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Abstract

The study of engineered nanomaterials for the development of technological applications, 

nanomedicine, and nano-enabled consumer products is an ever expanding discipline as is the 

concern over the impact of nanotechnology on human environmental health and safety. In this 

review we discuss the current state of understanding of nanomaterial skin interactions with a 

specific emphasis on the effects of ultra-violet radiation (UVR) skin exposure. Skin is the largest 

organ of the body and is typically exposed to UVR on a daily basis. This necessitates the need to 

understand how UVR skin exposure can influence nanomaterial skin penetration, alter 

nanomaterial systemic trafficking, toxicity, and skin immune function. We explore the unique 

dichotomy that UVR has in inducing both deleterious and therapeutic effects on skin. The subject 

matter covered in this review is broadly informative and will raise awareness of potential 

increased risks from nanomaterial skin exposure associated with specific occupational and life 

style choices. The UVR induced immunosuppressive response in skin raises intriguing questions 

that motivate future research directions in the nanotoxicology and nanomedicine fields.

Introduction

Engineered nanoscale materials (<100 nm in one dimension) made from metals, metal 

oxides, semiconductors, and carbon including polymers, exhibit unique optical, electrical, 

mechanical, biological, and physiochemical properties not present in their bulk form. These 

properties arise in part from an increased surface area to volume ratio where a greater % of 

the atoms comprising the material exist on the surface. Engineered nanomaterials (eNMs) 

are widely exploited in many technology fields (e.g. medicine, energy, automotive, military) 

promising great benefits to mankind. They are also formulated into an ever expanding 

consumer product market. The Project on Emerging Nanotechnology in 2011 listed 1317 

nanotechnology-enabled consumer products in their inventory; an increase of 521% over 

20061. Nano-enabled products use for example, carbon nanotubes to make light weight and 

high strength sporting equipment (racquets, bikes), nano-Ag to make antimicrobial textiles 

and wound care dressings, and nanoscale ZnO and TiO2 particles to formulate ultra-violet 

radiation (UVR) protective sunscreens and daily wear skin-care products2–4. Soft 
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nanomaterials made from organic materials (lipids, proteins) also have wide commercial and 

pharmaceutical importance (liposome, solid lipid nanoparticles, dendrimers)5, 6. Currently, 

the FDA does not require manufacturers to label products containing eNMs and some 

products go to market without rigorous safety testing7–9. This has created human 

environmental health and safety concerns which has spurred efforts to investigate the ability 

of eNMs to penetrate epithelial tissue barriers and to characterize their cellular 

interactions10, 11. With a significant increase in nanotechnology enabled skin-care products 

and the corresponding increase in the potential for eNMs to contact skin, either through 

intentional product use or unintended environmental or occupational exposure, a significant 

effort has been devoted to investigate nanotechnology skin safety2, 3, 12–15.

The purpose of this review is to highlight current knowledge of eNM skin interactions with a 

specific focus on the effect of UVR skin exposure, which introduces unique considerations 

when examining the larger question of eNM skin penetration. Firstly, UVR is a ubiquitous 

environmental insult that can induce defects in the skin barrier function. Secondly, people 

frequently apply eNM containing lotions (i.e. sunscreens, daily wear cosmetics) to UVR 

exposed skin. Thirdly, UVR exerts an immunosuppressive effect on skin. The latter is 

largely linked to photo-carcinogenesis16, 17. However, UVR induced immunosuppression is 

also a widely exploited therapeutic modality used by dermatologists to treat many skin 

disorders18–22. This dichotomy of UVR having both deleterious and therapeutic effects on 

skin biology heightens the need to discover how UVR may modulate eNM skin interactions. 

In the next sections we review aspects of human skin anatomy and the effects that UVR 

exposure have on skin biology, emphasizing the implications for eNM skin contact. We 

discuss what is known from current literature about the interaction eNMs with normal and 

barrier impaired skin. Fascinating findings are revealed that motivate future research 

directions in the nanotoxicology and nanomedicine fields.

Human Skin Anatomy - Implications for eNM Skin Contact

Skin is the largest organ of the body, providing key barrier functions preventing inside-out 

water loss and outside-in protection from environmental insults (e.g. microbes, particulates, 

irritants, allergens, UVR) including eNMs. Healthy human skin is divided into the epidermis 

(thickness: 50–100 μm) and the dermis (thickness: 300–3000 μm) which are separated by the 

basement membrane [Fig. 1]. Epidermis is multilayered (stratified) epithelium composed 

largely of keratinocytes23. The stratum basale is adjacent to the basement membrane and it 

contains cuboidal basal keratinocytes that have proliferative potential. The daughter cells 

produced differentiate to form the stratum spinosum layer that contains suprabasal transient 

amplifying keratinocytes. These cells further differentiate to form the stratum granulosum 

layer comprised of cells that contain a dense presence of keratohyalin granules and lamellar 

bodies. These contain the essential proteins and lipids, respectively that are needed to form 

the stratum corneum (thickness: 10–40 μm)24, 25, the outermost layer of the skin [Fig. 2A]. 

The transition from a granular cell to a corneocyte (dead keratinocyte) is characterized by 

the degradation of the nucleus, assembly of a cornified envelope, and a reorganization of the 

keratin intermediate filaments25. The keratin network in the corneocyte is held together by 

filaggrin, which is a highly charged, cationic protein that aids in the filament aggregation 

[Fig. 2B] and disulfide bonding26. The flattened corneocytes are bound by tight junctions 
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(corneodesmosomes, Fig. 2C)27 and they are surrounded by a unique lipid lamellar bilayer 

matrix [Fig. 2D]28–30. The corneodesmosomes, the tortuous path between corneocytes and 

the lipid matrix together provide the main barrier function of skin, limiting penetration of 

hydrophilic and high molecular weight compounds31 including eNMs. Corneocytes are 

continuously sloughed off and replaced by inner keratinocytes differentiating outward. The 

epidermis is continuously renewed every 4–6 weeks depending on the region of the body32. 

