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Abstract

In this work, we present a novel cortical correspondence method with application to the macaque 

brain. The correspondence method is based on sulcal curve constraints on a spherical deformable 

registration using spherical harmonics to parameterize the spherical deformation. Starting from 

structural MR images, we first apply existing preprocessing steps: brain tissue segmentation using 

the Automatic Brain Classification tool (ABC), as well as cortical surface reconstruction and 

spherical parametrization of the cortical surface via Constrained Laplacian-based Automated 

Segmentation with Proximities (CLASP). Then, initial correspondence between two cortical 

surfaces is automatically determined by a curve labeling method using sulcal landmarks extracted 

along sulcal fundic regions. Since the initial correspondence is limited to sulcal regions, we use 

spherical harmonics to extrapolate and regularize this correspondence to the entire cortical surface. 

To further improve the correspondence, we compute a spherical registration that optimizes the 

spherical harmonic parameterized deformation using a metric that incorporates the error over the 

sulcal landmarks as well as the normalized cross correlation of sulcal depth maps over the whole 

cortical surface. For evaluation, a normal 18-months-old macaque brain (for both left and right 

hemispheres) was matched to a prior macaque brain template with 9 manually labeled, major 

sulcal curves. The results show successful registration using the proposed registration approach. 

Evaluation results for optimal parameter settings are presented as well.
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1. INTRODUCTION

Neurodevelopmental neuroimaging studies are increasingly applied to primates as 

pathologies and environmental exposures can be studied in well-controlled settings and 

environment.1–3 Non-human primates, in particular macaque monkeys, have been widely 

used for studies in the pathology of neurodevelopment since these animal models are closely 

related to those of humans. Specifically, childhood-onset mental illnesses require a full un- 

derstanding of developmental trajectories. Deeper insights into primate brain maturation are 

likely to capture missing human developmental trajectories especially at the early stage of 

postnatal development. Therefore, a key step in understanding neurodevelopment via 

neuroimaging studies is to establish correspondence between the human and the non-human 

primate cortex. Such cortical correspondence is a prerequisite to study cortical thickness or 

surface expansion.4 Cortical folding in non-human primates is less complex and its pattern 

varies significantly less across subjects than in humans, and thus primate brain analysis are a 

perfect application for an initial evaluation of novel brain correspondence methods. In this 

paper we propose a novel cortical correspondence method evaluated on macaque cortical 

data with the future goal to expand its use to the human and cross-species primate setting.

Since volume-based registration is limited to image intensities as features, better 

correspondence is established via registration on cortical surfaces that preserve geometry 

properties of the cortex.5 Moreover, the choice of stable features such as sulcal folding 

patterns across subjects is important for consistent correspondence. Several researchers 

proposed cortical registration via spherical mapping.6–8 The work closest to the one 

presented here is the one by Park et al.,8 who proposed a surface registration method based 

on spherical thin-plate splines.

In their method, they map the entire cortical surface onto the unit sphere and employ thin-

plate splines to parametrize the deformation field, as well as use sulcal constraint in the 

registration metric. Our work is similar to their framework in that we work on the unit 

sphere and employ similar sulcal constraints. In this work, however, we use the spherical 

harmonic basis function for correspondence extrapolation due to its convenient, global 

harmonic decomposition of the deformation field, which gives a globally regularized 

deformation field as a result. We evaluate registration performance of this method on a 

macaque brain using 9 major sulcal curves.

2. METHODS

2.1 Preprocessing

2.1.1 MR image acquisition and surface reconstruction—We used 18-months-old 

normal macaque brains imaged at the Yerkes Imaging Center (Emory University, GA). The 

subjects were scanned on a 3T Siemens Trio scanner with an 8-channel phase array trans-

receiving volume coil using MPRAGE with GRAPPA optimized to a high resolution at 

0.6×0.6×0.6 mm (TR = 3,000 ms, TE = 3.33ms, ip angle = 8°, matrix = 192×192). The raw 

MR images were registered into a standardized stereotaxic space using a linear 

transformation.9 The linear registered images were corrected for intensity nonuniformity 

resulting from inhomogeneities in the magnetic field.10 The Atlas-Based Classification tool 
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(ABC)11, 12 was employed to the registered and corrected images to classify into white 

matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and background. Processed 

tissue classification results were manually corrected if necessary and separated into left and 

right hemispheres for reconstructing two hemispheric cortical surfaces. The inner- and 

outer-surfaces were automatically extracted using the Constrained Laplacian-based 

