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Abstract
Single-particle tracking (SPT) has been extensively used to obtain information about diffusion and
directed motion in a wide range of biological applications. Recently, new methods have appeared
for obtaining precise (10s of nm) spatial information in three dimensions (3D) with high temporal
resolution (measurements obtained every 4ms), which promise to more accurately sense the true
dynamical behavior in the natural 3D cellular environment. Despite the quantitative 3D tracking
information, the range of mathematical methods for extracting information about the underlying
system has been limited mostly to mean-squared displacement analysis and other techniques not
accounting for complex 3D kinetic interactions. There is a great need for new analysis tools
aiming to more fully extract the biological information content from in vivo SPT measurements.
High-resolution SPT experimental data has enormous potential to objectively scrutinize various
proposed mechanistic schemes arising from theoretical biophysics and cell biology. At the same
time, methods for rigorously checking the statistical consistency of both model assumptions and
estimated parameters against observed experimental data (i.e. goodness-of-fit tests) have not
received great attention. We demonstrate methods enabling (1) estimation of the parameters of 3D
stochastic differential equation (SDE) models of the underlying dynamics given only one
trajectory; and (2) construction of hypothesis tests checking the consistency of the fitted model
with the observed trajectory so that extracted parameters are not over-interpreted (the tools are
applicable to linear or nonlinear SDEs calibrated from non-stationary time series data). The
approach is demonstrated on high-resolution 3D trajectories of single ARG3 mRNA particles in
yeast cells in order to show the power of the methods in detecting signatures of transient directed
transport. The methods presented are generally relevant to a wide variety of 2D and 3D SPT
tracking applications.
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Introduction
Optical microscopy can now provide high resolution 2D and 3D measurements of individual
biomolecule motion in living cells. The ability to track biomolecules at single-molecule
resolution in their native environment permits researchers to address open questions in
various fields, e.g.1–12. Time-ordered 3D measurements can assist in providing
unambiguous physical interpretations regarding how tagged particles dynamically interact
with structures in living cells1,3,10,13. Analyzing transient 3D kinetic phenomena in live cell
measurements poses new and exciting statistical modeling challenges.

Many early single particle tracking (SPT) analysis methods aimed to quantify single-
molecule kinetics by assuming relatively simple stochastic motion models which leveraged
either mean square displacement (MSD) methods14–18 or autocorrelation-based (AC)
techniques19 to extract model parameters summarizing the experimental data. AC methods
(time or Fourier domain) often require signals to be stationary; this stationarity assumption
can be problematic in several single-molecule situations where the dynamics changes in real
time20–22. Classic MSD methods lose valuable temporal information due to the aggregation
of lag information from different time points and also require researchers to select heuristic
tuning parameters16.

Improvement in experimental resolution and problems with the aforementioned analysis
approaches have motivated new SPT analysis techniques. For example, Ref.23 presents a
new scheme for systematically selecting the “time-lag” parameter required for extracting
both the diffusion coefficient and localization precision (or measurement noise) from an
MSD curve. In addition, more statistically motivated methods have been proposed which
aim to make better use of time ordered observations. These include maximum likelihood24

and Bayesian estimation strategies25,26. For example, Ref.25 demonstrated Bayesian
techniques accounting for 2D force interactions in membrane diffusion simulations. These
prior efforts, though insightful, did not rigorously account for the statistical effects of a
priori unknown measurement noise. The measurement noise estimation issue has been
discussed recently20,27; likelihood-based procedures for extracting parameter estimates
treating measurement noise in simple SPT diffusion-only models (e.g., models neglecting
2D/3D force) have been recently introduced28.

Moreover, existing SPT analysis methods still encounter three serious technical problems:
(i) Methods often require researchers to subjectively specify the types of motion followed by
the experimental data. (ii) Many existing methods do not utilize statistically justified
methods for checking the consistency of assumed motion models against experimental
single-molecule SPT data. (iii) Even if modeling assumptions are consistent, estimation
techniques typically assume that the parameters of the motion model are not slowly
changing over time in a single trajectory.

With respect to (i), qualitative motion types like “directed”, “corralled (or confined)”, and
“diffusive” are often assumed. SPT researchers typically classify the motion type describing
the experimental data and then extract parameters estimates depending on the assumed
motion type (various heuristic criteria are used to guide motion classification, e.g.10,29). It
would be advantageous to consider an estimation scheme which nests all popular SPT
models as special cases (i.e., the experimental data “speaks for itself”) while also permitting
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more flexibility in accounting for different types of 2D or 3D forces. Regarding (ii), a
parameter estimate and model can be extracted from any data set, but this does not imply
that the estimate and model reflect the actual experimental situation. Before one worries
about extracting optimal parameter estimates, the consistency of modeling assumptions
compared to data should be checked; the value of a parameter estimate predicated on an
inapplicable model is not high. This article demonstrates how goodness-of-fit hypothesis
testing (i.e., statistical methods for directly determining if an observed time series is
consistent with a given model) can assist in analyzing SPT data. Regarding (iii), it is well
known that the local micro-environment and/or properties of the underlying biomolecule can
cause the diffusion coefficient to change over time16,30,31. A wide variety of anomalous
diffusion approaches have been proposed to handle SPT trajectories experiencing changing
effective diffusion coefficients, e.g.32,33, but such approaches still induce temporal
averaging of increments which can hide important transient single-molecule kinetic
phenomena (quantitative examples are provided in the Results and SI). Likelihood ratio24

and Bayes factor-based techniques34 for identifying abrupt state changes have been
proposed for special case situations where the dynamic models fall into one or several
discrete states, but these methods assume that one possesses a priori reliable statistical
information describing the system’s stochastic motion and that the states can be discretely
classified. In the next section, we discuss other approaches aiming to extract kinetic
information from single-molecule trajectories20,21,25–28,32,34–38 and contrast these
approaches to our methods which offer solutions to items (i–iii).