Hence, the normal process of epidermal turnover can potentially hinder systemic penetration 

of substances that breech the stratum corneum barrier. Given the cationic nature of the 

filaggrin-rich stratum corneum, the lipid rich intercorneocyte space, and the overall acidity 

of the stratum corneum (pH ~4–5)33, the penetration of eNMs is anticipated to depend on 

their physiochemical properties (e.g. size, charge, composition). Understanding the factors 

that affect eNM stratum corneum penetration and the cellular interactions that can occur 

within the epidermis are critically important assessing risk from eNM skin exposure and for 

tailoring nanoparticle based transdermal therapeutics.

In addition, to basal and differentiated keratinocytes there are a number of other cell types 

present in skin that could potentiate the interaction of eNM that penetrate beyond the 

stratum corneum. Melanocytes, present the epidermis, produce melanin pigment which gives 

skin its color. They are evenly distributed along the basal layer and comprise 5% to 10% of 

epidermal cells34. The difference in skin color between light and dark pigmented individuals 

is due to the activity of melanocytes in their melanin production, not the number of 

melanocytes 35. Melanocytes and keratinocytes form an epidermal unit in a 1:36 ratio36. 

Studies investigating the sensitivity of melanocytes to eNMs are lacking. Given the critical 

role that melanocytes have in protecting keratinocytes from UVR exposure and their 

potential to transform into a deadly malignant phenotype, suggests an urgent need exists to 

investigate whether eNMs can alter melanocyte function. Skin also provides innate and 

adaptive immune functions that are readied to respond to environmental insults that breech 

the stratum corneum23, 37. Langerhans cells (LCs) in the epidermis and dermal dendritic 

cells (dDCs) in the dermis are the main antigen presenting cells (APC) in the skin38–40. LCs 

comprise ~2–4% of epidermal cells41–44. CD1a positive immunocytes45 and CD207 positive 

LCs [Fig. 3] form a tight meshwork within the epidermis and have been shown to localize 

around hair follicles at high densities, suggesting a need for increased immuno-surveillance 

surrounding these appendages. ACPs pick up antigens that breech the stratum corneum and 

migrate to the lymph nodes to activate the adaptive immune system. Skin contains a high 

density of resident T cells, ~1×106/cm2 which, for the average adult is nearly twice the 

number of T cells found in circulation41. Although skin lacks organized lymphoid structures, 

keratinocytes are able to produce a diverse repertoire of cytokines that can influence APC 

and T cell function46–48. Because skin comes in contact with numerous exogenous 

substances, the main route to allergen sensitization is consequently through skin49–53. 

Currently, little is understood about how eNM skin exposure may affect skin immune cell 

function, cytokine secretion by keratinocytes, or effect allergic skin disorders.

Other prominent features in the skin are hair follicles and sebaceous glands [Fig. 4]. Recent 

studies have solidified the important role that these structures have in mediating eNM skin 

penetration54–56. The pilosebaceous unit is a complex structure consisting of the hair shaft, 

arrector pili muscle, and the sebaceous gland. The outer root sheath (ORS) of the hair 
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follicle is contiguous with and biochemically similar to the basal layer of the 

epidermis32, 57, 58. The inner layers the follicle contain hair-producing cells. Hair follicles 

are in a continuous cycle of anagen (hair growth phase), catagen (involution phase) and 

telogen (a resting phase)58, 59. Skin resident stem cells reside in a follicular niche called the 

hair bulge32, 60–62. This suggests the potential for eNMs to interact with and perhaps alter 

stem cell function if they can penetrate and accumulate in the follicle. The hair follicle 

infundibulum is the region extending from the opening at the skin surface down to the 

sebaceous gland. Because hair follicles by-pass the stratum corneum barrier and terminate in 

the dermis, where they gain access to vascular and lymphatic systems, the hair follicle 

represents an important penetration pathway (epidermal shunt) and potential reservoir for 

systemic delivery of topically applied substances including eNM54. Hair follicle parameters 

such as orifice size, density, body distribution, and racial differences have been 

investigated63. The highest infundibular volume and therefore largest follicular reservoirs 

are found on the forehead and calf regions. Whites have significantly higher follicular 

reservoirs compared to Asians and African-Americans64. Follicular density differences are 

known to contribute to racial dependences seen in transdermal drug delivery efficacy65 and 

this sets an expectation for racial differences to exist in how eNMs interact with skin. 

However, confirmatory studies have not yet been conducted nor has it been established 

whether eNM follicular accumulation and penetration levels depend on the hair cycle phase.

Effect of UVR on Skin Barrier - Implications for eNM Skin Contact

Ultra-violet solar radiation reaching the earth consists of UVA (315–400 nm), UVB (280–

315 nm) and UVC (100–280nm) components. UVC is mostly absorbed in the upper 

atmosphere whereas UVB and UVA reach earth. UVA skin exposure penetrates deep into 

the dermis whereas UVB is mainly absorbed in the epidermis66. Skin exposure to UVR 

results in a number of biological responses including DNA damage, melanogenesis, 

generation of oxidative stress, vasodilation (skin erythema) and leukocyte infiltration67. 

