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Humans make efficient use of natural image statistics when

performing spatial interpolation
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Visual systems learn through evolution and experience
over the lifespan to exploit the statistical structure of
natural images when performing visual tasks.
Understanding which aspects of this statistical structure
are incorporated into the human nervous system is a
fundamental goal in vision science. To address this goal,
we measured human ability to estimate the intensity of
missing image pixels in natural images. Human
estimation accuracy is compared with various simple
heuristics (e.g., local mean) and with optimal observers
that have nearly complete knowledge of the local
statistical structure of natural images. Human estimates
are more accurate than those of simple heuristics, and
they match the performance of an optimal observer that
knows the local statistical structure of relative intensities
(contrasts). This optimal observer predicts the detailed
pattern of human estimation errors and hence the
results place strong constraints on the underlying neural
mechanisms. However, humans do not reach the
performance of an optimal observer that knows the local
statistical structure of the absolute intensities, which
reflect both local relative intensities and local mean
intensity. As predicted from a statistical analysis of
natural images, human estimation accuracy is negligibly
improved by expanding the context from a local patch to
the whole image. Our results demonstrate that the
human visual system exploits efficiently the statistical
structure of natural images.

Visual systems evolve and develop with natural
images as input. Natural images are highly structured
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statistically, and thus visual systems are likely to exploit
this statistical structure when encoding the retinal
images and performing visual tasks (Barlow, 1961;
Brunswik & Kamiya, 1953; Field, 1987; Kersten, 1987;
Laughlin, 1981; Maloney, 1986; for reviews see Geisler,
2008; Simoncelli & Olshausen, 2001).

Much of the work concerning natural image
statistics has been directed at measuring the statistical
structure of images and performing theoretical analyses
of how best to exploit that structure (Geisler, 2008;
Simoncelli & Olshausen, 2001). Less common have
been attempts to determine experimentally how visual
systems actually do exploit the structure of natural
images when performing visual tasks (Burge, Fowlkes,
& Banks, 2010; Fine, MacLeod, & Boynton, 2003;
Freeman, Ziemba, Heeger, Simoncelli, & Movshon,
2013; Geisler & Perry, 2009; Geisler, Perry, Super, &
Gallogly, 2001; Gerhard, Wichmann, & Bethge, 2013;
Ing, Wilson, & Geisler, 2010; Kersten, 1987; Laughlin,
1981.

Kersten (1987) carried out a clever early study. Pixels
were removed from natural images and subjects were
required to estimate the gray level of the missing pixels.
An important feature of this task is that it provides a
precise quantitative measure of what the human visual
system understands about the local statistical structure
of natural images—the more accurate the estimated
gray levels (given the local image context), the better
the understanding. This task is also an interesting
special case of image interpolation, which is a
ubiquitous natural task. For example, projection of the
three-dimensional (3-D) scene onto the two-dimen-
sional (2-D) retina causes many occlusions, across
which the visual system must interpolate (Albright &
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Figure 1. Pixel estimation task. The task is to estimate the gray level of the central 4" wide pixel (black pixel) of a natural image patch,
given the context of the surrounding image. Estimates were taken to be the 50% point of psychometric functions where the observer
reported on each trial whether the central pixel was too bright or too dim. No feedback was given. Estimates were measured given
the full (128 x 128) context and given a restricted (5 x 5) context. The contexts were surrounded by the mean gray level of the full

image.

Stoner, 2002; Field, Hayes, & Hess, 1993; Kellman &
Shipley, 1991; Singh & Fulvio, 2005). Interpolation
also arises in filling in the blind spot and angioscoto-
mas, and in estimating the stimulus between the image
samples taken by the photoreceptors (Brainard &
Williams, 1993; Williams, MacLeod, & Hayhoe, 1981).

In Kersten’s (1987) study, subjects guessed the gray
level repeatedly (with feedback) until they guessed the
true value (this is a version of Shannon’s guessing
game). The aim was to obtain a lower bound on the
redundancy of natural images and to compare human
guesses with some simple nearest-neighbor interpola-
tion algorithms. This experimental procedure for
measuring image redundancy requires that subjects can
clearly discriminate each gray level and hence it was
necessary to quantize the images to 16 gray levels (4
bits). For a version of the guessing game that does not
require quantized gray levels, see Bethge, Wiecki, and
Wichmann (2007).

Here, we use a modified version of Kersten’s (1987)
pixel estimation task to address a different aim. In
recent work, we measured the statistical structure of
images relevant for the task of estimating missing pixel
values in full 256 gray level (8 bit) natural images
(Geisler & Perry, 2011). The present aim is to determine
to what extent the human visual system has incorpo-
rated these statistical regularities. Specifically, we
measure psychometric functions (without feedback),
where the observer judges whether the gray level of the
missing pixel is too bright or too dim given the image
context (see Figure 1). We then take the 50% point of
the psychometric function to be the observer’s gray-
level estimate.