To motivate our work, consider the following example. Suppose one is interested in tracking
a complex molecular aggregation process, e.g., ribonucleoprotein complex formation39,
where the aggregate’s radius changes in a non-trivial fashion over the course of an
experimental trajectory. If the effective hydrodynamic radius of the aggregate containing
one or more fluorescently tagged particles has a “state change” that is effectively continuous
(i.e., the radius length changes by small amounts between adjacent frames but the radius
changes appreciably over multiple frames), then many existing SPT approaches would
encounter serious technical difficulties in both parameter estimation and detecting state
changes. Worse yet, the estimated parameters of traditional SPT models would be of
questionable quality since the assumptions behind the models are inconsistent with the
molecular motion underlying the experimental data.

In order to demonstrate how our proposed approach can provide both estimation and
goodness-of-fit hypothesis testing in scenarios where the system dynamics are inconsistent
with traditional SPT models and/or parameters are time varying, we analyze 3D ARG3
mRNA trajectories measured in live Saccharomyces cerevisiae 10. This system was selected
because only one or two copies of the mRNA are present in the cytoplasm at any given
time10,40,41, thus associating a fluorescent signal between different image frames measured
by the microscope with a single molecule is straightforward. Simulations and experiments
demonstrate what types of 3D dynamical interaction effects can be extracted from individual
trajectories. We also discuss how ideas ported from other disciplines42–47 can help to
identify signatures of subtle molecular interactions in biophysical measurements that are not
explicitly accounted for in models commonly used in analyzing SPT data.

Theoretical Methods
Qualitative SPT modeling background

In single-molecule studies, the emphasis is on avoiding ensemble averaging since each
experimental trajectory is associated with different unresolved latent features (e.g., different
conformational molecular degrees of freedom or varying local micro-environments). The
unresolved latent features often induce substantial “heterogeneity” in the
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dynamics7,10,16,48,49. No pair of trajectories are exactly alike, but researchers in biophysics
and cell biology are interested in accurately quantifying / understanding this
heterogeneity7,10. Therefore, it is important to consider methods that cannot only estimate
models on a trajectory-wise basis36,50, but it is also critical to check the consistency of a
estimated model against the single-molecule trajectory used to obtain the parameter
estimates36,51. Goodness-of-fit testing is crucial since inferring model parameters that have a
biophysical interpretation requires researchers to both (1) make testable assumptions about
the effective dynamical models and (2) develop schemes for estimating the parameters
respecting the complex nature of effective thermal and measurement noise associated with
the experimental data. The methods employed in this study permit trajectory-wise goodness-
of-tit testing and also check all distributional dependence assumptions43 implied by an
assumed model against observed experimental data directly. The methods utilized are
general43,52 and are not constrained to linear or Gaussian dynamics; advantages of the
goodness-of-fit approach are discussed in the Methods, SI, and elsewhere51.

The techniques presented not only handle trajectory to trajectory heterogeneity, but can also
identify transient dynamical phenomena occurring in a single trajectory (e.g., an unobserved
conformational degree of freedom may be changing in an appreciable fashion over the
course of a single trajectory measurement). The trajectory-wise goodness-of-fit testing
employed is crucial for identifying these phenomena. Problems other popular methods (e.g.,
MSD-based analyses) encounter when the dynamical parameters of the system slowly
change over time in a single trajectory are discussed and demonstrated using simulation and
experimental data in the main text and SI.

Since checking the consistency of fitted stochastic models against experimental SPT data is
of paramount importance to any quantitative scientific SPT study, it may be surprising that
such methods are not widely utilized in SPT data analysis. A major reason underlying why
the goodness-of-fit testing issue has not been thoroughly studied in SPT works is that the
time series coming from these experiments pose technical challenges (e.g., non-stationary
signals with potential non-linear dynamics on top of measurement noise corrupting state
observations). Recent research emerging from time series analysis and econometrics are able
to address some long-standing technical challenges that previously complicated goodness-
of-fit testing associated with complex, transient (i.e., non-stationary) 2D or 3D signals in the
past43–47. The SI provides simulation examples showing how standard time series
diagnostics not checking all distributional assumptions can fail in situations relevant to our
SPT study.

Other related works
The methods presented here overlap in goals with some other recent efforts aiming to
analyze the time series of single-molecule experimental data. In this subsection, we briefly
summarize some related efforts. The research closest in spirit to the 3D SPT work presented
here can be found in Refs.20,21,36 where 1D linear and nonlinear stochastic differential
equations (SDEs) are estimated and trajectory-wise goodness-of-fit tests checking all model
assumptions43 are applied to experimental single-molecule trajectories subjected to external
force manipulation. Bayesian estimation techniques aiming to achieve efficient parameter
estimation in situations where an accurate 2D SDE model is assumed known a priori have
recently been developed and demonstrated on simulated SPT trajectories25. Methods falling
under the category of “p–variation” methods have been proposed for estimating and testing
1D SPT data in situations where experimental measurement noise is small compared to
inherent thermal fluctuations32. Refs.27,28 demonstrate various approaches for estimating
simple 1D SDE models in the presence of measurement noise; these works also provide
discussions outlining the advantages of applying likelihood-based methods to estimate SDE
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parameters. Ref.26 applied hidden Markov models to characterize complex diffusion patterns
in situations where accurate SDE models describing experimental data were assumed known
a priori; the technique showed promise for quantifying complex protein diffusion patterns in
live bacterial cell lines.