Excessive and/or chronic UVR skin exposure causes sunburn, photoaging, and 

photocarcinogenesis68. UVB skin exposure from solar radiation or from tanning booths 

represent major environmental, occupational, and consumer health risks69. Unexpectedly, a 

growing source of UVR exposure is from compact fluorescent light bulbs, which are gaining 

wide acceptance as they use 75% less energy than incandescent bulbs and they produce the 

same lumens70. Studies suggest that defects in the phosphor coating applied to adsorb x-rays 

permit emission of UVA and UVC at exceedingly high levels71. Solar UVB radiation is 

however, the predominant concern as it is ubiquitous and a confirmed mutagen and 

carcinogen. It is efficiently absorbed by DNA producing cyclobutane pyrimidine dimers 

(CPDs); thymine to thymine (T<>T), thymine to cytosine (T<>C), and cytosine to cytosine 

(C<>C)72. Highly mutagenic 6,4 photoproducts are also generated but at a much lower 

frequency than CPDs73. Studies indicate that UVB skin exposure can generate ~519 CPD 

lesions per 106 normal oligonucleotide per J/cm2 [Fig. 5] 72. UVB skin exposure also 

induces dramatic effects on the cohesion and mechanical integrity of corneocytes in the 

stratum corneum74 and it induces melanogenesis. Melanocytes increase production of 

melanin and package it into melanosome vesicles. These are transferred to keratinocytes and 

positioned above the nucleus to prevent DNA damage75. Melanogenesis leads to tanning 
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that becomes visible about 72 hours after exposure76. Defects in the mechanical integrity of 

the stratum corneum with the concurrent priming of keratinocytes to uptake melanosomes 

suggests the possibility for the increased ability of eNMs to penetrate into the viable 

epidermis and to be taken up by keratinocytes77.

Skin has evolved elaborate defense systems to combat the mutagenic and oxidative stress 

effects of UVR exposure. Keratinocytes immediately respond by pausing their cell cycle to 

repair DNA lesions via the nucleotide excision repair process78. However, following high or 

chronic UVR exposure keratinocytes may not be able to repair all of the DNA damage 

generated which, can lead to mutagenesis and skin tumor formation. If and how eNM may 

alter these processes has not yet been investigated. After DNA lesions are repaired, 

keratinocytes down regulate E-cadherins [Fig. 6] which are important cell-cell adhesion 

proteins79. This facilitates a UVR-induced keratinocyte hyper-proliferation response which 

thickens skin to buttress the epidermal barrier function [Fig. 7]80. Hyper-proliferation results 

however, in a disorganized stratum corneum structure where the presence of nucleated cells 

in the stratum corneum can be detected 81, 82. This coincides with a measurable inside-out 

water loss skin barrier defect. Studies in mice (Fig. 8) indicate that the transepidermal water 

loss (TEWL) value is UVB dose and time dependent83. The peak water loss value occurs 3 

to 4 days post UVB exposure and resolves in 7 to 10 days. Studies have not yet determined 

if the TEWL value is predictive of outside-in eNM stratum corneum penetration. Nor is it 

known whether epidermal thickening can hinder systemic transport of eNMs that do 

penetrate the disrupted stratum corneum or which day post UVR exposure skin is most 

susceptible to eNM penetration.

UVB induced Immunosuppression - Implications for eNM Skin Contact

UVB skin exposure is immunosuppressive which has a consequential role in skin 

photocarcinogenesis84. It is known that UVB exposure induces skin resident APCs to exit 

skin and migrate to the lymph nodes85–87. Migration initiates immediately post UVB 

exposure and the number of APC in skin remains low for 4–14 days. This phenomenon has 

long been studied using an in vivo mouse model of contact hypersensitivity (CHS)43, 88–91. 

Here, topically applied contact allergens or haptens, such as dinitroflourobenzene (DNFB) 

and oxazolone (OXA), interact with biomolecules in skin to create antigenic substances that 

induces T cell mediated sensitization. Subsequent skin exposure to the same haptan days 

later (challenge phase) induces severe skin inflammation that is quantifiable91. However, if 

during sensitization the hapten is applied to skin pre-exposed to low doses of UVB radiation, 

the CHS response after the challenge is significantly inhibited. The cellular mechanisms of 

the UVB-induced immunosuppression response are generally understood. LCs normally 

uptake UVB-damaged skin cell debris and migrate to local lymph nodes where they induce 

T regulatory cells (Tregs) against self-antigen92. This is important for the induction of 

immunologic self-tolerance and protection from developing photosensitivity disorders91–95. 

When hapten is topically applied to UVB exposed skin, LCs mediate generation of Tregs 

against the hapten. Consequently, upon challenge the mice exhibit a significantly reduced 

CHS response in an antigen-specific fashion91, 92, 96. Antigen specificity distinguishes 

UVB-Tregs from systemic drug-induced immunosuppression91. Because UVB skin 

exposure has the potential to impair skin barrier function and to induce a skin 
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immunosuppressive response, it can also potentially influence eNM skin penetration, alter 

systemic trafficking, toxicity, and skin immune function. What is known about these will be 

revealed in the next sections.

Engineered Nanomaterial Skin Interactions

Over the past 10 years increasing research has focused on the fundamental questions of 

whether or not eNMs can penetrate the stratum corneum barrier and what factors can impact 

penetration. Factors include for example, the eNM physiochemical properties (size, shape, 

composition, charge, surface energy)97–101, vehicle affects102, 103 and the skin barrier status 

(healthy, injured, or diseased)83, 97, 104–106. In surveying the literature it has become clear 

that analytical instrument detection sensitivity and sample analysis volume, combined with 

the wide ranging use of skin models, eNM types and coatings have created challenges to 

generating both qualitative and quantitative conclusions regarding eNM skin penetration107. 

Tissue histology and transmission electron microscopy (TEM) analysis are common 

methods used to investigate eNM skin penetration but these techniques suffer from 

limitations with tissue sampling and the inability to distinguish particles from intrinsic tissue 

features and background signal. Reliance on mass spectrometry techniques to track eNM 

persistence in skin, systemic transport, or organ distribution patterns limits the ability to 

determine if penetration occurred as intact particles or as dissociated ions83, 104, 108, 109. 

