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Abstract

Labeling or segmentation of structures of interest in medical imaging plays an essential role in 

both clinical and scientific understanding. Two of the common techniques to obtain these labels 

are through either fully automated segmentation or through multi-atlas based segmentation and 

label fusion. Fully automated techniques often result in highly accurate segmentations but lack the 

robustness to be viable in many cases. On the other hand, label fusion techniques are often 

extremely robust, but lack the accuracy of automated algorithms for specific classes of problems. 

Herein, we propose to perform simultaneous automated segmentation and statistical label fusion 

through the reformulation of a generative model to include a linkage structure that explicitly 

estimates the complex global relationships between labels and intensities. These relationships are 

inferred from the atlas labels and intensities and applied to the target using a non-parametric 

approach. The novelty of this approach lies in the combination of previously exclusive techniques 

and attempts to combine the accuracy benefits of automated segmentation with the robustness of a 

multi-atlas based approach. The accuracy benefits of this simultaneous approach are assessed 

using a multi-label multi- atlas whole-brain segmentation experiment and the segmentation of the 

highly variable thyroid on computed tomography images. The results demonstrate that this 

technique has major benefits for certain types of problems and has the potential to provide a 

paradigm shift in which the lines between statistical label fusion and automated segmentation are 

dramatically blurred.
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1. INTRODUCTION

Segmentation of structures of interest on medical images plays an essential role in clinical 

diagnosis and treatment as well as understanding the complex biological structure-function 

relationships. Manual delineation by an expert anatomist has been the long-held gold 

standard for performing robust image segmentation [1]. The resources required to utilize 

manual expert segmentations on a patient-by-patient basis, however, are extremely 

prohibitive. Additionally, inter- and intra-rater variability (e.g., often observed on the order 
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of approximately 15% by volume [2, 3]) indicates a strong need to utilize multiple expert 

segmentations, which only further complicates the problem of limited resources.

Ideally, fully automated segmentation techniques would result in accurate and robust 

estimations. Unfortunately, imaging and anatomical variability often force fully automated 

techniques to take years of research and development and result in algorithms that are 

generally application specific. For instance, many segmentation algorithms focus primarily 

on the problem of tissue segmentation [4, 5]. For this specific class of problem, these 

algorithms have been shown to be highly robust and accurate; however, extension of these 

techniques to detailed segmentation of small, highly-variable structures (e.g. deep brain 

structures) often requires manual expert supervision [6].

In an attempt to utilize the benefits of both fully-automated and fully-manual segmentation 

techniques, the concept of atlas based segmentation (or multi-atlas based segmentation) has 

grown tremendously in popularity [6-10]. In multi-atlas based segmentation, a database of 

manually labeled atlases are collected and used as training data in order to segment 

structures on the patient of interest, or target. Labels are propagated from these atlases to the 

target through a deformable registration procedure and multiple observations of the true 

segmentation are constructed. A common technique to combine these observations is to 

break the procedure up into two steps i) atlas selection (i.e. a weighting or discarding of 

atlases based upon similarity to the target) and ii) label fusion (i.e. the combination or 

“fusion” of multiple observations in order to construct a single, more accurate estimate of 

the true segmentation) [8, 10]. In this two-step procedure, the label fusion is often performed 

using either a simple majority vote or a more probabilistically driven technique [9, 11]. 

Other, more recent, techniques combine these two steps into a single fusion process and 

show superior results in many cases [6, 7]. In particular, the generative model proposed by 

Sabuncu, et al. [6] has been shown to provide highly accurate results through a local, non-

parametric estimation of atlas-target similarity.

Thus, we are left two primary techniques to solve the segmentation problem i) fully 

automated segmentation and ii) label fusion. Currently, these techniques are primarily 

viewed as mutually exclusive approaches. Nevertheless, it would be beneficial to combine 

the high accuracy of the automated segmentation approaches with the robustness of the label 

fusion approaches. Herein, we propose a technique in which we simultaneously perform 

segmentation and label fusion. This is primarily accomplished through extension of the 

Locally Weighted Voting (LWV) technique proposed by Sabuncu et al. [6] to include a non-

parametric estimate of the conditional probability of the target intensities given the true 

segmentation. We call this technique Locally Weighted Voting with Intensity Correction 

(LWV w/ IC). This technique is assessed on both a multi-label whole brain segmentation 

problem and the segmentation of the thyroid using manually labeled CT scans. The results 

show that for a class of problems (e.g. whole brain segmentation) this technique can provide 

significant accuracy benefits over previously proposed label fusion techniques. Additionally, 

an assessment of the benefits and detriments of using this technique on the difficult thyroid 

segmentation problem is presented.
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2. THEORY

2.1 Problem Definition

Consider an image with N voxels with the task of determining the correct label for each 

voxel in that image. Consider a collection of R registered atlases (or “raters” in common 

fusion terminology) that provide an observed delineation of all N voxels exactly once. The 

set of labels, L, represents the set of possible values that an atlas can assign to all N voxels. 