Automated Segmentation with Proximities (CLASP) algorithm. We used the middle surface 

model for triangulated meshes with 40,962 vertices in the native space. Each vertex of the 

surface model was then homeomorphically transformed onto the common unit sphere using 

a deformable surface model.13

2.1.2 Automatic sulcal curve extraction and labeling—The cortical fundic regions 

of cortical surfaces are relatively robust to individual variability across subjects. Hence, the 

sulcal folding patterns of fundic regions are thought to be able to play a key role in surface 

registration. For a triangulated cortical surface, a sulcal curve on the surface can be defined 

by a set of points that are located along high-curvature fundic regions. We used automatic 

sulcal curve extraction14 and automatic curve labeling15 to extract a set of labeled sulcal 

curves. The unlabeled sulcal curves are extracted from the surface using an anisotropic 

geodesic distance map.14 Note that the extraction method delineates not only (possibly 

disconnected) major curves but also many minor curves that need to be eliminated. Since the 

labeling method uses manually labeled curves as reference for labeling, to collect a set of the 

reference curves in automatic sulcal labeling, experts label the automatically extracted 

curves: central (CS), arcuate (AR), principal (PR), superior temporal (STS), lunate (LU), 

cingulate (Cing), intraparietal (IP), occipito-parietal (OP), and sylvian (Syl) sulcus. These 

curves are less variable across subjects and therefore, can be used invariant features for 

correspondence. Given raw curves as input, the best matched sulcal curve is selected from 

the reference curves to label the corresponding curve in the subject, while discarding minor 

and extraneous curves.15 The point-by-point correspondence is automatically established by 

the labeling method as well.

2.2 Spherical Harmonics-based Deformation Field

Once the initial correspondence is determined by sulcal labeling, our goal is to find a 

deformation field between the two surfaces that extrapolates the landmark correspondence to 

the full surface, while also introducing a regularization. We first map all vertices of the 

cortical surfaces onto the common unit sphere. Note that the spherical mapping is provided 

during surface reconstruction, as well as the mapping does not establish an appropriate 

correspondence across the cortical surfaces from different subjects (see Fig. 5b and Fig. 6b). 

To find the deformation field that establishes such a correspondence, we compute 

displacements for all corresponding landmarks on the sphere and apply a linear fit via 

spherical harmonic decomposition of these displacements, which is then further optimized 

incorporating sulcal depth maps.

2.2.1 Landmark displacement—After the spherical mapping, a displacement for two 

corresponding landmarks is measured from a curve. We convert all displacements into the 

polar coordinate system in order to take advantage of its convenient representation on the 

sphere. However, the angular difference in the conventional polar coordinate system still 
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does not guarantee arclength preservation at every location; it can be easily observed that the 

angular difference is much larger nearby the poles than at the equator for the same amount 

of geodesic distance on the sphere. Therefore, we use a locally normalized polar system 

such that arclength is preserved. Let p and q be corresponding land-marks from template and 

subject, respectively. We first rotate these landmarks along the big circle (longitude circle) 

passing through the two poles in order that p is exactly located on the equator. Then, we 

compute two displacements (elevation Δθ and azimuth Δφ) between p and q after rotation, 

which ensures that the arclength ratio of displacement is preserved regardless of its location. 

Thus, the local landmark displacement at a point (θi; φi) on the unit sphere is represented as 

di = [Δθi;Δφi]T after rotation to the equator.

2.2.2 Linear fitting for initial coefficient computation—Incorporating all 

displacements, we establish a straightforward linear system to determine the coefficients of 

the spherical harmonic representation of the Δθ and Δφ displacement field via spherical 

harmonic basis function up to a predetermined degree k.16 The coefficients that best fit to 

displacements are determined in a least-squares fitting manner. Specifically, at a point (θ; φ) 

on the sphere, the spherical harmonic basis functions with degree l and order m (−l ≤ m ≤ 1) 

are given by

(1)

(2)

where  denotes the complex conjugate of  and  is the associated Legendre 

polynomials

(3)

Since the basis functions are defined in the complex domain, we use a real form of the 

functions defined by

(4)

The coefficients can then be estimated by

(5)

where D = [d1; d2; …, dn] and Y is a (k+1)2 by n matrix that incorporates spherical 

harmonic bases. In order not to overfit the landmark displacements and thus to achieve a 
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regularized initial deformation field, we chose a relatively low number of degree in our 

application (k = 5).

2.3 Optimization

Since the initial coefficients are determined guided only by sulcal landmarks, the cortical 

correspondence is possibly biased to the specific sulcal fundic regions selected in the sulcal 

labeling step. For better correspondence extrapolation, we further formulate a metric that 

incorporates sulcal landmark errors and the normalized cross correlation (NCC) of sulcal 

depth maps over the whole cortical surface. We denote D(p, q, c) as the arclength between 

two corresponding sulcal landmarks p and q, where c is a set of coefficients for the spherical 

harmonic basis. To regularize the impact of a displacement error, we define a mapping 

function f (ranging from 0 to 1) as a monotonically increasing function, depending on MR 

image resolution. For instance, if the voxel size of an MR image is 1mm, landmark errors 

below 1mm is ignored; f then maps to zero. The landmark error is obtained by L(p, q, c) = 

f(D(p, q, c)). We also consider NCC of sulcal depth maps as an additional regularization 

term. Let N(vsubj; vtmp; c) be NCC evaluated over all vertices on the entire cortical surfaces, 

where vsubj and vtmp are the sets of the vertices of the subject and template surfaces on the 

sphere, respectively. We combine average landmark errors and rescaled NCC value to be 

minimized. Our cost function is thus written as the following formula:

(6)

where n is the number of landmark pairs, and w is a weighting factor.

