partner base flipping is a component of the local thermodynamic factors that contribute to
relative NER susceptibilities in the current series of intercalated adducts.

Resistance to NER has been correlated with minimal decrease or even more striking
increases in the thermal stabilities of damaged DNA duplexes compared to the analogous
unmodified sequences. 38, 65, 69 In our current series, there is a remarkable stabilization of
thermal melting by ~ 10 °C for the repair resistant 14R-DB[a,l]P-dA adduct, while the
repaired ones are both destabilized by ~10 °C to 12 °C.42 While thermal melting does not
quantitatively correlate with NER susceptibility, for reasons that have been discussed,38

thermal stabilization has provided strong correlation with repair resistance, and structural
connections with lesion-induced van der Waals stacking stabilization have been
presented.38,65,69,70

Lesion recognition through β-hairpin insertion from the major groove and partner base
flipping: combined effects of local lesion-induced thermodynamic impact and steric
properties in intercalated adducts

The crystal structure of the XPC-RAD23B yeast homologue, Rad4/Rad23, provides an
opportunity to gain some further understanding of how the lesion recognition process may
function with intercalated lesions whose repair susceptibility varies. This structure shows
that the β-hairpin BHD3 is inserted between the two DNA strands from the major groove
side (Figure 7), extending through the width of the Watson-Crick double helix and causing
the two mismatched dT bases opposite to the cis-syn thymine dimer lesion to flip into the
protein. With the approach of the BHD3 β-hairpin from the major groove side, it appears
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that partner flipping must take the minor groove route to avoid steric clashes with the
incoming hairpin. This route appears to be sterically unavoidable for this NER system. For
comparison, a computational investigation of 8-oxo-guanine eversion free energy paths in
the prokaryotic base excision repair Fpg enzyme, where the damaged base itself is flipped
into a specific pocket and then excised, showed that a major groove route provided the
lowest free energy path.71

Our structural and energetic studies for the 14R-DB[a,l]P-dA adduct, combined with the
crystal structure, provide further understanding for the repair resistance of this adduct. The
ΔΔGFlip is the highest, with flipping most difficult, due to the excellent stacking of the
partner base dT17 with the five ring twisted fjord DB[a,l]P (Table 1 and Figure 5B (a)). This
factor, combined with the intercalation of the adduct from the major groove side, could
obstruct the BHD3 β-hairpin insertion and concomitant partner flipping. The 10R-B[a]P-dA
adduct’s modest repair, also plausibly related to its major groove intercalation and
associated steric hinderance to hairpin insertion, is somewhat better than that of the repair-
resistant 14R-DB[a,l]P-dA adduct. Its ΔΔGFlip is modestly more favorable due to weaker
stacking interactions of the dT17 with the rigid, planar, bay region B[a]P -- which causes
enlarged Rise in the intercalation pocket (Figure S3, Supporting Information) -- and with its
adjacent G16 base (Figure 5B (c)).

By contrast, the well-repaired 14R-DB[a,l]P-dG adduct has the most flipping-favorable
ΔΔGFlip, because the partner dC17 is stacked least well (Figures 5C (a)), stemming from the
intercalation of its bulky ring system from the minor groove side (Figures 2A and 5A). One
could envision that the BHD3 β-hairpin -- coming from the major groove side -- could evict
the intercalated DB[a,l]P-dG adduct together with its 3′-side base dC7, with which the
DB[a,l]P aromatic rings are partly stacked (Figures 2A and 5C(a)), into the minor groove.
The large untwisting (Figure S3, Supporting Information) would facilitate this process, since
the DNA contains this distortion in the crystal structure11 (Figure S1, Supporting
Information).

To illustrate such an extruded structure, we have used molecular modeling and a brief 10 ns
MD simulation for equilibration to propose such a model (see Methods) for the 14R-
DB[a,l]P-dG adduct, based on the Rad4/Rad23 structure. This model essentially preserves
the local NMR solution structure42 stacking pattern of the damaged strand (Figure 2A) on
the dinucleotide level, with the 14R-DB[a,l]P-dG aromatic ring system and its 3′-neighbor
dC base stacked, except that this region is extruded into the minor groove (Figure 7). The
BHD3 β-hairpin and the two partner dT bases remain as in the crystal structure; the crystal
Phe 599 also remains stacked with the thymine below as in the crystal (Figure 7 and Movie
S5, Supporting Information). In essence, the lesioned region is placed approximately in the
space occupied by the thymine dimer in the crystal (although coordinates for the dimer
could not be resolved). The BH2 residue Arg 519 (coordinates were missing in the crystal
and hence were modeled, as detailed in Methods), forms a hydrogen bond with the DNA
backbone. We emphasize, however, that the brief MD only served the purpose of
equilibrating the model, but is far too short for analyses of the constellation of protein-DNA
interactions that stabilize the structure. Our model is intended to illustrate how a well-
repaired destabilizing lesion,38 which is intercalated from the minor groove and hence can
be readily extruded by the major groove-intruding BHD3 β-hairpin, may be accommodated
in Rad4/Rad23.