Let D be an N × R matrix that indicates the label decisions of the R registered at all N voxels 

where each element Dij ∈ {0,1, … L − 1}. Let Ĩ be another N × R matrix that indicates the 

associated post-registration atlas intensities for all R atlases and N voxels where . 

Additionally, let I be the N-vector target intensity where . Lastly, let T be the N-

vector latent true segmentation that we are trying to estimate where Ti ∆ {0,1, … , L − 1}. In 

general, the segmentation problem that we are trying to solve is

(1)

where T̂ is the estimated segmentation.

2.2 Locally Weighted Vote

The Locally Weighted Voting (LWV) technique that we are utilizing arises as one of the 

byproducts of the generative model proposed by Sabuncu et al in 2010 [6]. In this technique, 

they attempt to solve the segmentation problem in (1) by assuming conditional 

independence between the observed labels and the observed image intensities. The estimate 

of the true segmentation is then constructed using an approach that is equivalent to a Parzen 

window density estimation

(2)

The probabilities p(Ti = s | Dij) and p(Ii | Ĩij) can be assumed to take on many forms. For 

simplification of the estimation procedure we assume that

(3)

where δ is the delta function and simply indicates whether or not the observed label (Dij) is 

equal to possible label s. Other models are available for this probability mass function, but 

for simplicity of presentation we use the model in (3) for all algorithms presented. As with 

the approach in [6], we assume that

(4)

In other words, we assume that probability of observing intensity difference (Ii − Ĩij) is 

distributed as a zero-mean Gaussian distribution with standard deviation σ. In this case, σ is 
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a free parameter that is generally determined using the available atlas data. This probability 

density function (PDF) serves as a voxel- and rater-wise weighting in the voting procedure.

2.3 Locally Weighted Vote with Intensity Correction

Using LWV as a reference, we reformulate the assumptions on the form of (1) to include a 

linkage structure between local performance and the global conditional probability of 

observing the target intensity value given the estimated true label. This reformulation is 

presented as

(5)

where p(Ti, Ii | D , Ĩ) is the linkage structure between the independent components in (2) and 

the global interaction between intensity and the true segmentation. Using a simple Bayes 

expansion, we expand p(Ti, s, Ii | D , Ĩ)

(6)

where we ignore the denominator in the Bayes expansion because of the fact that we are 

simply trying to maximize with respect to the label, and this denominator is constant with 

respect to all possible labels. The probability p(Ti = s) serves as a prior on the true 

segmentation. As suggested in [11], this distribution can serve as a uniform, global or 

spatially- varying prior. However, due to the spatial information already included 

conditionally independent derivation (see Eq. 4), we found that a uniform prior (i.e. 

) did not adversely affect the quality of the estimate. However, further 

investigation into the benefits of spatially-varying priors in the label fusion framework is 

certainly warranted.

Thus, we are left with the task of determining an optimal method of deriving the PDF 

governing the global interaction between atlas intensities and atlas labels through p(Ii | Ti = 

s, D, Ĩ). This PDF is commonly modeled in automated segmentation literature [4, 5]. 

However, the most common technique is to apply a parametric approach, such as assuming a 

Gaussian mixture distribution. In [6], they attempt to implicitly model the complex 

relationships between target intensity and labels through a Markov Random Field. Here, we 

explicitly model these relationships using a Parzen window density estimation to construct a 

non-parametric estimate of p(Ii | Ti = Ti = s, D, Ĩ)

(7)

where the * operator indicates a convolution with K (the kernel density estimator) and the 

delta function at the observed atlas intensity and Ñs is the number of voxels on the registered 
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atlases for which label s was observed. The free parameter h serves as smoothing parameter 

and is commonly referred to as the bandwidth. We found that defining  resulted 

in consisted and robust density estimations. Lastly, we define the kernel as a zero-mean 

Gaussian distribution

(8)

A demonstration of the density estimation is presented in Figure 1. The image seen in Figure 

1A indicates the relative size and location of the labels that we are presenting in this 

example. The images seen in Figure 1A and Figure 1B present the true density (from the 

target) and the estimated density (inferred from the atlases), respectively. As presented, the 

kernel density estimation accurately models the general size and shape of the PDF’s 

associated with each of the labels. While certainly not perfect, an estimation of this quality 

indicates that the inferring intensity density information from the atlases is a reasonable and 

robust approach to assessing target intensity density information.