In this work, 3D SDE models are estimated from experimental data, measurement noise is
inferred using MLE methods, the methods allow one to resolve effectively continuous
changes in SDE parameters over time, we employ a flexible modeling framework imposing
relatively few a priori assumptions about the particle’s dynamics (popular SPT models, such
as directed and confined diffusion, are covered within a single parametric framework10,29),
and the consistency of the assumed/fitted model is checked directly against individual
experimental trajectories in a trajectory-wise fashion (i.e., goodness-of-fit hypothesis tests
checking the consistency of all model assumptions can be carried out using only one
experimental trajectory). No other published SPT work provides a framework allowing for
all of these features (the 2D/3D goodness-of-fit testing accounting for measurement noise is
not provided in any SPT work to our knowledge). Accounting for (and detecting) time
changing parameters characterizing 2D and/or 3D SDE models, e.g., effective measurement
noise that is changing significantly over time for a single trajectory, is another contribution
of this work (other numerical approaches for quantifying effective continuous parameter
changes in single-molecule trajectories are discussed in Ref.53).

In terms of other potential SPT modeling approaches, nonlinear filters (such as particle
filters35 and interacting multiple model filters37) are tools that show promise when both
measurement noise and particle dynamics are accurately known a priori, but these nonlinear
filtering techniques do not address goodness-of-fit or parameter estimation issues directly.
For situations expanding the utility of interacting multiple model filters to scenarios where
model parameters and/or priors are not known a priori, “non-parametric” Bayesian methods
show some promise38. However, one still must make some assumptions regarding the
statistical nature of the dynamics and measurement noise; furthermore the approach used in
Ref.38 does not address the goodness-of-fit question. More broadly, Bayesian methods (like
those in Refs.25,26,34,38) by themselves cannot determine if the assumed dynamical models
are statistically consistent with experimental data. For example, it is possible that the
Bayesian modeler assumes a collection of models all having Gaussian measurement noise
with some fixed variance, but the true data generated by the actual experimental situations is
Poisson distributed with a time varying intensity (or worse yet, draws may come from a
time-varying unknown distribution); Bayesian model selection54 approaches would attempt
to find the best model in the assumed model class (e.g., parametric models assuming a
Gaussian measurement noise process). Once the best model is in-hand, uncertainty estimates
can be extracted from the computed posterior distribution; this uncertainty depends not only
on the “best” model, but also on the real data and the assumed prior distribution which may
also be inconsistent with real experimental data. One can extract a single parameter estimate
from the posterior and then apply frequentist goodness-of-fit testing51, but the assumed prior
may substantially affect the results.

The methods used here aim to detect any inconsistency of the data with modeling
assumptions whereas a pure Bayesian method cannot detect that the observed data exhibits
features outside of the class of dynamical models considered51. We should explicitly point
out two limitations of the goodness-of-fit methods advocated herein: (i) rejection of a fitted
model does not specifically point out what is incorrect about the model and (ii) some
modeling assumptions may be incorrect (e.g., the diffusion coefficient is state or position
dependent20) but there is not enough evidence in the data (i.e., the sample size is too small)
to reject the null hypothesis. The power of the testing procedure depends on the true data,
the assumed model, and the data sampling frequency43. Despite these limitations, the formal
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goodness-of-fit hypothesis testing machinery shows great promise in quantitatively and
more objectively studying experimental single-molecule data.

At a high-level, our method processes individual experimental trajectories by 1) selecting
parametric SDE model(s); 2) dividing the trajectory into disjoint time windows; 3) within
each window extract the MLE vector summarizing the forces, diffusion, localization
precision in that local time window for each model under consideration; 4) checking all of
the statistical assumptions implicit in the assumed model against data via goodness-of-fit
tests; and 5) if the goodness-fit-test are not rejected and multiple models are under
consideration, select a parametric model via model selection criteria (if rejection occurs,
consider a new model class and repeating procedure).

General Stochastic Differential Equation (SDE) model considered
We consider estimation and statistical inference problems associated with an SDE of the
form:

(1)

(2)

where the three dimensional position of the particle at time t is denoted by the vector rt ≡
(xt, yt, zt)T (the superscript denotes a matrix transpose). The subscript t is used to index time
in the stochastic process. Bt represents a standard 3D Brownian motion process. The
notation dBt is used as shorthand for an Ito55 stochastic integral (similarly for drt). The
remaining terms (and their physical interpretation) in Eqn. 1 will be described in greater
detail after additional notation is established. Stochastic effects inherent to SPT experiments,
such as photon count uncertainty, prevent us from directly observing rt. The only quantity
we can directly measure in the lab is denoted by ψ. This process is also indexed by time, e.g.
ψti, but measurements are only available at discrete time points. The random variable εti
represents one 3D measurement noise realization at time ti.

We use the notation εti ~ (0, R) to convey that εti is assumed to be distributed according to
a mean zero multivariate Gaussian with covariance R. Using an R inconsistent with the value
associated with an experimental trajectory (or assuming an incorrect measurement error
distribution) may bias parameter estimates of physically interesting quantities. Motivated by
these considerations, we estimate the inferred measurement noise from the observed data
using likelihood methods. In SPT applications, R is often unknown a priori because the
number of photons available for detection decreases during data collection. Furthermore,
complex background fluorescence and other experimental artifacts make effective
measurement noise difficult to predict and/or relate in a simple fashion to nominally
detected photons27,56.