CONCLUSION
The yeast Rad4/Rad23 crystal structure11 shows that lesion recognition for NER requires
partner base flipping and insertion of a protein β-hairpin between the DNA strands at the
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damage site, from the major groove side, and requires the concerted action of these two
processes. Our studies of flipping free energy barriers of major and minor groove
intercalated PAHs, as well as molecular modeling studies of the yeast Rad4/Rad23 homolog
of XPC-RAD23B, suggest that both energetic and structural lesion properties may impact
NER susceptibility. Relative flipping barriers follow the trend of relative NER
susceptibilities, and the lesion partner base flipping free energy barrier is related to how well
the partner base is stacked with the lesion aromatic rings and adjacent bases for the three
differently intercalated lesions investigated (Figure 6). However, steric effects of
intercalated lesions that occlude the major groove should also be considered. Lesion-
governed modulation of base flipping and/or hairpin insertion should affect the rate-
determining lesion recognition step10 and the subsequent rate of excision. Of course,
downstream effects including the subsequent steps of lesion verification are also key
regulators of NER efficiencies.7, 8, 72–74

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

NER nucleotide excision repair

PAHs polycyclic aromatic hydrocarbons

DB[a,l]P dibenzo[a,l]pyrene

B[a]P benzo[a]pyrene

14R-DB[a,l]P-dG 14R(+)-trans-anti-DB[a,l]P-N2-dG

14R-DB[a,l]P-dA 14R (+)-trans-anti-DB[a,l]P-N6-dA

R-cis-B[a]P-N2-dG 10R (+)-cis-anti-B[a]P-N2-dG

10R-B[a]P-dA 10R (−)-trans-anti-B[a]P-N6-dA

MD molecular dynamics
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Figure 1.
(A) The chemical structures of DB[a,l]P and B[a]P with definitions of the fjord region and
the bay region, respectively. (B) The chemical structures for the 14R-DB[a,l]P-dA, 10R-
B[a]P-dA and 14R-DB[a,l]P-dG adducts. The distal aromatic rings highlighted in grey cause
steric crowding in the 14R-DB[a,l]P-dG structure.
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Figure 2.
(A) Best representative structures49 from MD simulations for the 14R-DB[a,l]P-dA, and
10R-B[a]P-dA adducts. The NMR solution structure for the 14R-DB[a,l]P-dG adduct is also
shown.42 Only the central 3-mers are presented. The view is looking into the minor groove.
For the DB[a,l]P and B[a]P moieties, the carbon atoms are colored yellow and the oxygen
atoms orange. The damaged bases are colored cyan and the DNA duplexes are colored
white, except for the phosphorus atoms, which are red. Hydrogen atoms are not displayed
for clarity. The arrows indicate 5′ to 3′ direction. Movies S1 – S3, showing these structures
rotating are provided in Supporting Information. (B) The base sequence contexts for the
14R-DB[a,l]P-dA and the 14R-DB[a,l]P-dG 11-mer duplexes. A* and G* designate the
damaged bases.
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Figure 3.
(A) The pseudo-dihedral angle is defined by the center of mass of the circled groups. (B)
Random snapshots of the 14R-DB[a,l]P-dA duplex 11-mer along different reaction
coordinate values. (a) Pseudo-dihedral = −180°. (b) Pseudo-dihedral = −90°. (c) Pseudo-
dihedral = 0°. (d) Pseudo-dihedral = 90°. Movie S4, Supporting Information, shows random
snapshots along the pseudo-dihedral at 5 ° intervals from 0° to 355°. Views are into the
minor groove.
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Figure 4.
(A) The calculated free energy profiles for the 14R-DB[a,l]P-dA duplex 11-mer (red), the
10R-B[a]P-dA duplex 11-mer (green) and their corresponding unmodified duplex 11-mer
(black). (B) The calculated free energy profiles for the 14R-DB[a,l]P-dG duplex 11-mer
(red) and its corresponding unmodified duplex 11-mer (black). Maximal barrier values are