3. METHODS AND RESULTS

3.1 Experimental Setup

All comparisons of segmentation accuracy were performed using the Dice Similarity 

Coefficient (DSC) [12]. The algorithms of interest in this paper are Majority Vote (MV), 

Locally Weighted Vote (LWV), and Locally Weighted Vote with Intensity Correction 

(LWV w/ IC). To perform the multi-atlas based segmentation procedure pairwise 

registration was performed between the target and all of the atlases and the labels were 

transferred using nearest neighbor interpolation. For all presented experiments, the 

intensities of the target and the atlases were normalized to each other (normalized at the 95th 

and 5th percentiles). Additionally, the σ value of 0.3 was used in the LWV estimation (see 

Eq. 4), which was empirically determined to be optimal.

3.2 MR Whole Brain Segmentation

First, we examine an empirical application of label fusion to multi-atlas labeling for whole 

brain segmentation. Each of the atlases was labeled with approximately 41 total labels, but 

certain atlases contained more or less depending upon the pathology of the patient. All of the 

brain images were obtained from the Open Access Series of Imaging Studies (OASIS) [13]. 

The atlases were labeled using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and registered 

to the target using an affine procedure [14] and then non-rigidly using FNIRT [15]. The 

accuracy of all of the algorithms was assessed with respect to increasing numbers of atlases 

fused. For each number of atlases fused, 15 Monte Carlo iterations were performed in order 

to assess the variability of the estimates. In order to delve more deeply into the comparison 

between the algorithms, the per-label accuracy was assessed for 20 labels ranging from large 

labels (e.g. the cerebral cortex) to small labels (e.g. deep brain structures). Particularly, the 

benefits of explicitly modeling the global relationships between intensities and labels were 
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assessed through comparing LWV with LWV w/ IC on a per-label basis using 10 atlases. 

The results of two-sided t-test were reported for these comparisons.

The results for this experiment can be seen in Figure 2. The target intensity, labels, and the 

estimate from the three algorithms can be seen in Figure 2A through Figure 2E, respectively. 

Upon qualitative inspection it is evident that the LWV w/ IC estimate more closely 

resembles the target labels than either the LWV or the MV estimate. A per-label comparison 

between the three algorithms is seen in Figure 2F and the difference between LWV and 

LWV w/ IC can be seen in Figure 2H. The significance tests indicate that explicitly 

modeling the global relationships between intensities and labels provides statistically 

significant benefit in 19 out of 20 labels presented. Lastly, the mean DSC (Figure 2G) shows 

that LWV w/ IC dramatically outperforms both MV and LWV for all numbers of atlases 

fused.

3.3 CT Thyroid Segmentation

First, we analyzed the accuracy of statistical fusion algorithms on an empirical multi-atlas 

based approach using a collection of 15 segmented thyroid atlases. The computed 

tomography (CT) images used in this experiment were collected from patients who 

underwent intensity-modulated radiation therapy (IMRT) for larynx and base of tongue 

cancers. Each data set has in-plane voxel size of approximately 1mm and a slice thickness of 

3mm. The images were acquired with a Philips Brilliance Big Bore CT scanner with the 

patient injected with 80mL of Optiray 320, a 68% iversol-based nonionic contrast agent. 

Following an initial affine registration, the atlases were registered using the Vectorized 

Adaptive Bases Registration Algorithm (VABRA) [16] and cropped so that a reasonable 

region of interest was obtained. For all estimates presented, a single atlas was chosen as the 

target and the remaining 14 atlases were used to create the segmentation estimate.

The results for this experiment can be seen in Figures 3, 4, and 5. In Figure 3, an example 

comparison where the intensity correction provides major benefit is presented. In the best 

individual atlas, the MV estimate, and the LWV estimate the thyroid is significantly under-

segmented. On the other hand, the LWV w/ IC estimate is able to detect the intensity 

homogeneity of the thyroid and creates an estimate that this significantly closer to the expert 

segmentation. To juxtapose this best-case scenario, we present an example where the LWV 

w/ IC estimate is outperformed by both MV and LWV (Figure 4). In this scenario, the lack 

of intensity contrast leads to an over-segmentation. Despite this problem however, the shape 

of the estimate by the LWV w/ IC algorithm is more accurate in many ways. Finally, a more 

quantitative comparison is presented in Figure 5. Due to the fact that this is a binary 

segmentation problem (i.e. thyroid and non-thyroid), we define the “label declaration 

threshold” as the probability threshold for which we can declare a voxel to be the thyroid. 

We sweep the label declaration threshold and perform a significance test between LWV and 

LWV w/ IC estimates. We see that the LWV w/ IC is significantly better than LWV for high 

thresholds. While the traditional technique is to use a threshold at 0.5 (where the results are 

not significant), the benefit at high thresholds indicates that the intensity correction enables 

the label fusion technique to declare more regions to be the thyroid with more confidence 

(i.e. with a higher probability). This could be particularly beneficial in situations where an 
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initial segmentation mask is desired, and only voxels of high probabilities would be included 

in the mask.