Some eNMs including quantum dots (QD) and ZnO nanoparticles do exhibit unique 

fluorescent and/or nonlinear optical signatures that can help distinguish penetration of intact 

particles from ions, but the detection sensitivity can be limited by tissue 

autofluorescence107, 110–114. Nonetheless, despite these complexities, progress is being 

made toward advancing our understanding of eNM skin interactions and our ability to draw 

conclusions about nanotechnology skin safety, as can be gleaned from many recent 

reviews2, 3, 12, 14, 15, 115–117.

In general, substances that contact skin have three basic mechanisms to penetrate the stratum 

corneum barrier - transcellular through corneocytes, intercellular between corneocytes, and 

penetration via skin appendages (e.g. sweat glands, the follicular infundibidum)118. The 

transcelluar route is considered to be of little importance because the corneocyte cell 

membrane (cornified envelop) is highly impermeable although this is somewhat still 

debated119, 120. From the transdermal drug delivery field it is largely accepted that 

substances ~500 Da (~2.5 nm diameter) cannot penetrate the healthy SC barrier31. Vehicles 

in which substances are applied to skin can however enhance the penetration of higher 

molecular weight substances into deep skin layers, including eNM121, 122. Penetration 

enhancers generally work by increasing intercellular fluidity of the lipid lamella in the 

stratum corneum or by extracting non-covalently bound amphiphilic lipids from the stratum 

corneum123. From existing literature it can confidently be said that the healthy skin stratum 

corneum presents a formidable barrier to outside-in eNM penetration. However, in life it is 

quite common for skin to have barrier defective regions resulting from mechanical damage 

(cuts or scrapes), UVB exposure, use of harsh soaps or cosmetic products containing certain 

ingredients (depilatory agents, sodium lauryl sulphate, alpha-hydroxy acids) or from 

dermatologic disorders. Cutaneous defects can facilitate penetration of exogenous 

substances including large protein antigens (dust mite and plant allergens) and virus 
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particles (20 to 100 nm dia.)124, 125. Studies also show that barrier defective skin is more 

susceptible to penetration of eNMs and that eNMs penetrate the stratum corneum 

intercellularly through the lipid lamellae [Fig. 9]83, 97, 105, 106, 126–129.

Until recently the follicular penetration pathway had received little attention because hair 

follicles comprise ~0.1% of the total skin area56. Recent work has however, revealed that the 

follicular infundibulum, including sebaceous glands, comprise efficient and long-term 

reservoirs suited for accumulation of eNM54, 55. The high density of antigen presenting cells 

localized around the hair follicle [Fig. 3] and the presence of stem cells in the hair bulge 

have led researchers to target the follicular pathway for vaccine and drug delivery using 

eNM100, 130–134. Efficient access to the infundibulum reservoir requires however, that the 

sebaceous deposits and other debris in the follicular orifice be cleared. Opening the follicles 

using a cyanoacrylate-tape stripping processes has been shown to enhance deeper follicular 

penetration of particles45, 132. Particle accumulation, the depth of penetration, and retention 

in the infundibulum depend on particle size and these can be further enhanced by 

mechanical massaging of skin45, 135–140. Repetitive body motions such as walking or wrist 

flexing can also stress skin in ways that could potentially enhance follicular accumulation 

and eNM skin penetration.

The ability of eNM to accumulate in hair follicles and exhibit enhanced penetration through 

barrier defective skin heightens concerns as the prevalence of common skin disorders with 

known barrier defects (e.g. atopic dermatitis, contact dermatitis, psoriasis) are on the 

rise49, 141, 142. Few studies have however, been conducted on diseased skin making it 

difficult to draw general conclusions on whether skin disorders predispose individuals to 

increased risk of eNM penetration112. Studies are also needed to determine if hyperkeratotic 

disorders (e.g. psoriasis, epidermolytic hyperkeratosis) hinder penetration due to the 

thickened epidermis or enhance penetration due to malformations in the epidermal structure 

and barrier function. Similarly, little known about the effect of eNM skin exposure on 

allergic skin disorders143, 144. Studies are needed to determine if eNMs can induce or 

exacerbate allergic contact sensitization which is a leading occupational health concern69. 

The observation that UVR exposure can induce a skin barrier defect81, 83, 103 is a unique 

concern considering the associated immunosuppressive effect. What is known about these 

will be examined in next.

Interactions of Engineered Nanomaterials with UVR Exposed Skin

Nanomaterials can contact UVR exposed skin through the intentional use of UVR protective 

lotions, nanoparticle-containing therapeutic treatments, or through unintentional exposure 

from environmental sources. By far the most important eNM to be studied in the context of 

UVR skin exposure is that of ZnO and TiO2103, 110. Other eNM types that have been 

studied on UVR exposed skin include fluorescent QDs which facilitate tissue tracking83, 105; 

polymer nanoparticles145, polymer coated platinum nanoparticles146 and iron oxide 

nanoparticles147 for improved UVR protection. The interest in nanoparticle based UVR 

protective lotions stems from the fact that many common organic UVR filters such as, 2-

ethylhexyl 4-methoxy cinnamate (OMC) and 3-benzylidene camphor (3-BC), can penetrate 

through skin and they have been detected in urine and breast milk148, 149. Organic filters can 
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also exacerbate generation of UVR-induced reactive oxygen species (ROS) in skin150. The 

purported advantage of particle-based UVR filters is that their large size would hinder 

stratum corneum penetration and skin retention (follicular reservoir effect) to improve 

photoprotection151.

