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Abstract

Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns,
elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs),
newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent
investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis
infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis
infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and
the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare con-
cerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of con-
tainment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in
the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfor-
tunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance
in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of
antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human
healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the el-
derly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections
and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel
treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed
by ExPEC would greatly enhance food safety and positively impact human health.

Introduction

The number of extraintestinal pathogenic Escherichia
coli (ExPEC) infections with higher case fatality rates are

dramatically increasing worldwide, leading to a tremendous
burden on public health (Pitout, 2012). In addition to causing
human diseases, ExPEC strains are responsible for significant
economic losses in animal production, particularly within the
poultry industry (Barnes et al., 2003), one of the fastest
growing industries in the United States and worldwide.

Recently, numerous studies have highlighted similarities
between human and avian ExPEC, particularly in their viru-
lence genes, suggesting that poultry products could serve as a
source of ExPEC that causes sepsis infections in humans
(Manges and Johnson, 2012) (Fig. 1). Since poultry meat ex-
hibits the highest overall levels of E. coli contamination, and
E. coli strains isolated from poultry are often more extensively
multidrug resistant (MDR) than E. coli recovered from other

meats (Manges and Johnson, 2012), the increased poultry
meat consumption worldwide could have contributed to the
appearance of antibiotic (ATB) resistance in ExPEC and the
emergence of ExPEC infections in humans (Pitout, 2012).
Global trades and travels also contribute to the worldwide
spread of these infections (van der Bij and Pitout, 2012), thus
making it difficult to implement infection-control measures.

Although ExPEC infections have previously been easily
treatable with ATB therapy, traditional treatment regimens
are currently challenged by the appearance of ATB-resistant
strains. Developing alternative strategies to prevent/elimi-
nate these ExPEC infections requires fully understanding the
virulence and zoonotic risk, as well as the constant epidemi-
ological surveillance of ATB-resistance trends of these bacte-
ria in both humans and animals. The goal of this review is to
summarize the importance of ExPEC infections in humans
and chickens, their zoonotic risks, and the current trends in
ExPEC ATB resistance.
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General Characteristics of ExPEC

ExPEC strains have acquired specific virulence attributes
that confer an ability to survive in different niches outside of
their normal intestinal habitat in both mammals and birds.
ExPEC are phylogenetically distinct from commensal and
intestinal pathogenic E. coli. There are four main phylogenetic
groups of E. coli: A, B1, B2, and D. ExPEC strains belong
mainly to group B2, with some located in group D (Smith
et al., 2007). Phylogenic group B2 is the most predominant and
the most virulent in most cases of ExPEC infections. ExPEC
possess virulence factors required for extraintestinal infec-
tions (Smith et al., 2007), with some virulence factors more
specific to certain ExPEC groups, such as Tsh and ColV
plasmids in avian pathogenic E. coli (APEC), K1 capsule in
neonatal meningitis E. coli (NMEC), and Sat and Usp in ur-
opathogenic E. coli (UPEC) (Table 1). This provides strong
evidence that certain genetic backgrounds are required for the
acquisition and expression of certain virulence factors.

ExPEC are generally very diverse, with few common vir-
ulence factors between them (Mokady et al., 2005). These
findings imply that strains utilize different factors for similar
roles during various stages of the infection process (Mellata
et al., 2003; Mokady et al., 2005). However, other virulence
factors that have not yet been identified in ExPEC and host–
pathogen interaction could have a significant role in the
pathogenesis of these bacteria. This assortment of virulence
genes is apparently made possible by a variety of genetic
factors contributing to genome plasticity, including plasmids
(Mellata et al., 2010).