Linear SDE model considered
The specific model we consider is a linear SDE parameterized by a finite dimensional vector
denoted by θ. The parameters contained in θ and the remaining terms in Eqns. 1 and 2 are
defined by the following equations:

(3)

(4)
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(5)

(6)

The collection of parameters to be estimated by the data will be denoted by θ ≡ (A, B, C, R).
A is a 3D vector (i.e., A ∈ ℝ3). B, C, and R are 3 × 3 real matrices.

Physical interpretation of the SDE model parameters
The equations above were inspired by models in statistical physics49,53. For example, kBT
represents Boltzmann’s constant multiplied by the system temperature. The fitted SDE is
used to infer physical information about dynamical processes acting on the tagged particle,
e.g., F(rt) denotes the effective force acting on the particle implied by the observations. A
quantity like F(rt) contains information about how the local cellular environment is affecting
the tagged particle. The parameter C = σ determines the local diffusion53 matrix defined by
the relation D ≡ σσT (i.e., σ is the Cholesky factor of D). Inertia of the particle is ignored
through a fluctuation dissipation relationship stated in Eqn. 5, i.e., the tagged particle is in
the “overdamped” regime53; Φ is a matrix quantifying effective friction (inducing the
“overdamping”). The instantaneous velocity of the overdamped particle is quantified by
ΦF(rt). B can be interpreted as an elasticity parameter. We later check the modeling
assumptions (e.g., overdamped regime and Brownian noise) against experimental data43.

Time window-based parameter estimation and testing
Parameters approximating the dynamics or measurement statistics of the tagged particle
change in an effective continuous fashion with time in many SPT applications. In all cases
analyzed, the tagged particle measurement noise changed smoothly over the course of one
trajectory. If a fixed constant measurement noise for single a SPT trajectory was assumed,
this would be enough to cause model rejection by the goodness-of-fit hypothesis tests
employed (see Figs. S8 & S9, Table S1, and associated SI discussion). Motivated by the fact
that parameters characterizing the dynamics and measurement noise change over time, we
subdivide each trajectory into K blocks of contiguous time windows. In each window, we fit
the parameters of an SDE to each of the following time series:

. The inferred information from a single trajectory is
summarized in K parameter vectors: θ(1), θ(2), … θ(K).

We force the value of the differences W ≡ (ni+1 − ni) + 1 representing the number of
observations in a given local time window to be a constant value. The term “micro-time” is
used to refer to the times within local windows. For example, in local time window 2, we

have the observations  indexed by the micro-times tn1, tn1+1, …, tn2; the time-
ordered sequence is subsequently used to infer the SDE parameter vector θ(2). The local time
window is independent of the volume traversed by the particle. This was done in order to
keep the time series sample sizes the same and hence facilitate comparing goodness-of-fit
test statistics coming from each window (i.e., the number of experimental observations used
to scrutinize model predictions is the same in each local window).

In this article, we restrict our attention to the 3D linear SDE model described earlier because
this model can be fit via maximum likelihood methods using quantities associated with the
Kalman filter57. The Kalman filter is well-established58 and has been used in SPT
analyses35,59–62. Details outlining how MLE and the likelihood can be extracted from the
linear model are contained in the SI.
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Even though the likelihood of the measurement sequence can be computed exactly under the
Kalman filter, goodness-of-fit tests simultaneously checking all distributional assumptions
were difficult to rigorously address before the advent of recent advances in time series
analysis43–45,47. The aforementioned approaches have been utilized extensively in scalar
time series, but statistical inference in the multivariate non-stationary case is currently an
open problem45,47. A brief description of the tests used here43 are provided in the next
subsection; a more detailed discussion is contained in the SI Theory and Methods section
where we discuss how the technical difficulties associated with the multivariate version of
Hong and Li’s test43 are addressed (advantages over traditional Kalman filter techniques are
also provided in the SI, e.g. see Fig. S9 and associated discussion).

Throughout, we also restrict attention to the case where C and R are diagonal (uncorrelated
thermal and measurement noise) and F(r) comes from the gradient of a scalar potential
(hence B is symmetric). It should be noted that one can also consider non-gradient forces
and/or nonlinear multivariate SDEs in both estimation53,63 and inference43,45; we focus on
the linear case described above to simplify exposition. In the cases rejected in this article,
using nonlinear polynomial SDE models did not improve the model fit (quantified in next
section).

Experimental Methods
Sample preparation and microscopy

A time ordered image stack where consecutive images were measured every 4ms was used
to generate each SPT trajectory. Sixty ARG3 mRNA trajectories in budding yeast visualized
by EGFP fusions to proteins binding MS2 loop repeats were analyzed in total at this
sampling frequency. 3D measurements were obtained by analyzing a double-helix point
spread function (DH-PSF)8,10,64 response in each image. The experimental setup and data
processing method used are described in Thompson et al.10. The mRNA trajectory extracted
from the image stack was divided into contiguous windows each containing W = 400 noisy
3D observations (the number of contiguous observations was determined to provide a
balance between variance and bias). The results reported were not found to depend on the
window size or the temporal sampling rate (see SI). Using W = 400 resulted in a total of 473
windows of 3D data. Individual single particle trajectories were associated with K= 4–12
blocks of local window data. The length of data associated with one trajectory depended
stochastically on photobleaching effects.

Signal processing
Initially, we assumed that the three position coordinates evolved statistically independently
of one another when estimating the SDE parameters in the 473 windows of 3D data. The
assumption of statistical independence of the position coordinates effectively increased the
number of 1D SDE parameter vectors estimated to 1419 = 3 × 473. In the 3D cases
considered, the total number of parameters to estimate for each trajectory is 15 in the 3D
SDE models considered.