Metal oxide particle filters work by reflecting, scattering and absorbing UVR. The relative 

contribution of these mechanisms depends on particle size, crystal structure, and 

wavelength152, 153. The high surface energy the TiO2 and ZnO oxides causes primary 

particles of size 5 to 20 nm to aggregate (irreversibly bound) and these can further form 

agglomerates (loosely bound aggregates). Agglomerates that exceed 1 μm efficiently scatter 

visible light and thus apply to skin as an unappealing white gritty film154. Dispersants are 

used to maintain particle aggregates in the size range of 30–150 nm which is optimal for 

UVB and UVA absorption and for producing lotions that apply clear to skin [Fig. 10]. A 

consequence of increasing the UVR absorption capacity of nanoscale metal oxides is the 

increased photogeneration of radicals and ROS which can cause DNA lesions and lipid 

peroxidation155. Generally, the anatase form of TiO2 displays higher photoactivity, ROS 

production and cytotoxicity than the rutile form which is preferred for use in UVR 

protective cosmetics155, 156. To hinder agglomeration and to help protect skin from 

contacting the potential phototoxic TiO2 and ZnO metal oxide core, the particles are usually 

coated with for example silica, aluminum hydroxide, or methicone145, 157, 158. While much 

is understood about the formulation of UVR protective cosmetics and how to control the 

photoactive properties of eNM, very little is understood quantitatively or mechanistically 

about the penetration of nanoscale TiO2 and ZnO, or other eNM through UVR exposed skin. 

This has spurred increasing efforts over the past 5 years to examine this specific question. 

Because the biological effects of UVR on skin exposure evolve over time and involve the 

immune system, the most useful data will be generated using in vivo skin models. Here we 

review what has been gleaned from use of in vivo mouse83, 159, pig103, and human skin 

models108, 109.

The impact of UVR on nanoparticle skin penetration was first investigated by DeLouise and 

coworkers using the SKH hairless mouse model159. Carboxylated (dihydrolipoic acid 

coated) QDs were topically applied to mice in a 30% glycerol vehicle immediately 

following UVR exposure (270 mJ/cm2 UVB). The mice wore Elizabethan collars to prevent 

grooming. After 8 and 24 hr, skin samples were qualitatively examined for the presence of 

QD using tissue histology, confocal microscopy, and silver enhanced TEM with EDAX 

analysis. Low levels of penetration were seen in both the non-UVR and the UVR exposed 

mice but qualitatively much higher levels of penetration were observed in the UVR exposed 

mice. TEM images suggested that QDs penetrated the stratum corneum barrier along the 

intercellular space between corneocytes [Fig. 9]. Interestingly, despite the high UVB dose 

employed, the penetration levels observed were estimated to be extremely small compared 

to the dose applied but a quantitative organ analysis study was not performed. Because 

mouse skin is much thinner than human skin and the QDs physiochemical and dispersive 

properties differ from the metal oxides formulated in UVR protective lotions, other groups 

were motivated to investigate the penetration of TiO2 and ZnO lotions applied to UVR 

exposed pig and human skin.
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Gulson and coworkers108 recruited human subject volunteers (n = 20) to investigate the 

penetration of ZnO particles through UVR exposed skin. Subjects applied an oil-water based 

sunscreen containing isotopically labeled ZnO particles (68Zn) to their backs twice a day for 

5 consecutive days. Two different sunscreen formulations were tested: a nano-formulation 

containing of particles with primary size ~19 nm and a bulk-formulation containing particles 

>100 nm. After each sunscreen application, subjects laid in the sun on their bellies for a 

minimum of 30 min. The minimum average UVB dose was estimated to be 180 mJ/cm2 per 

30 min exposure. Venous blood and urine samples were collected. Results found small 

increases in tracer 68Zn levels in the blood and urine from all subjects however, the 

overwhelming majority of applied 68Zn was not absorbed (<0.001% absorbed in blood). 

Tracer levels in the blood and urine from female subjects who received the nano-formulation 

appeared to be higher than males receiving the same treatment and higher than all subjects 

receiving the bulk-formulation. Authors conclude that small amounts of Zn from ZnO 

particles in the sunscreen could be absorbed through the skin and detected in blood and urine 

of healthy subjects exposed to sunlight. A similar conclusion was reached in a follow-up 

study using different a sunscreen formulation and a different UVB exposure109. However, 

neither study was able to distinguish if the 68Zn detected had been absorbed as particles or 

as soluble Zn ion or both. In fact, a recent study reported that ZnO in commercial sunscreens 

is dissociated to Zn ion under UVB irradiation 160. Also, the Gulson studies did not control 

for total UVB dose or sunscreen usage on other body parts, so it is unclear if sunscreen was 

applied to barrier defective skin. It is important to note that the ability to distinguish Zn ions 

from ZnO particles in skin with sufficient sensitivity to overcome skin background signal 

has recently been demonstrated using sophisticated NIR multi-photon and second harmonic 

generation microscopy techniques110, 161, 162. Studies of sunscreen applied to human skin 

with and without barrier impairment, including patients with psoriasis and atopic dermatitis 

all find little evidence that ZnO nanoparticles can penetration beyond the SC110, 112, 114, 128. 

These techniques have, however, not yet been utilized to investigate the potential for ZnO 

particles to penetrate barrier impaired skin induced by UVR exposure.

While studies on human skin are ideal, conducting human subjects research is expensive and 

limiting. Animal models are less expensive and offer improved control over UVB dose and 

topical administration. Medical literature has long recognized that pig skin is anatomically 

and physiologically the most similar to human skin163. Monteiro-Riviere and co-workers103 

used white Yorkshire pigs to investigate the effect of UVR exposure on nanoscale TiO2 and 

ZnO skin penetration. The pigs received a UVB dose of 100 to 120 mJ/cm2 that induced a 

pale red erythema. One day after UVR exposure the sunscreens were topically applied to a 

controlled area. Metal oxides particles were incorporated into oil/water (o/w) and water/oil 

(w/o) sunscreen formulations. The application area was occluded and a second sunscreen 

dose was applied on day 2. On day 3 the skin was harvested for analysis. TEM results found 

that both nanoparticle types primarily localized as large agglomerates on the skin surface. 