given.
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Figure 5.
Stick (a) and CPK (b) renderings of views looking down the helix axis of the (dA6*:dT17) •
(dC5:dG18) segment in the 14R-DB[a,l]P-dA (A) and 10R-B[a]P-dA (B) 11-mer duplexes,
and the (dC7:dG16) • (dG6*:dC17) segment in the 14R-DB[a,l]P-dG (C) 11-mer duplex.
The black dot circles designate the partner bases to be flipped. Note that PAH ring overlap
with an adjacent base does not properly project stacking when the two ring systems are not
parallel, as is particularly the case for the dT17 in 10R-B[a]P-dA (See Figure 2). (c) Views
looking into the minor groove that show predominant stacking interactions (indicated by
arrows) involving the flipping base. The color code is the same as in Figure 2A. Stereo
views are given in Figure S4, Supporting Information. Table S1, Supporting Information
gives ensemble average breakdowns of van der Waals stacking interaction energies between
the flipping base and all adjacent bases and the PAH aromatic ring system (See Methods).
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Figure 6.
(A) Summary of ΔΔGFlip, the maximal flipping free energy barrier differences between the
modified and the corresponding unmodified duplexes for the 10R-B[a]P-dA, 14R-DB[a,l]P-
dA and the 14R-DB[a,l]P-dG adducts. (B) Ensemble average values of the van der Waals
stacking interaction energy between the partner base and nearby bases and the lesion
aromatic ring system. (C) Nucleotide excision repair susceptibilities relative to the well-
repaired standard R(+)-cis-anti-B[a]P-N2-dG lesion. Data are from references.33,38–40
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Figure 7.
(A) Cartoons illustrating the groove location and BHD3 β-hairpin insertion direction. (B)
Best representative structure for the Rad4/Rad23-DNA-14R-DB[a,l]P-dG complex from
10.0 ns of MD simulations. (C) Close-up view of the BHD3 β-hairpin insertion and lesion
site. See Movie S5, Supporting Information.
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Table 1

Relative flipping free energy barriers are correlated with lesion-base stacking energies and relative NER
susceptibilities in investigated intercalated adducts. Standard deviations are given in parentheses.

PAH-DNA adduct Structural characteristics Ensemble average vdW
stacking energy of partner

(kcal/mol)a

Relative flipping barrier
ΔΔGFlipping (kcal/mol)b,c

NERd

R-DB[a,l]P-dA Fjord region,
5′-intercalation from major groove,

5 aromatic rings

−16.6 (1.6) −3.2 (0.7) Resistant

R-B[a]P-dA Bay region,
5′-intercalation from major groove,

4 aromatic rings

−15.2 (1.4) −4.1 (0.6) Modest

R-DB[a,l]P-dG Fjord region,
3′-intercalation from minor groove,

5 aromatic rings

−12.0 (0.7) −7.7 (1.0) High

a
Table S1, Supporting Information, provides breakdowns of van der Waals stacking interaction energies between the flipping base and all nearby

bases and the PAH aromatic ring system (See Methods).

b
Flipping data for the 14R-DB[a,l]P-dG adduct and its corresponding unmodified duplex was published previously.41

c
The maximal base flipping barrier energy ΔG is 11.8 ± 0.6 kcal/mol for the 14R-DB[a,l]P-dA adduct, 10.9 ± 0.2 kcal/mol for the 10R-B[a]P-dA

adduct, and 15.0 ± 0.3 kcal/mol for the corresponding dA unmodified, 10.4 ± 0.6 kcal/mol for the 14R-DB[a,l]P-dG adduct and 18.1± 0.8 kcal/mol
for the corresponding dG unmodified. See Figure 4. ΔΔG is the difference between the ΔG for the unmodified and the corresponding modified
duplex.

d
NER data for the 14R-DB[a,l]P-dA adduct is from Ref38, for the 10R-B[a]P-dA adduct it is from Refs 33,39,40 (for sequence 5′-

CTCTCA*CTTCC-3′ with the identical central 5-mer as the current work), and for the 14R-DB[a,l]P-dG adduct it is from Ref 38. See Figure 6 for
the relative NER data.
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