Local MLE of 3D trajectories
Estimation of the parameters in local window j was achieved by recording the measurements
at W micro-times and using them to obtain the maximum likelihood estimate (MLE) defined
by:
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(7)

where the parameter vector θ̂(j) ≡ (Â, B̂, Ĉ, R ̂) is the MLE assuming the initial measurement
is precisely known57. Finding the MLE requires one to evaluate the transition density, p(ψti |
ψti−1; θ(j)). In the Kalman filter case considered, the transition density is a multivariate
Gaussian density. The SI contains the equations connecting the continuous time SDE to the
discrete Kalman filter57, as well as details of initial parameter guesses and goodness-of-fit
statistics. Throughout, we focus on W = 400, but other values are explored in the SI.

Hypothesis testing procedure
After fitting models to observed experimental data, we used the MLE to form the “null
hypothesis”43 and computed two test statistics: 1) the omnibus “Q-test” introduced by Hong
and Li43; this test statistic simultaneously checks the distributional shape and the statistical
dependence in the probability integral transform (PIT) and 2) the “M-test”43. The latter
focuses only on statistical dependence in the computed PIT sequence. More specifically, the
name “M-test” is used to refer to M(1,1)43 with a lag truncation parameter of 20; in this
study, results obtained using M(i, j) were similar for i, j ∈ {1, 2} and lag parameters of 10
and 30. We used the sampling parameters j = 1 and p = 2043 to construct the Q test statistic,
but our findings supported those reported in Hong and Li43. That is, the M and Q test results
are effectively independent of sampling parameters.

For the Kalman filter model, the PIT sequence (required for the tests mentioned above) was
computed using the normalized innovation sequence (i.e., the innovation vector multiplied
by the inverse matrix square root of the innovation covariance) using the observed data and
the fitted θ̂(j). Note that this approach uses a linear combination of 3D elements and aims at
removing empirical correlation between observations; this partially mitigates issues
associated computing the PIT of a multivariate time series43.

Computing Error Bars
Finite time series sample sizes in introduce inherent parameter uncertainty into the
estimates. If an SDE is fitted, and the goodness-of-fit test suggests that there is no evidence
of inconsistency between the model and data, then we turn to Monte Carlo Simulations for
extracting error bars. The point MLE is used to generated multiple synthetic trajectories
(each having the same number of observations as the experimental data); subsequently, the
MLE of each synthetic path is extracted. From this collection of estimated parameters, the
standard error, SE, of each element of θ̂(j) is extracted and the range of plausible parameters
is approximated by θ̂(j) ± SE.

Results and Discussion
Control simulations

To begin, we start with a situation where a 3D SDE simulation is used to generate data (i.e.,
measurement noise with precisely known statistics was added to the synthetic observations).
The parameters were forced to be fixed for the duration of the simulation and the interest is
in quantifying how accurately parameters describing x, y, z force interactions can be
characterized under a correctly and incorrectly specified model with simulation parameters
selected to mock experimental conditions. Table 1 reports the mean and standard deviation
of these parameters (see caption for additional Monte Carlo simulation details). The last
column of Tab. 1 provides the parameter of the underlying true data generating model; the
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1st and 3rd columns present parameter estimation results using the 3D SDE model proposed
(the columns differ in the number of temporal observations used for each MLE estimate);
the 2nd and 4th columns present results obtained by a “classic 1D SPT” model where
interaction terms (e.g., Bxy) are set to zero. Note that parameter estimates for the classic 1D
SPT induce appreciable bias in both the “elasticity” parameters (components of B) and the
diffusion coefficient. These results indicate that using a time series size of W = 400 has
power to detect 3D force interaction terms in the sample sizes and observation frequencies
studied. Table S4 provides additional evidence that the method has adequate power to detect
kinetic phenomena of interest in the experimental mRNA trajectories.

Estimation of SPT models with time varying parameters
Here we first consider an actual experimental case of motion of a single mRNA particle in a
cell where the assumption of statistical independence between the coordinates was not
rejected by the goodness-of-fit tests employed. Figure 1 presents three panels where the
entire noisily measured trajectory (containing both thermal and measurement noise) is
plotted and the behavior during time windows one, four, and eight are highlighted.
Superimposed, the inferred forces at different micro-times are plotted as colored arrows in
the three panels; in case (A) the force vectors are so short that only the yellow tails of the
force vectors are visible.

It is possible that a single tagged particle tracked for a long enough time can exhibit a
dynamical regime change29,66. For example, the particle can change from exhibiting “pure”
diffusion to one consistent with another mode of motion such as “directed motion” or
“corralled/confined” diffusion16,29,66. We clearly observe regime changes in this single
trajectory; for example window one (Fig 1A) would be considered a “pure diffusion” regime
whereas window eight (Fig. 1C) would likely be classified as “corralled diffusion”29.
However, window three (Fig. 1B) would not cleanly fit into any classic SPT motion model
(it is intermediate between diffusive and corralled). The change between the two regimes is
relatively smooth and slow relative to the temporal sampling frequency. The inferred vectors
quantify the magnitude and direction of the forces acting on the particle in the corralled/
confined region. A discussion comparing and contrasting the type of corralled/confined
diffusion model considered here to other classical confinement models15,17 is presented in
Ref.67.