On UVR exposed skin TiO2 (not ZnO) particles penetrated into layers deeper of the stratum 

corneum. A similar result was observed on explant pig ears164. The superficial penetration 

observed was modulated to some extent by the nature of the topical formulation; with the 

w/o formulation permitting deeper penetration of TiO2 into stratum corneum layers. This 

finding corroborates an early study that reported microfine TiO2 penetrated deeper into 
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human skin from an oily dispersion than from an aqueous one165. The authors further 

conclude from TEM and histology analysis that UVB exposed pig skin showed slightly 

enhance penetration and that TiO2 penetrated deeper into the SC in both normal and UVB-

exposed skin compared with ZnO. However, using the more sensitive technique of time-of-

flight secondary ion mass spectrometry (TOF-SIMS), elemental Ti was detected in the 

epidermis and superficial dermis and elemental Zn also was detected in the upper epidermis. 

Again, it is not known whether the elements were absorbed as soluble ion or as particles, but 

the results emphasize the importance of considering the analytical technique detection 

sensitivity in drawing definitive conclusions about eNM skin penetration.

While tissue histology, optical and electron microscopy techniques can provide important 

insight into the localization of eNM in the skin and can yield some understanding of cellular 

penetration mechanisms, these techniques do not yield quantitative information. To more 

fully understand the extent of eNM skin penetration and the systemic translocation, the 

techniques of inductively coupled plasma mass spectrometry (ICP-MS) and atomic 

absorption spectroscopy (AAS) are often used to evaluate eNM elemental organ collection 

patterns. Guided by results of an earlier study, that found the liver and lymph nodes were the 

major collection sites of Cd following dermal injection of (CdSe/ZnS core/shell) QDs using 

ICP-MS 111, our lab quantitatively investigated the effect of UVR skin exposure on the 

penetration of QDs topically applied to mice using AAS [Fig. 11]. SHK hairless mice we 

exposed to UVR (360 mJ/cm2 UVB) and negatively charge QDs (DLHA-coated CdSe/ZnS 

core/shell) were topically applied 3 to 4 days post UVR exposure at the peak of the TEWL 

defect [Fig. 8]. After 24 hr the Cd concentration in the lymph nodes and livers of UVR 

exposed mice were quantified relative to controls (no UVR)83. Results detected a baseline 

Cd level in the livers of control mice (vehicle treatment only); the likely source of this Cd 

was from their food. Application of QDs to UVR exposed skin found a statistically 

significant increase in liver Cd but the increase as a % of the applied does was very low. The 

baseline levels (vehicle treatment only) of Cd in the lymph nodes (with and without UVR) 

were below the limit of quantification (LOQ). Application of QDs to control mice (no UVR) 

produced an unexpected result in that Cd was detected in the lymph nodes; suggesting QDs 

penetrated barrier intact skin. This result contrasted histologic and TEM analysis of tissues 

sections, but due to the limitations of sampling and detection sensitivity mentioned earlier 

and the increased sensitivity of AAS, it is plausible that QDs can penetrate mouse skin. 

Interestingly, application of QDs to UVR exposed (barrier defective) skin produced a ~45% 

lower level of Cd the lymph nodes. This result was also unexpected and suggested an effect 

of UVR on the mechanism of systemic transport of QDs to the lymph nodes and implicated 

the role of skin resident APCs. Previous work established that LCs can uptake and traffic 

polymer NPs topically applied to skin to the lymph nodes45, 166. Due to the 

immunosuppressive effect that UVR has on skin we quantified LC density before and days 

3–4 post UVR exposure83. Results found that the LC density in skin was depleted by ~80% 

at the time QDs were topically applied. Hence, the lower Cd level in UVR treated mice is 

consistent with the lesser availability of LCs to uptake and traffic QDs to the lymph node.

Based on the above, intriguing questions arise regarding the potential for eNM that contact 

UVR exposed skin to either alter or induce skin immune responses. As discussed above 

topical application of antigen to UVB exposed skin results in the generation of antigen-
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specific Treg cells. Since UVB exposure has been shown to increases slightly the skin 

penetration of eNMs and that LCs have been shown capable of up-taking eNM and 

transporting them to lymph nodes, it is curious to question whether humans can developed 

tolerance to topically applied nanoscale materials. It is also intriguing to question the affect 

that eNM may have on LC function and their ability to present antigen. These specific 

questions have not yet been investigated. However, the potential for eNMs to modulate skin 

immune function is a rapidly growing field. A few recent examples are briefly discussed 

below.

Modulating the Skin Immune Responses with Nanoparticles

Some studies have investigated the potential to develop contact dermatitis following eNM 

skin exposure and to examine how topical application of eNMs may alter symptoms of 

allergic skin disorders. One recent study reported that subcutaneous injection of different 

size TiO2 nanoparticles (15, 50, 100 nm) (not topically applied) exacerbated development of 

atopic dermatitis (AD) symptoms (ear thickening, protein expression of inflammatory 

molecules) in mice induced by mite allergen, but no effect of particle size was observed167. 

In a companion paper a similar study was done using different size polystyrene (PS) 

nanoparticles (25, 50, 100 nm)101. Results found that injected PS nanoparticles aggravated 

AD-like symptoms even without co-exposure to mite allergen. In contrast to TiO2, a size 

effect was observed with the smaller PS particles producing greater symptoms. These 

findings were corroborated by another group that injected TiO2 nanoparticles (20, 230 nm) 

prior to topical sensitization with dinitrocholorobenzene (DNCB) and results showed TiO2 

exacerbated AD symptoms in mice168. Contrasting results have also been reported where 

topical application of both PS and TiO2 nanoparticles to barrier intact skin models did not 

induce acute cutaneous irritation or exacerbate a skin sensitization response169. Topical 

application of mesoporous silica particles (100 nm spheres) also did not induce an ear 

swelling response in mice or exacerbate allergic contact dermatitis symptoms even when co-

administered with dinitrofluorobenzene (DNFB)170. The likely differences observed 

between injection and topical application is the magnitude of the eNMs in the epidermis.