Early research studies of ExPEC did not establish a link
between E. coli causing disease in humans and birds. Thus,

human ExPEC and APEC were investigated separately, as
two different groups, with regard to virulence and respective
hosts. Meanwhile, the virulence of APEC has been under-
estimated, with APEC considered an opportunistic pathogen,
causing only secondary infections that are predisposed by
biological and environmental stresses (Barnes et al., 2003).
More recently, the virulence status of APEC has been reas-
signed by studies demonstrating significant differences in the
distribution of virulence factors among E. coli strains isolated
from chickens with colibacillosis and those from feces of
healthy chickens ( Johnson et al., 2012; Schouler et al., 2012).
Genotypic and phylogenic comparison of E. coli from clinical
cases of colibacillosis with avian fecal E. coli (Ewers et al., 2005;
Johnson et al., 2008a; Schouler et al., 2012), as well as with
human pathogenic E. coli strains (Ewers et al., 2005), using a
large number of isolates, has identified characteristic viru-
lence traits that could predict the APEC subgroup. The im-
plication of many of these virulence factors in the avian
pathogenesis using experimental infection models (Dziva,
2010), and the in vivo expression of multiple virulence factors
associated with APEC confirm their importance in the infec-
tion process in chickens (Dozois et al., 2003; Tuntufye et al.,
2012; Dziva et al., 2013).

Contrary to human ExPEC, which have been categorized
into different subpathotypes based on their ability to cause
different disease syndromes and virulence genes, APEC is
commonly designated as a single, heterogeneous population
(Fig. 1). However, lately, some studies have suggested that
APEC could also be subdivided into multiple subtypes based
on their pathology and virulence factors (Maturana et al.,
2011; Olsen et al., 2011; Pires-Dos-Santos et al., 2013), and their
infections can lead to diverse pathogenic phenotypes and

FIG. 1. Avian and human extraintestinal pathogenic Escherichia coli (ExPEC), their infections, and zoonotic potential. The
schematic diagram illustrates the major ExPEC pathotypes and their infections in humans and birds. ExPEC can cause
localized infections that can become systemic (urinary tract infection [UTI] in humans and airsacculitis in birds), a systemic
infection that localizes (meningitis), both a local and systemic infection (salpingitis in birds), or localized only (cellulitis in
birds). The diagram also shows the potential of poultry and their products to transfer antibiotic (ATB) resistance and ExPEC
to humans and cause zoonotic diseases. UPEC, uropathogenic Escherichia coli; NMEC, neonatal meningitis E. coli; SEPEC,
sepsis E. coli; APEC, avian pathogenic E. coli. Color images available online at www.liebertpub.com/fpd
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pathological symptoms in chickens, including airsacculitis,
salpingitis, and cellulitis (Fig. 1) (Barnes et al., 2003).

Genetic traits that define APEC are not completely elu-
cidated. Similar to human ExPEC, APEC strains can be
genetically very diverse and have a distinct repertoire of
virulence genes. In order to develop diagnostic tools, many
studies have attempted to define patterns of APEC viru-
lence genes, such as those carried on colicin V plasmids (iss,
tsh, iucC, cvi, iutA, hylA, iss, iroN, and ompT) ( Johnson et al.,
2008a), toxin genes (astA, vat), iron acquisition system
genes (irp2 and iucD), adhesin genes ( papC and tsh), and the
ColV genes (cva-cvi) (Ewers et al., 2005). Schouler et al.
(Schouler et al., 2012) determined that detection of four
associated virulence genes, including two iron acquisition
systems (iutA, sitA), fimbriae P (F11), sugar metabolism
(frzorf4), O-antigen O78, and T6SS (aec26, aec4), would
identify 70.2% of APEC strains and should be used for di-
agnostic purposes.

Far too often, avian isolates are considered as APEC based
solely on their polymerase chain reaction–detected genotypic
profile. However, this is a misleading strategy since avian
isolates should only be characterized as APEC if their viru-
lence has been confirmed in animal models validated for
avian colibacillosis (Dziva, 2010). Another common miscon-
ception about avian E. coli isolates is the assumption that in-
testinal isolates are nonpathogenic. Comparable to human
ExPEC (Smith et al., 2007), E. coli that cause extraintestinal
infections in chickens often originate from the intestines,
where they can have a commensal lifestyle similar to non-
pathogenic E. coli (Ewers et al., 2009), and cause a number of
diseases at extraintestinal sites.

ExPEC infections in humans: Impact on health

ExPEC strains are responsible for a diverse spectrum of
invasive infections in humans (Smith et al., 2007). These
strains include sepsis E. coli, UPEC, and NMEC, which are
etiologic agents of sepsis, urinary tract infection (UTI), and
neonatal meningitis, respectively (Fig. 1).