Figure 2 presents more quantitative results illustrating that the particle shown in Figure 1 is
experiencing smooth changes in the SDE parameters. In Fig. 2A, we plot the estimated Â
(see Methods) vs. time. The dashed lines corresponds to parameter uncertainty in the
estimate. The confidence bands were obtained via Monte Carlo simulation techniques
outlined in the Methods. Panels B-D are similar except they correspond to the parameters B̂,
Ĉ and R̂, respectively. Regarding potential physical interpretation, the time varying Ĉ can
correspond to the mRNA-protein (mRNP) complex changing its effective hydrodynamic
radius in a non-trivial fashion as it traverses the cell; the increase in magnitude of B̂ can be
explained by a tagged mRNP aggregate slowly binding to a larger physical object in the
cytoplasm. However, both of these explanations require additional studies (e.g. multi-color
SPT experiments) to verify the posited interpretations since the effective diffusion
coefficient and elasticity can change for other reasons, such as changes in local viscosity or
other factors53. The time dependence of R̂ showing increasing measurement noise
(increasing uncertainty in position) is far less ambiguous since multiple GFPs are attached to
the mRNA10; the decay in intensity is caused mainly by different dyes photobleaching at
different random times and this reduces the experimenter’s ability to extract precise
positions.
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Figure 2 also demonstrates that the change in dynamical responses is not instantaneous on
timescales now resolvable in single-molecule experiments (a pure diffusion continuously
morphs into a corralled diffusion). Figure S6 demonstrates that parameter estimates obtained
by analyzing the experimental mRNA SPT data are insensitive to the sampling parameter W
and the time between successive observations. Panels E–F in Fig. 2 plot the Q and M
goodness-of-fit statistics associated with the observed data and the estimated θ(j). The
dashed lines in panels E–F denote the asymptotic critical values of the Q and M test
statistics; test statistic values above this threshold indicate a fitted model inconsistent with
the observed data with an asymptotic one-sided significance level (without multiple testing
correction) of 2.5%.

SDEs with smoothly evolving parameters was a common feature in this mRNA SPT data.
For example, in all observed trajectories, the effective measurement noise was observed to
smoothly vary over the course of data collection and the change within individual
trajectories was statistically significant (see Fig. S4). Parameters characterizing particle
motion smoothly changing over time has important implications in regards to explaining
causes of anomalous diffusion14,22,31,68,69 and for tracking groups of particles in the
cytoplasm where dynamical models (with fixed parameters) are often utilized35,59–62.

The SI (Fig. S5 and Tables S1–S3) displays some problems that can occur if one does not
account for time-varying parameters in classic SPT analysis methods. Traditional models
estimated by MLE assume fixed parameters or impose heuristics for truncating trajectories,
e.g.10,16; if the underlying data changes appreciably then significant biases can be
introduced. Worse yet, large transient forces of physical interest may go unnoticed (e.g., as
shown in the next subsections). Tables S1 and S3 show that the testing procedure employed
can quantitatively determine if there is adequate evidence in the data to detect time changing
parameters in one trajectory. Figure S5 provides results analogous to Fig. 2 where a
windowing approach is used in conjunction with the MSD estimator utilized in Ref.10. It can
be observed that bias and variance of a commonly used MSD method is substantial even if
local time windows are used with the MSD estimator. Figure S5 also shows that for this
trajectory (with time changing SDE parameters), the bias is most substantial in the estimated
effective measurement noise (this parameter is also known as the effective localization
precision).

In the Experimental Methods, we discussed how an initial screening of 1419 1D models was
carried out. In this data set, 136/1419 1D SDE models were rejected by the Q-test and
290/1419 were rejected by the M-test43 using a one-sided Type I error rate threshold of
97.5%. The initial screening was done in order to reduce the computational load associated
with fitting a large batch of 3D SDE models. After further inspection of the rejected cases, it
was found that several trajectories where 1D SDE models assuming independently evolving
coordinates were rejected exhibited rich dynamics (some examples are presented in the
sections that follow; other examples can be found in the Figs. S2-S4). Of the trajectories
rejected, inclusion of a 3D force permitting coupling between the x,y,z, forces in the SDE
improved the fit in terms of the AIC and BIC model selection criteria and/or goodness-of-fit.
Note that increasing the polynomial order of the SDE, producing a 3D analog of the
nonlinear SDE model utilized in21, did not improve the fit; the M-test only rejected
266/1419 whereas the linear Kalman filter performed similarly (265/1419).

Note that the models considered do not explicitly account for a single-ended hard boundary
(e.g., a cell wall). If the wall is static and the particle continually strikes a single-ended
boundary, this modeling imperfection will likely be detected by the goodness-of-fit tests.
The reason for rejection would not be provided, but additional diagnostic analyses would
likely show that a region of occluded phase space is visited less frequently than the assumed
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model predicts it should. In general, if the particle has an affinity for a singled-ended
boundary and it hits this boundary often on the experimental time scale, another model
should be considered. In systems we have encountered, 2–4 “hard” reflections in a time
series of size 200–400 hitting a (nominally) known physical barrier have not adversely
affected estimation or goodness-of-fit testing. Effects of two-ended boundaries (with hard or
soft repulsions) have been recently analyzed by the first author67; in this work, the focus was
on studying short SPT trajectories (100–400 observations) containing thermal and
measurement noise. The work in Ref.67 complements the study provided in Ref.18 where
long (> 4000) trajectories were analyzed.