The above studies reveal the importance of particle composition on exacerbating AD-like 

symptoms and suggest a potential concern if these nanoscale materials were to contact 

severely barrier impaired skin. Clearly, for eNM to exert an immunomodulatory affect they 

must be able to penetrate skin to an appreciable extent. Penetration can be modulated by 

physical means (injection or stratum corneum depletion) or perhaps by varying both the 

eNM core and surface composition. Studies with both nanoscale gold and silver particles 

suggest these metals have a greater propensity to penetrate intact skin than metal oxides. For 

example, an in vivo study showed that topical application of 200 nm Ag particles formulated 

in a nanolipid carrier o/w cream exhibited a high capacity to reduce AD-like symptoms171. 

Similarly, topical application siRNA coated gold nanoparticles (~50 nm) designed to down 

regulate epidermal growth factor receptor (EGFR) freely penetrated the mouse epidermis 

and a human skin equivalent model within hours of application172. Following a 3 week 

application protocol of the siRNA Au particles to hairless mice nearly abolished EGFR 

expression and reduced the thickness of the epidermis by almost 40%. Whether the 

differences observed in skin penetration between nanoscale metal and metal oxide particles 
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is driven by surface coating, electronic properties, or the tendency of metal oxide particles 

aggregate to large sizes that hinder skin penetration is not yet fully understood. The role that 

nanoparticle conductivity has in modulating skin biology is also poorly understood. Studies 

have shown that bimetallic nanoparticles (Cu/Zn 20 nm) applied to skin can induce a 

galvanic couple and that the electrical stimulus generated can reduced the skin inflammatory 

response to sensitizing agents173. Citrate coated Au nanoparticles were also reported to 

interfere with downstream IL-1β signaling inhibiting the production of PI3 kinases and 

proinflammatory TNF-α release in a size dependent manner with 5 nm particles, but not 20 

nm, exhibiting the greatest neutralizing effect174. Highly conducting fullerene nanoparticles 

were reported to exhibit a potent anti-oxidant free radical scavenger activity and inhibit 

allergic anaphylaxis response in vivo175. Hence, the above examples clearly illustrate the 

rich potential for developing novel immunomodulatory therapeutics for treating skin 

disorders using eNMs but the role of particle conductivity has not yet been elucidated.

Conclusions

In this review we discussed the current state of understanding of the interactions of eNMs 

with skin. We explored the unique dichotomy that UVR exposure has on skin, raising 

awareness of the challenges to developing a generalized view of eNM skin penetration and 

translocation. While barrier impaired skin is seen as more susceptible for eNM penetration, 

the biological and immunologic responses of skin to the impairment means (chemical, 

physical, disease) will be differ and thus can influence the extent and mechanisms of eNM 

skin penetration and translocation. Existing literature currently suggests that UVR skin 

exposure can slightly enhance the penetration of eNM. Significant health issues from eNM 

occupational exposures or from use of nano-enabled products have not yet emerged. 

Nonetheless, it is curious to consider if eNM immune-tolerance via UVR-Treg generation 

exists or if it tolerance to haptans can be modulated by eNM contact with UVR exposed skin 

(i.e. TiO2 and ZnO). In vivo models will be essential moving forward for examining these 

questions and elucidating the central role that eNM composition (core/coating) has on 

dictating skin interaction so that the deleterious and therapeutic benefits of eNMs can be 

minimized and maximized, respectively. A further concern with the current state of 

understanding is the limitations imposed by the models and instrumentation utilized. It is 

challenging to relate acute high dose studies to real world human exposures. Similarly, it is 

difficult to extrapolate the significance of results that find intradermal injections of eNM can 

exacerbate AD-like symptoms to realistic topical human exposure conditions. The ability to 

attain a definitive consensus on the ability of eNMs to penetrate beyond stratum corneum is 

limited by instrumentation detection sensitivity. Clearly, there is an urgent need for 

nonbiased means to amplify the detection of eNM presence in tissues107. Simple and widely 

assessable methods that can distinguish soluble ion from particle penetration are also needed 

to advance the fields of nanotoxicology and nanomedicine.
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Figure 1. Schematic of human skin structure and constituent cell types
Skin is stratified epithelial composed of the epidermis and dermis. The epidermis is mainly 

comprised of keratinocytes. Basal keratinocytes undergo terminal differentiation to form the 

stratum spinosum, stratum granulosum, and stratum corneum barrier. Stratum lucidum is an 

additional layer present under the stratum corneum in areas of thick skin like palms of the 

hands and soles of the feet. Pigment producing melanocytes and antigen presenting 

Langerhans cells are also present in the epidermis. The dermis is a layer rich in connective 

tissue and is divided into the papillary and reticular regions. The dermis contains many cell 

types including fibroblasts that make collagen and other extracellular matrix molecules that 

provide skin mechanical toughness. Adipocytes, macrophage, mast cells, plasmatoid 

dendritic cells (pDCs), CD4+ T cells, CD8+ T cells, Tregs, and natural killer T-cells also 

abundantly present in the dermis apart from other structures including pilosebaceous unit, 

sweat glands, nerves, blood and lymphatic vessels. Adapted from Nestle et al., 2009 [23].
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Figure 2. Transmission electron micrographs illustrating unique features of skin
(A) The stratum corneum (SC) is comprised of multiple layers of enucleated and elongated 

corneocytes each defined by a dense cornified envelope indicated by the black arrows. The 

cells in the stratum granulosum (SG) are distinguished by the presence of a nucleus (N) and 

a high density of keratohyalin granules (K). Adapted with permission from Madison et al., 

1998 [24] (B) Electron micrograph of a corneocyte cytosol illustrating the nanoscale 

organization of keratin intermediate filaments. The subfilamentous molecular architecture 

appears as groups of electron dense spots surrounding a central dense dot. The keratin 

filaments are ~7.8 nm wide with a center-to-center distance of ~16 nm. (Inset box scale bar 

is 10 nm. Adapted with permission from Norlen and Al-Amoundi, 2004 [25] (C) 

Corneocytes in the stratum corneum are bound by corneodesmosome tight junctions 

indicated by black arrows. Racial differences exist in the density of corneodesmosomes. 