The spherical harmonic-based representations are hierarchical and orthonormal. We employ 

this hierarchy in that the initial deformation field is computed via a low degree (k = 5) fitting 

of the sulcal landmarks, and higher degree (k ≥ 10) representations are used in the 

optimization stage.

3. RESULTS

For the macaque cortical surface used in our experiment, each major curve consists of 20–30 

sulcal points on average so total 230 points were used to establish initial correspondence. In 

order to address the over fitting issue, we used spherical harmonics up to degree 20 in the 

optimization stage. As an optimization method, we applied the NEWUOA optimizer17 to 

find an optimal set of coefficients.

3.1 Optimal Parameter Setting

Since a high degree of the spherical harmonic decomposition results in over estimation of 

the deformation field, the choice of a proper degree is important. We performed experiments 

for different degrees to reduce landmark errors and to increase NCC of sullcal depth. In Fig. 

2, starting with degree 5, performance becomes better up to degree 15 of the deformation 

field, while it is hard at degree 20 to see much difference from degree 15. NCC values for all 

weighting factors become higher as optimization processes while landmark errors are getting 

reduced, which indicates that the optimization step indeed improves initial cortical 
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correspondence. In Fig. 3, we further performed experiments varying a range of the 

weighting factor w from 0.2 to 0.9 at degree 15. The results show that the cost function 

converges within the fixed number of iteration steps. For the overfitting issue, we removed a 

single sulcus from an individual subject and measured the landmark errors between the 

sulcus and its reconstructed one by the deformation field. We computed the average of the 

reconstruction errors of each subject. Figure 4 shows that the errors are minimized at degree 

10 incorporating depth information. The reconstruction errors increase as the degree of 

spherical harmonic decomposition becomes large due to the overestimation.

3.2 Macaque Cortical Surface

We empirically choose w = 0:5 as a median value of the weighting factor. Figure 5 shows 

the spherical mapping of the cortical surfaces with a deformation field and their alignment 

after registration. Since there is no gold standard of cortical correspondence, we used a color 

map for the evaluation of registration results. Note that this evaluation can be further 

improved if anatomical landmarks are used for validation. In Fig. 6, the color map is 

computed on the template surface and propagated to subjects via correspondence established 

by the initial spherical mapping and our method. It can be observed that the cortical surfaces 

are more aligned after applying our method.

4. DISCUSSIONS AND CONCLUSIONS

In this work, we have presented a novel cortical correspondence method via sulcal curve 

constraints using spherical harmonics. The initial correspondence is determined by a curve 

labeling method, and spherical harmonics extrapolate the entire correspondence over the 

whole surface. A linear fitting method is used to determine good initial coefficients for the 

spherical harmonic based deformation field. In order to avoid sulcal region-biased 

correspondence establishment, the coefficients are further refined as minimizing a metric 

that integrates both the landmark errors and the normalized cross correlation during 

optimization. Experimental results have shown that our method achieved a successful 

registration. In the future work, we will further enhance the method by incorporating prior 

information such as sulcal variability and evaluate this method on more subjects as well as 

for human cortical correspondence.
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Figure 1. 
Schematic overview of our method

Lyu et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2013 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Landmark errors and NCC of sulcal depth on different degrees of spherical harmonic 

representation: both metrics are improved until degree 15, whereas no significant difference 

between degree 15 and 20.
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Figure 3. 
Landmark errors (a) and NCC of sulcal depth (b) on different weighting factors at degree 15: 

the cost function converges after the optimization. As expected, the results varied between 

the landmark error and NCC of sulcal depth, depending on the weighting factor.
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Figure 4. 
Leave-one-out cross-validation for reconstruction errors: each sulcus is removed from a 

subject and errors are measured between the estimated landmark in the subject and the 

corresponding one in the template.
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Figure 5. 
Original cortical surface (a), spherical mapping with an initial deformation field following 

landmark fitting (b) and registration result following full optimization (c): red and blue areas 

illustrate sulcal fundic regions of subject and template cortical surfaces. Points on the sphere 

are sampled for visualization of the deformation field. A green line shows the arclength of 

displacement for a pair of corresponding landmarks.
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Figure 6. 
Visual comparison of template (a), initial spherical mapping (b), and our method (c): the 

color map of the template is propagated to a subject surface via established correspondence. 

Our method shows better correspondence than initial spherical mapping.
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