Discoveries enabled via goodness-of-fit tests
Next, we demonstrate another case where a dynamical regime change was observed along a
single 3D trajectory. Importantly, this trajectory was flagged by the goodness-of-fit test as
not being consistent with three independent traditional 1D SPT models. The white light
image of the cell containing the tagged particle is shown in Fig. 3A. The 2D projection of
the measured 3D DH-PSF trajectory is shown in the white light image magnification
displayed in Fig. 3A. The 2D projection is color-coded by a loose qualitative regime
labeling we applied to the data after analysis of the implied force magnitudes (these regimes
are discussed more in subsequent sections). The 3D force magnitude was inferred from K =
13 windows. The window boundaries are indicated by vertical lines in the bottom left plot of
Panel A. The red color label denotes the confined regime where the particle was observed to
exhibit large bursts of force ranging from 1–30pN. Fig. S7 demonstrates that the force bursts
were not overly dependent on the sampling parameter W. Note that the elasticity inferred

during the force burst (e.g.,  in z) is much larger than standard RNA
elasticities reported in the literature70,71 and the size of the force magnitude is consistent
with those forces studied via in vitro ribosome/mRNA studies72,73. Figure 3B presents the
M test statistic which indicates superior performance from a 3D model during the
confinement period. Figure 3C demonstrate quantitatively that the 3D SDE model also
improves performance in terms of the AIC and BIC54 model selection criteria (a value less
than zero in Fig. 3C suggests a 3D model is preferred by the model selection criteria). The
green region shown in Fig. 3A is a “directed by 3D force regime”. By this we mean that an
SDE model allowing for statistically correlated 3D forces was used, i.e., the elasticity matrix
had statistically significant terms in the off-diagonal entries (as determined by AIC and the
inferred force arrows).

Figure 4 plots the raw 3D trajectory (i.e., the full information afforded by the DH-PSF
measurements) as well as the inferred forces in the two different regimes (these regimes
were highlighted in Fig. 3A). Fig. 4A displays a confined regime where the tagged particle
experiences equal and opposite forces pointing in spatial directions indicated by the force
vectors. Fig. 4B shows, after an intermediate transition time occurring between seconds 5 –
14, that the type of dynamics the tagged particle experiences changes during time 14–15s.
The tagged particle experiences statistically significant constraint forces during time 14 –
15s. In this regime, the SDE model selection analysis (see Fig. 3C) suggests that the
sequence of measurements is best explained by forces whose components are statistically
dependent.

Some possible physical interpretations of the dynamical transitions described above are
posited in the text below. In the confined regime (Fig. 4A), the mRNA particle appears to be
tightly bound to another molecule. After this binding, the dynamics experienced by the
particle slowly change into forces suggesting that the mRNA complex engages in active
transport (Fig. 4B). In the active transport regime (Fig. 4B), the mRNP complex appears to
be tethered to a cytoskeletal track (e.g. a microtubule or actin cable) and subsequently
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shuttled (i.e., directed) by 3D forces plotted in Fig. 4B. The estimated 3D forces are
described in greater detail in the next subsection. Another, albeit more ambitious,
interpretation of this data is that the observed phenomenon is a dynamical signature
associated with the translation of mRNA by a ribosome72,74,75. The force magnitudes
inferred by the SDE are in the 1–30 pN range for bursts; this range can possibly be
explained by ribosomal forces72, however our experiments are different in spirit (namely,
the fluorescently tagged molecule is being “passively” observed in vivo) so directly
comparing force magnitudes is not straightforward. However, further research is needed to
determine what would cause the constrained motion observed (e.g., techniques able to
resolve both mRNA and a binding ribosome with high spatial and temporal resolution are
needed, such as two color imaging). The ribosome interpretation is admittedly ambitious,
but the highly directed inferred force vectors are nonetheless useful in determining that the
particle is interacting strongly with another object in the cytoplasm. This discovery was
enabled by goodness-of-fit tests identifying inconsistencies of the SPT data with traditional
SPT models.

New kinetic signatures of in vivo transport
Typically, a mean square displacement analysis coupled with a large measured velocity
characterizes directed motion. However, both the velocity magnitude and duration of
directed motion on cytoskeletal structures in cells are dificult to reliably quantify at the
single-molecule level10,29. The use of inferred SDE forces evaluated for each SPT
measurement in-hand can help in providing another dynamical fingerprint of directed
transport along a cytoskeletal track.

Regarding the experimental system under study, molecular motors are believed to shuttle
mRNP complexes in yeast cells29. When a mRNP complex is moved by a motor along a
track, a force must act tangential along the track in order for “directed transport” to occur,
but other forces must also be involved. For example, a motor stalk must tether the cargo near
the track. The force vectors observed in Fig. 4B are suggestive of both a classic directed
force (the force arrows point in a common direction) and a tethering force constraining the
mRNP near a cytoskeletal track (this induces forces “orthogonal” to the direction of
motion). The implied SDE forces just described thus display a 3D pattern as opposed to a
1D pattern typically used to characterize directed motion in SPT studies. The velocity of the
directed transport observed in this trajectory reached an average value of 490nm/s in the
directed regime. This magnitude is not excessively large but coupled with the force vector
magnitude and directionality (suggesting a tethering force), the possibility of the tagged
mRNP being shuttled across the cytoskeletal highway seems more plausible.