Scale bar is 1 μm. Adapted with permission from Gunathilake et al., 2009 [27]. (D) Electron 

micrograph illustrating the lipid lamellar bilayers in the intercellular space between 

corneocytes. Adapted with permission from Warner et al., 1999 [30].
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Figure 3. Langerhans Cell localization pattern around the hair follicle
Immunofluorescent staining of human skin epidermis with anti-CD207-Alexa 488 

(Langerin) specific for Langerhans cells showing their distribution around the hair follicle 

infundibulum, scale bar=50 μm. Inset shows the base of the hair follicle, scale bar=10 μm.
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Figure 4. Schematic of the human hair follicle in late anagen phase
The bulge, outer root sheath, hair bulb and follicle papilla are responsible for hair growth.
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Figure 5. Formation of bipyrimidine photoproducts within human skin exposed to UVB 
radiation
(A) Photoproduct formation is linear with respect to the applied UVB dose (0–0.2 J/cm2). 

The results are expressed in lesions per 106 bases and are the average ± SD. (B) A similar 

distribution of bipyrimidine photoproducts is produced in human skin and in cultured 

primary keratinocytes isolated from the same donor following UVB. Reprinted with 

permission from Mouret et. al., 2006 [72].

Jatana and DeLouise Page 26

Wiley Interdiscip Rev Nanomed Nanobiotechnol. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. E-cadherin expression in primary mouse keratinocytes (PMK) after acute UVR 
exposure
PMKs were harvested at the times indicated post UVR (40 mJ/cm2 UVB). Unirradiated 

PMKs were included as controls. Densitometric analysis of Western data for relative E-

cadherin levels normalized to GAPDH. E-cadherin levels were significantly different from 

control at 6, 24, and 72 h (n = 3). ***, p < 0.001. Inset, a representative Western blot for E-

cadherin from one of three separate experiments. Equal loading of protein was verified by 

GAPDH staining. Reprinted with permission from Brouxhon et. al. 2007 [79].
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Figure 7. Characterization of UVR-induced epidermal injury in SKH-1 mice
Hematoxylin and eosin stain photomicrographs of normal dorsal mouse skin (N) and of skin 

24, 72, 96, or 168 h after UVR (180 mJ per cm2 UVB) irradiation. Note the epidermal 

hyperplasia (black arrow), hyperkeratosis (white arrow), and the perivascular inflammation 

(arrowheads) present 72 h after UVR irradiation. At 168 h post UVR irradiation, the 

epidermis has returned to near normal. Scale bar: 50 μm. Reprinted with permission from 

Tripp et. al., 2003 [80].
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Figure 8. The effect of UVR on SKH mouse skin barrier function as measured by transepidermal 
water loss (TEWL)
UVR exposure increases the barrier defect in a UVB dose (0 to 360 mJ/cm2 UVB) and time 

dependent manner. A statistically significant increase in TEWL is observed for all exposures 

with the peak defect ranging from days 3 to 6 post-UVR exposure. Each value is reported as 

the mean ± SEM (n=4, *p < 0.05, **p < 0.01, ***p < 0.001). Reprinted from Mortensen et. 

al., 2013 [83].
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Figure 9. TEM imaging of mouse skin sections suggesting quantum dot nanoparticles penetrate 
intercellular between corneocytes
(A) The penetration pathway through the stratum corneum is between corneocytes which is 

shown in more detail in (B) where the large dark spots are quantum dots. (C) Another skin 

section demonstrating the penetration pathway showing quantum dot present in the stratum 

granulosum. (D) A negative control (no quantum dots). Reprinted with permission from 

Mortensen et. al., 2008 [159].
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Figure 10. Dependence of UV-visible light attenuation on TiO2 nanoparticle aggregate size
With decreasing particle size UV protection shifts to shorter wavelengths. Blue line, 20 nm; 

green line, 50 nm; and red line, 100 nm. Particles with average aggregate size of ~ 50 nm 

offer high UVB attenuation and lower visible light scattering but less UVA absorption. 

Reprinted with permission from Wang and Tooley, 2011 [154].
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Figure 11. Cadmium tissue level in distal organs following 24 hr QD nanoparticle application to 
SHK mice as a function of UVR
Liver results show that QD exposure to control mice (no UVR) does not significantly 

increase Cd level. Application of QDs to UVR exposed mice did statistically increase liver 

Cd relative to controls (no UVR with or without QD). Lymph node results show that the 

background Cd level was below the limit of quantification (<LOQ) in vehicle-treated 

animals with and without UVR exposure. Unexpectedly, application of QDs to control mice 

(no UVB) produced a high Cd level in the lymph nodes suggesting QDs penetrated intact 

mouse skin. QD application to UVR exposed mice produced lower Cd level suggesting a 

UVR dependent cellular transport QD mechanism to lymph node Each value is reported as 

the mean ± SEM (n=5, *p < 0.05). Reprinted from Mortensen et al., 2013 [83].
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