E. coli Sepsis

ExPEC constitutes an increasing problem for human med-
icine, as it represents the leading cause of bloodstream infec-
tions in nursing homes, hospitals, and young children,
especially newborns. Sepsis infections are a major cause of
mortality, morbidity, and increased healthcare costs world-
wide. In the United States, it is the seventh and 10th leading
cause of death in infants and children ( < 5-year-old) and the
elderly ( > 55-year-old), respectively (Anonymous, 2012).
Additionally, in the United States, over 8 million people
contract ExPEC infections each year, with associated health-
care costs of approximately $2 billion (Russo and Johnson,
2003). In 2001, severe sepsis due to E. coli caused 40,000 deaths
(Russo and Johnson, 2003), which is more than 500 times the
number of deaths caused by E. coli O157:H7 (Rangel et al.,
2005).

E. coli is responsible for approximately 30% of the total
number of sepsis cases, especially in the elderly (Russo and
Johnson, 2003). The yearly incidence rate (per 100,000 indi-
viduals) of E. coli sepsis was estimated at 40.5 in Minnesota,
USA (2003–2005) (Uslan et al., 2007), 30.3 in Calgary, Canada
(2000–2006) (Laupland et al., 2008), 30.0 in Finland (1995–

2002) (Skogberg et al., 2008), 32.0 in North Jutland County,
Denmark (1981–1994) (Madsen et al., 1999), and 28.0 in
Canberra, Australia (2000–2004) (Kennedy et al., 2008). E. coli
is the first and second cause of community- and hospital-
acquired sepsis infections, respectively (Diekema et al., 2003;
Laupland et al., 2007) and the most common cause of com-
munity-onset sepsis infections in the elderly ( ‡ 65 years),
accounting for 150 cases/100,000 persons/year in the United
States ( Jackson et al., 2005). Importantly, these numbers are
increasing.

According to recent surveillance studies from Australia
and European countries, E. coli has not only emerged as the
most prevalent agent of most extraintestinal infections, but
has also increased dramatically over time (Schlackow et al.,
2012). This trend is particularly evident among the elderly. As
examples, E. coli sepsis cases have increased by 33% from 2004
to 2008 in the United Kingdom (Wilson et al., 2011), by over
54.8% from 2001 to 2009 in Europe (de Kraker et al., 2011), and
from 14.2% in 2001 to 27.3% in 2009 in Australia (Aung et al.,
2012). This increase could be driven by an increase in ATB-
resistant isolates (Schlackow et al., 2012).

Sepsis E. coli are also associated with some specific human
diseases such as nosocomial pneumonia and surgical site in-
fections (SSI) (Smith et al., 2007). In addition, severe sepsis,
mostly caused by E. coli, is associated with cases related to
transrectal ultrasound-guided prostate biopsy, with most of
the organisms being resistant to multiple ATBs (Williamson
et al., 2012).

E. coli UTI

UTI are among the most common bacterial infections in
adults, with incidence rates four times higher in women than
in men (Griebling, 2007), and approximately 25% of these
women having recurrence within 6 to 12 months. In-
dividuals particularly susceptible to UTI infections include
pregnant and postmenopausal women, patients undergo-
ing urethral catheterization, and persons with diabetes
(Griebling, 2007).

The urinary tract is considered one of the most common
sites of ExPEC infections. E. coli accounts for 70–90% and 50%
of community- and hospital-acquired UTIs, respectively
(Pitout, 2012). Catheter-associated UTIs in U.S. hospitals and
nursing homes account for more than 1 million of the ExPEC
infections reported each year (Smith et al., 2007).

The presence of E. coli in the vaginal flora of nonpregnant
(9–28%) and pregnant (24–31%) women is associated with
UTIs, obstetric and neonatal complications, very-low-birth-
weight infants, early-onset neonatal septicemia, and menin-
gitis (Obata-Yasuoka et al., 2002).