To classify the motion of all trajectory segments studied in the spirit of traditional SPT
literature, four 1D model types were estimated via MLE. In other sections we did not need
to select a category for the dynamics (SDE parameters were simply estimated; then the
statistical significance and physical interpretation of model parameters can be determined a
posteriori), but to assign categories to all trajectories and compare to other published
literature classifications, we selected the model type using the simplest model not rejected
by the Q test. For example, a trajectory would be labeled “static” if the goodness-of-fit test
failed to reject a model whose only nonzero MLE parameters were contained in R̂. Using
this approach, the fraction of trajectory segments identified to be undergoing 1D directed
motion (≈ 6.7%) and “static motion” (≈ 28.1%) is comparable to previously published
literature values29. In Fusco et al.29 another “housekeeping” mRNA was studied in yeast;
the fractions of trajectories reported to experience directed motion was ≈ 3.0% and those
considered static was ≈ 31.0%. We compared these two motion types because
unambiguously distinguishing between other motion types can be even more subjective10,29.
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Conclusions
We have demonstrated how likelihood-based statistical inference can lead to new
quantitative insights about complex biological processes in live cells. Our methods were
able to quantify the 3D forces associated with tagged mRNA interacting with cellular
structures in yeast. The goodness-of-fit tools coupled with the multidimensional SDE
estimation methods provided strong evidence of the tagged particle interacting with other
components in the cytoplasm. Accurately quantifying the time evolving measurement and
thermal noise was crucial in the success of this endeavor. The statistical diagnostics tested if
the various assumptions implicit in our model (e.g., local linear overdamped forces and
Gaussian measurement noise) were justified given the data. It is known that distinguishing
between pure diffusion, corralled/confined diffusion, and a “static” particle is a difficult and
mildly subjective task16,29; fortunately our models can be applied without assuming a
subjective label. The only subjective information assumed was the parametric model form,
but we used the goodness-of-fit tests to check our assumptions (with single-molecule
precision) against experimental data.

Many interesting 3D forces were only uncovered because of the statistical rejection of
classic SPT diffusion models by the goodness-of-fit tests employed43. Without the use of
new goodness-of-fit tests capable of simultaneously testing all distributional assumptions
(properly accounting for inherent thermal and measurement noise and also able to measure
inconsistencies in assumed velocity or force) along a single trajectory, these interesting
scientific results would have been missed due to the volume of trajectory data produced. The
unusual number of statistical rejections along a subset of trajectories flagged some
dynamically unusual trajectories and inspired additional investigation. New kinetic
signatures of directed motion and binding were suggested when classic SPT models were
rejected. Kinetic signatures not depending on (relatively) long-lived large constant velocity
can assist in identifying both “traditional directed transport” and “tug-of-war” type forces
acting on a tagged particle76,77. Utilizing and expanding on recent advances in rigorous time
series analysis43–47 shows promise in SPT applications where dynamical models required by
linear or nonlinear tracking tools need to be systematically checked. It should be stressed
that the goodness-of-fit testing approach used here43 is readily applicable to local nonlinear
SDEs and other more complex stochastic models20,36,53. Examples of other trajectories
exhibiting directed transport and forces discovered by the goodness-of-fit screening can be
found in Figs. S1–S3.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The left column panels display 2D segments of a single mRNA trajectory for three different
time windows. The right panels repeatedly plot the full 3D trajectory as a solid line (time
color coded); in each panel, the inferred force vectors corresponding to the time segments
shown the 2D panel to the left are plotted (force magnitude color code shown in scale bar).
These forces were obtained by first estimating the SDE parameters in the window and then
using the measurements to evaluate the force at several “micro-times” in the local time
window. Panel (A) corresponds to the force estimated in window 1 (this panel also shows
the time legend used for all plots as well as the white light cell image). This panel would be
typically labeled as a “pure diffusion” as the force vectors estimated are very small; Panel
(B) corresponds to time window 4 where there is a transient regime that would not fall into
any classical single particle tracking motion type. Panel (C) plots time window 8 data which
would be considered as “confined”. The inferred force vectors can be estimated from the
observed time series without using an external force probe; the magnitude and direction of
the forces arrows help identify the inward facing forces experienced by the confined
particle. All 3D images were produced using the RGL package65.
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Figure 2.
The parameters of the local SDEs estimated from experimental data in each time for the data
shown in Figure 1 are plotted as symbols in panels A–D. The solid lines connect the
parameters estimated in the different windows and the dashed lines correspond to the
standard deviation (parameter uncertainty) associated with a simulated SDE possessing the
same parameters as those observed for the experimental data. Panels E–F plot two test
statistics used in assessing the fit of the assumed SDE model given the observational data.
The results shown are for a case where traditional SPT models were not rejected (hence the
off-diagonal terms in B are set to zero).
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Figure 3.
A case where the particle interacts with an object in the cytoplasm. Panel A shows the
location in the cell where the image was taken. The microscope images is magnified and the
x–y coordinates of the experimentally measured trajectory is shown in color. The red region
shows where the particle was confined by large constraint forces. The inferred forces
reached magnitudes as high as 30pN for long time bursts (Fig. S7 illustrates that this force
burst was insensitive to W); the cyan region is a dynamical regime encountered before the
particle experiences a “3D directed force” (a regime denoted by green and discussed in the
text). Panel B plots the goodness-of-fit test statistic and Panel C plots the AIC and BIC
comparing a genuine 3D model to a 1D model (lower values indicate better fits for both
goodness-of-fit and model selection statistics). The trajectory strongly suggests constraint
forces and the AIC and BIC model selection criteria verified that adding correlation between
the effective forces governing the particle dynamics improves the fit. The experimental
trajectory and effective forces imply the existence of a manifold on which the particle
evolves. The SDE quantifies the strength of the “tether” to this manifold.
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Figure 4.
Inferred force vectors for the trajectory in Figure 3. The solid lines show the 3D
measurements and the colored spheres and arrows denote the inferred 3D force vector. Panel
A plots representative forces associated with the confined motion regime and Panel B shows
those associated with the directed regime.
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