4. DISCUSSION

The ability to accurately and robustly estimate accurate segmentation of anatomical structure 

is of the utmost importance to clinical and scientific advancement. Fully automated 

segmentation algorithms have been shown to extremely accurate but lack the robustness to 

be of viable use in many cases with highly variable anatomy. On the other hand, multi-atlas 

based label fusion techniques have been shown to be extremely robust even in situations 

with highly variable and unpredictable anatomy, but lack the accuracy of the automated 

segmentation techniques for specific classes of problems. Combining the benefits of these 

techniques would be immensely valuable to clinical objectives and allow for more accurate 

and robust segmentation.

Here, we present a technique to simultaneous combine the accuracy of automated 

segmentation techniques with the robustness of label fusion techniques. This is primarily 

accomplished through modification of the generative model proposed in [6] where we 

extend the model to include a linkage structure between the conditionally independent 

components of labels and intensities and the complex global relationships of intensity and 

label values. Although, this global relationship is commonly modeled parametrically in 

automated segmentation, we use a Parzen window density estimation to achieve non-

parametric estimate of this density function. It is of particular note that the technique in [6] 

implicitly models these relationships through the introduction of semi-local Markov 

Random Field, however, it is noted that “this improvement is overall quite modest: less than 

0.14% per ROI.” Additionally, the inclusion of this field increases the computational time 

by 16 hours in a whole brain segmentation experiment, while the technique proposed in this 

paper causes no tangible increase in computational time. Other techniques that are similar to 

the technique presented in this paper have been proposed [17, 18]. The technique presented 

in [17] performs a segmentation correction after fusing with a majority vote; as a result, this 

technique is heavily dependent upon highly accurate initial segmentations. Additionally, 

unlike the results presented above (Figure 2), the technique in [18] only shows improvement 

for the cerebral gray and white matter, while it as outperformed by LWV for deep brain 

structures.

This technique has been shown to provide statistically significant benefits in the problem of 

whole brain segmentation in the presence of many labels including large labels (e.g., 

cerebral cortex) as well as small, highly-variable structures (e.g., deep brain structures). The 

application of this technique to the highly variable segmentation of the thyroid on CT scans 

shows that this technique is robust enough to handle situations where normal automated 

segmentation techniques could not be applied. Additionally, upon closer inspection, 

modification of the label declaration threshold indicates that this technique is able to 

segment the thyroid more accurately and with more confidence than the premier label fusion 

techniques.
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It is important to note that the novelty of this technique does not lie in the label fusion 

technique, or in the estimation of f(Ii | Ti = s, D, Ĩ), which is commonly modeled in 

automated segmentation literature. The novelty lies in the way in which we simultaneously 

attempt to combine the benefits of the automated segmentation and label fusion approaches 

without a dramatic increase in computational complexity. This proposes a paradigm shift in 

which the previously mutually exclusive techniques could be combined to achieve the 

accuracy and robustness of the algorithms individually.
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Figure 1. 
The ability to infer target intensity information from the registered atlases. The image seen 

in (A) indicates the relative size and shape of the five labels that are analyzed in this 

example. The images seen in (B) and (C) show the true and estimated intensity probability 

density functions. The results indicate that it is possible to infer basic information about the 

complex relationships between labels and intensity using the registered atlases.
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Figure 2. 
Accuracy comparison applied to whole brain segmentation. Qualitative comparison between 

the target intensity and labels, as well the three algorithms we are comparing is presented in 

(A)-(E). The per-label accuracy of each of the algorithms is presented in (F). The overall 

accuracy (presented as mean DSC) is presented in (G) and a quantitative comparison 

between LWV and LWV w/ IC is presented in (H). The results show dramatic benefit by 

explicitly modeling the global relationships between intensity and labels.
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Figure 3. 
Example where the Locally Weighed Vote with Intensity Correction outperforms the other 

algorithms. The target labels can be seen in (A) and four estimates of the segmentation can 

be seen in (B)-(E). The best individual atlas, MV, LWV, and LWV w/ IC can be seen in (B)-

(D), respectively.
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Figure 4. 
Example where the Locally Weighted Vote with Intensity Correction is outperformed by the 

other algorithms. The target labels can be seen in (A) and four estimates of the segmentation 

can be seen in (B)-(E). The best individual atlas, MV, LWV, and LWV w/ IC can be seen in 

(B)-(D), respectively.
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Figure 5. 
Quantitative analysis of thyroid segmentation accuracy. The accuracy of LWV and LWV w/ 

IC are compared with respect to the label declaration threshold. It is evident that for high 

thresholds, LWV w/ IC shows significant improvement over LWV.
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