Using multiple virulence attributes (Table 1), UPEC colo-
nize the perineum, overcome the natural host defenses, tra-
verse the urethra, and then infect the bladder, causing cystitis.
Some E. coli can infect the kidneys (pyelonephritis), which can
result in organ damage (Bien et al., 2012). In some cases of
severe pyelonephritis, UPEC can gain access to the blood-
stream, causing sepsis (Fig. 1) and sometimes death (Al-
Hasan et al., 2010).

E. coli Neonatal Meningitis

Because their immune system is immature, newborns are
particularly susceptible to ExPEC infections that are acquired
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shortly before, during, and after delivery. Neonatal sepsis is
considered one of the five leading neonatal infections
worldwide (Bonacorsi and Bingen, 2005). Mortality from
neonatal sepsis/meningitis is estimated to be 10% in devel-
oped countries and 40–58% in developing countries (Furyk
et al., 2011). In the United States, Group B Streptococcus (GBS)
and E. coli are the most common etiologic agents of these
diseases, with high incidence in African American preterm
infants (Stoll et al., 2011; Weston et al., 2011). Contrary to GBS
that affects mostly full-term births (73%), E. coli primarily af-
fects preterm babies (45–81%) (Gaschignard et al., 2011; Stoll
et al., 2011) and is the cause of high mortality and morbidity
(Gaschignard et al., 2011; Weston et al., 2011). Most infant
survivors had sequelae including hydrocephalus, seizures,
mental retardation, cerebral palsy, and hearing loss (Klinger
et al., 2000). In early-onset infection, E. coli is acquired from the
maternal genital tract in utero or during passage through the
birth canal. In contrast, in late-onset infection, infants can
acquire E. coli from different sources including their mother,
the hospital, or from community contacts (Raymond et al.,
2008).

NMEC use a set of virulence factors for adhesion, invasion,
and fitness (Table 1) to cause neonatal meningitis (Kim, 2012),
with 80% of them possessing the capsule K1. The different
steps of NMEC infection include growth in blood (bacteremia)
(Fig. 1), adhesion and invasion of human brain microvascular
endothelial cells, and traversal of the blood–brain barrier to
cause inflammation in the central nervous system, resulting in
meningitis (Kim, 2012).

ExPEC Infections in Poultry: Impact on Poultry Industry

Bacterial infections due to APEC, a subgroup of ExPEC
(Fig. 1), are responsible for significant, worldwide economic
losses for the poultry farms (Barnes et al., 2003), which is
considered one of the most important industries in many
countries, including the United States, Brazil, and China.
APEC strains cause multiple systemic infections in birds,
commonly referred to as avian colibacillosis (Fig. 1).

While the intestines and the environment serve as reser-
voirs for APEC (Ewers et al., 2009), the clinical outcome of
APEC infection in birds depends on the bacterial strain, the
host, the route of infection, and predisposing environmental
factors. Similar to most other pathogens, APEC strains take
advantage of host weaknesses to cause infections in chickens,
turkeys, and other avian species. APEC infection can lead to
septicemia, fibrinous lesions of internal organs (airsacculitis,
pericarditis, perihepatitis), and death. APEC strains also cause
local infections in birds, such as cellulitis, salpingitis, syno-
vitis, and omphalitis (Barnes et al., 2003). The main clinical
signs associated with most of these infections are depression,
fever, yellowish or greenish droppings, and lesions of internal
organs. E. coli infections lead to a 1–10% mortality rate in
chickens, with even higher mortality rates in broilers (Zanella
et al., 2000; Omer et al., 2010) and commercial organic chickens
(Stokholm et al., 2010).

The financial losses due to APEC infections in chickens are
due to the cost of treatment, mortality, lost production time,
containment, and carcass condemnations (Barnes et al., 2003).
An estimated 36–43% of broiler carcasses condemned at
processing had lesions consistent with E. coli septicemia
(Hasan et al., 2011; Yogaratnam, 1995). In Europe, E. coli was

considered the major cause of infection condemnation of
processed chickens, particularly egg layers, in the poultry
industry (Vandekerchove et al., 2004). In young chicks, om-
phalitis and yolk sac infection, which can lead to septicemia,
are the most common causes for first-week mortality in egg
layers, and E. coli has been associated with 53.5% of these
cases (Olsen et al., 2012a).

Respiratory Infections

Airsacculitis is the most common form of colibacillosis. It
starts as a result of inhalation of fecal-contaminated dusts.
E. coli colonize avian air sacs, which are particularly vulnera-
ble to colonization and invasion by bacteria because of their
lack of resident macrophages (Stearns et al., 1987). Airsacculitis
is frequently followed by a generalized infection (perihepati-
tis, pericarditis, and septicemia) (Fig. 1). Sites of entry of APEC
into the bloodstream are determined to be the gas-exchange
region of the lung and the air sacs (Pourbakhsh et al., 1997).

Salpingitis

Salpingitis, an inflammation of the oviduct in layers and
broiler breeders, is mainly caused by E. coli ( Jordan et al.,
2005). This form of avian colibacillosis is the result of either an
ascending infection of the oviduct from the cloaca or as part of
a systemic infection (Fig. 1) (Ozaki and Murase, 2009). Early
infection may be asymptomatic, but could result in reduced
egg production and increased embryonic mortality in the
hatchery. According to Monroy et al. (Monroy et al., 2005), the
susceptibility of adult hens to salpingitis could be related to
changes initiated during their sexual maturation period, such
as cytodifferentiation of the oviduct, proteins secreted, and
mucus that could favor E. coli adherence. Moreover, injuries
caused by cloacal cannibalism or vent pecking could also
predispose birds to infections (Fossum et al., 2009).

Cellulitis

Cellulitis in chickens, characterized as a subcutaneous in-
flammation in the lower abdomen and thigh, is commonly
caused by E. coli (Barnes et al., 2003). At the histological level,
the microscopic lesions of cellulitis include the thickening of
the dermis, slight hyperkeratosis, hyperplasia of the epider-
mis, neovascularization, and infiltration of mononuclear cells
and heterophils (Messier et al., 1993). Cellulitis-affected birds
do not exhibit clinical symptoms commonly associated with
colisepticemia, and the infection is often detected at slaughter,
which results in carcass condemnation at processing (Barnes
et al., 2003). Cellulitis in chickens occurs with frequencies es-
timated to range between 0.197% and 6.04% (Schrader et al.,
2004). The development of this infection is associated with
skin surface injuries, often caused by close contact among
birds and litter quality (Xavier et al., 2010). Cellulitis has been
successfully reproduced in laboratory chicken models, by
subcutaneous injection and by contaminating dermal scrat-
ches (Norton et al., 1997). Peighambari et al. (Peighambari
et al., 1995) showed that E. coli isolated from cellulitis lesions
were more likely to induce cellulitis lesions in experimentally
infected 4-week-old birds than strains of noncellulitis origin.
The development of cellulitis lesions in broilers could be due
to the weakness of their innate immune response, specifically
their heterophils (Olkowski et al., 2005).
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Zoonotic Potential of ExPEC

In recent years, much attention has been directed toward
controlling zoonotic infections, which remain a major world-
wide health concern. Meat and eggs are known to be a source of
human pathogens such as Campylobacter, Listeria, and Salmo-
nella, which frequently leads to a food recall of the suspected
contaminated products (Greger, 2007). Recent studies on the
zoonotic risk of ExPEC have prompted the Centers for Disease
Control and Prevention to release information reports to cau-
tion the public on the zoonotic potential of ExPEC and their
eventual transmission through chicken meat (Vincent et al.,
2010; Bergeron et al., 2012). The zoonotic risk of APEC isolates
was initially related to the fact that some human and avian
ExPEC have similar phylogenic backgrounds and share some
virulence genes (Manges and Johnson, 2012). The sequencing
of the genome of the APEC strain O1:K1:H7 revealed that it is
highly similar to human UPEC and NMEC (Johnson et al.,
2007). Interestingly, a comparison of a large number of ExPEC
from human and chicken diseases for their phylogenetic
background and the presence of virulence-associated genes has
shown that although most isolates fall into genetically distinct
pathotype groups (APEC, NMEC, and UPEC), with distin-
guishable characteristics, the study identified a genotyping
cluster that includes ExPEC with overlapping traits and was
considered potentially zoonotic ( Johnson et al., 2008b).

The role of poultry as a source of human ExPEC (Fig. 1) is
suggested by multiple epidemiological studies that reveal the
presence of avian ExPEC in both the intestines of healthy
poultry and poultry meat from retail markets, strains that are
often genetically similar to those found to be responsible for
human infections (Manges and Johnson, 2012). Johnson et al.
( Johnson et al., 2005) demonstrated that 92% (180/195) of
poultry meat samples tested were contaminated with E. coli,
with 46% (83/180) of strains having virulence factors associ-
ated with ExPEC and 15.6% (28/180) identified as UPEC.

However, according to recent reports, not all ExPEC strains
have zoonotic potential. A subset of ExPEC strains from
specific clonal groups, including ST95 and ST23, could have a
broad host range distribution and cause diseases in both hu-
mans and chickens (Mora et al., 2009; Tivendale et al., 2010).

The claims that ExPEC have zoonotic potential are re-
inforced by the experimental evidence on the ability of human
ExPEC to cause diseases in chicken models for colibacillosis
and avian ExPEC to cause infections in animal models of
human infections (Zhao et al., 2009; Tivendale et al., 2010).
Zhao et al. (Zhao et al., 2009) have determined that UPEC and
APEC strains sharing the same virulence gene profiles caused
lesions of colibacillosis in chickens and showed the same
tendency of gene expression, including iron acquisition, in a
murine model of human UTI.

The correlation between E. coli UTI in humans and poultry
meat consumption is strongly reinforced by recent investiga-
tions that have shown that E. coli B2 isolated from meat and
intestines of healthy chickens are able to cause infection in a
murine model of human UTI ( Jakobsen et al., 2010). Moreover,
B2 E. coli from UTI patients, poultry meat, and healthy chickens
exhibiting high virulence genotypes were clonally related and
were virulent in a mouse model of UTI ( Jakobsen et al., 2012).

The zoonotic risk of ExPEC appears to be mainly related to
their large plasmids. Growing evidence shows that APEC
plasmids could be a source of virulence genes for other ExPEC

strains ( Johnson et al., 2012; Olsen et al., 2012b). Studies have
shown that UPEC and APEC isolates have certain genes in
common that are associated with large transmissible plasmids
of APEC (Rodriguez-Siek et al., 2005). Some virulence genes
associated with APEC plasmids (aerobactin, salmochelin, and
sit operons) also occur on plasmids of UPEC (Ewers et al.,
2007). Additionally, APEC and NMEC have virulence genes
of ColV plasmids in common ( Johnson et al., 2008b), and
APEC plasmids in E. coli can contribute to the pathogenicity of
urinary infection in mice (Skyberg et al., 2006) and meningitis
in rats ( Johnson et al., 2010).

ATB Resistance in ExPEC: Impact on Human Health

MDR-resistant ExPEC infections prolong hospital stays
and exhibit higher mortality rates (Gastmeier et al., 2012).
Until the late 1990s, ExPEC were highly susceptible to most
widely used ATBs, such as ampicillin and trimethoprim-
sulfamethoxazole (SXT). Yet, over the past decade, ExPEC
emerged as an important reservoir of resistance to first-line
ATBs, including cephalosporins, fluoroquinolones, and SXT
(Table 2) (Pitout, 2012). For example, UPEC are often resistant
to fluoroquinolones and SXT (Table 2), which are considered
the drugs of choice for uncomplicated cystitis by the inter-
national clinical practice guidelines for the treatment of acute
uncomplicated cystitis and pyelonephritis in women, (Gupta
et al., 2011). In Turkey, the extensive use of SXT to treat UTI in
the early 1980s has led to an increase of resistance to SXT in
E. coli to above 50%, in the period of a decade. Subsequently,
treatment shifted to quinolones due to treatment failures and
has since generated an increase in resistance to quinolones
(Karaca et al., 2005). In the United States, resistance of urinary
E. coli to SXT exceeded 20% in 2010, and this ATB may no
longer be acceptable for UTI treatment in this country (San-
chez et al., 2011). MDR resistance among UPEC has been re-
ported from different regions of the globe (Table 2), and the
rate of ATB resistance is higher in E. coli from recurrent UTIs
(Schmiemann et al., 2012). The appearance and increase of
ATB resistance among ExPEC strains complicate the thera-
peutic management of ExPEC infections (Smith et al., 2007)
and has led to the increased use of last-resort antimicrobial
drugs, such as carbapenems, and the appearance of the re-
sistance to these ATBs in ExPEC (Table 2).

In 2007, 15,183 episodes of third-generation cephalosporin-
resistant E. coli were associated with 2712 deaths and 120,065
extra hospital days in Europe (de Kraker et al., 2011). Based on
prevailing trends, the number of sepsis cases caused by these
E. coli is likely to rapidly increase, potentially outnumbering
the number of methicillin-resistant Staphylococcus aureus
(MRSA) sepsis cases in the near future (de Kraker et al., 2011).

Although the introduction of intrapartum ATB prophylaxis
has reduced cases of neonatal GBS infection in the United
States, it may also have resulted in a shift of pathogens and
their resistance to ATBs, shifting to an increased incidence of
Gram-negative bacteria, including E. coli (Furyk et al., 2011). In
premature infants, an increased trend in the incidence of
early-onset neonatal sepsis caused by ATB-resistant E. coli is
observed (Bizzarro et al., 2008). Of particular concern is the
recent apparition of NMEC producing cefotaxime (CTX)-M-
type or TEM-type extended-spectrum b-lactamases (Table 2).

ExPEC producing ‘‘newer b-lactamases,’’ such as
plasmid-mediated among class C cephalosporinases

DISEASES AND ZOONOTIC RISKS OF EXPEC 921
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(AmpC) b-lactamases (e.g., cephamycinase [CMY] types),
extended-spectrum b-lactamases (ESBLs) (e.g., TEM-, sulf-
hydryl variable [SHV]-, CTX-M-, oxacillin-types), and car-
bapenemases (e.g., imipenem-, Verona integron-encoded
metallo-b-lactamase [VIM]-, New Delhi metallo-b-lactamase
[NDM]-types), are widespread (Table 2) (Pitout, 2012).
The most prevalent is CTX-M-15, which is the most associ-
ated with human ExPEC isolates, especially UPEC, in many
regions of the world (Table 2), with many belonging to
specific clones. However, it has been speculated that certain
sequence types (ST38, ST131, ST405, and ST648) could have
contributed to their worldwide distribution (Pitout, 2012).
A recent study monitoring ATB-resistance trends among
human sepsis Enterobacteriaceae, mainly sepsis E. coli
(63.4%, 443/699), from multiple countries of the Asian Pa-
cific region during the period 2008–2009 (Sheng et al., 2013),
has determined that geographic genetic distribution of
ESBLs, AmpCs, and carbapenemases was variable. The most
dominant among ESBLs were CTX-M-14 (China, South
Korea, and Taiwan), CTX-M-15 (India, Malaysia, the Phi-
lippines, and Singapore), and SHV-12 (Taiwan and the
Philippines). Among AmpCs were CMY-2 (India, Taiwan,
South Korea, and Vietnam), Dhahran Hospital in Saudi
Arabia (DHA) (Philippines and Singapore), AmpC type
(ACT)–Miriam Hospital in Providence, RI (MIR) (New
Zealand and South Korea), and DHA-1 (Taiwan). Finally in
this study, carbapenemases (mostly NDM-1) were exclu-
sively detected in India.

A recent Canadian epidemiology study that covered a
5-year period (2007–2011) has shown a significant national
increase in the proportion of ESBL- and AmpC-producing
isolates among human ExPEC and identified carbapenemase-
producing isolates (Denisuik et al., 2013). The emergence and
widespread dissemination of CTX-M-15, CMY-1, and NDM-
producing E. coli is especially alarming as they often confer
resistance to multiple other antibiotic classes, leaving few or
no other treatment options (Table 2).

Clinicians are aware that the increase in ATB resistance is a
great concern for public health as well as the economy.
Treatment failures due to ATB resistance increase the cost of
care and result in prolonged morbidity for patients. As the
proportion of elderly and immunocompromised patients in-
creases, the number of ExPEC infections will likely increase,
while associated ATB resistance will make treatment strate-
gies more challenging (Pitout, 2012). Therefore, the preven-
tion of ExPEC infections is a pressing concern, and vaccines
are necessary to manage ExPEC infections in the future.

Because of the significance of colibacillosis in the world-
wide poultry industry, ATB treatments with tetracyclines,
fluoroquinolones, and sulfonamides are primarily used to
target E. coli, thus explaining the high level of resistance of
avian E. coli to these ATBs (Zhao et al., 2005). In the United
States, MDR resistance was found in 92% (87/95) of APEC
isolates from northern Georgia (Zhao et al., 2005). Studies
performed in China have shown that 80% of the 71 E. coli
strains isolated from the livers of deceased chickens from 10
different poultry farms were resistant to eight or more ATBs,
including fluoroquinolones, and all of them were resistant to
nalidixic acid and tetracycline (Yang et al., 2004). The Li et al.
(Li et al., 2007) study found comparable results, whereby 100%
of APEC isolates tested were resistant to tetracycline and
trimethoprim/sulfonamide, and 79–83% of the isolates

exhibited resistance to chloramphenicol, ampicillin, cipro-
floxacin, and enrofloxacin.

ESBL genes have also been detected in APEC and fecal
E. coli of healthy poultry (Asai et al., 2011; Bortolaia et al., 2010).
The emergence of ESBL genes in poultry could be associated
with the use of third-generation cephalosporins in chickens,
particularly ceftiofur, which is injected into eggs to control
E. coli omphalitis in broiler chickens (Dutil et al., 2010).
However, this assumption would not be the only explanation,
as ESBL-producing E. coli were also detected in birds that
were not treated with cephalosporins (Bortolaia et al., 2010).
Additionally, recent reports have detected ESBL-producing
E. coli in both the environment and wildlife, especially birds
(Guenther et al., 2011). This could show the ability of ESBL-
producing E. coli to transfer from one ecosystem to another
and highlight the importance of life vectors in dissemination
of these resistance genes to different environments.

Bacteria found in the poultry environment are important
reservoirs for ATB resistance (Nandi et al., 2004). The presence
of ATB-resistant bacteria in poultry can lead to the contami-
nation of poultry products, which could increase the risk
of the transfer of these bacteria or their ATB genes to humans.
In fact, a recent study determined that women who were in-
fected with MDR-resistant E. coli reported more frequent
chicken consumption (Manges et al., 2007).

As the poultry industry has developed, ATBs have been
used extensively for disease prevention and treatment. With
the exception of the European Union, ATBs are administered
in poultry feed or drinking water for growth promotion. Al-
though ATBs have contributed to poultry health and welfare
for several decades, extensive use and misuse has generated
worldwide concern about the development of ATB resistance
and transfer to humans and the environment.

It was speculated that ATB-resistant human ExPEC likely
originated from poultry through both direct contact with birds
and the consumption of poultry products (Fig. 1) (Manges and
Johnson, 2012). According to a recent study in the Nether-
lands, retail chicken meat has the highest rate of ESBL-
contamination compared to other meats and involves many of
the same ESBL genes present in colonized and infected humans
(Overdevest et al., 2011). Identification of a major multilocus
sequence–type clone associated with ciprofloxacin resistance/
multiresistance in both human and avian E. coli isolates con-
firms the zoonotic risk of avian isolates (Giufre et al., 2012).
These ATB-resistance genes in E. coli may be transferred ver-
tically to other species of bacteria. In fact, most Salmonella
Kentucky avian isolates have acquired resistance to strepto-
mycin and tetracycline through acquisition of an APEC-like
plasmid, which could be responsible for their emergence as a
dominant serovar in chickens (Fricke et al., 2009).

Conclusions

ExPEC is a leading cause of infections in both humans and
poultry. ATB use in the poultry industry and increases in
poultry product consumption could have caused the emer-
gence, dissemination, and persistence of ATB resistance,
which is a serious health concern for both animals and hu-
mans. Due to the variability and adaptability of ExPEC,
constant surveillance of their epidemiology in both humans
and chickens is required and rigorous controls of their con-
taminants are needed.
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