We find that human estimates are better than those
of simple models such as the mean or median of the

local contextual pixels. Instead we find that humans
make near optimal use of the local spatial statistics of
natural images. Remarkably, the specific pattern of
human estimation errors across image patches closely
matches those of a model observer that optimally
exploits the local statistical structure of relative
intensities (contrasts) in natural images.

Model observers

In the pixel estimation task the central pixel of an
image patch is removed and the goal is to estimate the
gray level of the missing pixel given the surrounding
context of pixel values. We consider a variety of model
observers for this task.

First consider an observer that approximates the
Bayesian ideal observer. Let z represent the true
(unknown) value of the missing pixel, and the ¢
represent the context of surrounding pixel values. The
optimal estimate is given by the standard formula from
Bayesian statistical decision theory:

Zopr = argmin Y (2, 2)p(z[c) (1)

Z z

where y(z, 7) is the cost of making the estimate 7 when
the true value is z, and p(z|c) is the posterior probability
that the true value is z given the observed context. For
present purposes we assume the cost function is the
squared error between the true value and the estimated
value, y(z, 2) = (z — 7)*. For this cost function it is well
known (e.g., Bishop, 2006) that the optimal estimate is
the conditional mean of the posterior probability
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distribution (the so-called minimum mean squared
error [MMSE] estimate):

Zopt = E(z]e) (2)

Thus, determining the Bayesian ideal observer
reduces to determining the conditional mean for each
possible set of context values. In general, this is
extremely difficult because of the enormous number of
possible combinations of context values. However, in
this particular case statistical analysis suggests that the
relevant context pixels are only those spatially near to
the missing pixel, and thus a simple and powerful
approach is to directly estimate conditional means for
several small contexts and then combine those esti-
mates using the relative reliability of the estimates.
Specifically, in a previous study (Geisler & Perry, 2011)
we directly estimated conditional means from a large
collection of calibrated natural images for context
vectors consisting of the four pixels in line with the
missing pixel (in either the vertical or horizontal
direction), and then combined the vertical and hori-
zontal estimates based on their relative reliabilities.
Formally, the context vector for the horizontal
direction, for a pixel at location (x, y), was ¢ =[z(x — 2,
), z(x =1, ), z(x + 1, y), z(x + 2, y)] and the context
vector in the vertical direction was ¢ =[z(x, y — 2), z(x,
y—1), z(x, y+ 1), z(x, y+ 2)]. The optimal estimates for
these two contexts are Z,,, = E(z|¢) and fjp,: E(z|ch),
and the combined estimate is given by

o Popiopt & Py = PU
Zopt = T (3)
popt + p()p[ - p

where p,,, = 1/Var(zle), py,, = 1/Var(zle™), p=1/Var(2),
and u = E(z). Equation 3 specifies the Bayesian optimal
combination rule when two contexts (¢ and ¢*),
conditioned on the true value z(x, y), are statistically
independent and Gaussian distributed. When the
variance of the prior is infinite (p = 0), then Equation 3
reduces to the standard cue combination formula
(Oruc, Maloney, & Landy, 2003).

Although not proven, our previous results suggest
that the estimates obtained using the horizontal and
vertical contexts, with the above combination rule, are
near optimal (Geisler & Perry, 2011). We will refer to
this model observer as the LumOpt8 observer, since it
uses eight luminance (gray-level) values. We also
consider the LumOpt4 observer that uses only the
neighboring two luminance values in each direction.

It is well known that visual neurons beyond the
photoreceptors and horizontal cells are often better
described as encoding contrast rather than luminance.
Thus, it is reasonable to consider a Bayesian ideal
observer that operates on contrast images rather than
luminance images. Here, we define the contrast image
by
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where z(x, y) is the average value of z in the 3 x 3
neighborhood centered on (x, y). The ConOpt8 and
ConOpt4 observers are defined exactly as above, but for
contrast images rather than luminance images. Thus,
the context vectors now consist of the contrast-image
values. We note that the local statistical structure of
natural images changes with the local mean luminance,
and hence estimates based on the statistics of contrast
images will generally be less accurate than those based
on the statistics of luminance images (see Geisler &
Perry, 2011).

To obtain the gray levels estimated by these contrast
observers, the gray level of the center pixel (z) was
varied from 0 to 255. At each gray value of the center
pixel, we calculated the contrast of the center pixel z¢ as
well as the optimal prediction i*co _of the contrast at the
central pixel using the context. Note that as z is varied,
the values of the context vectors may also vary because
the local average, Z(x, y), for some context pixels
includes the center pixel being estimated. The gray level
of the central pixel at which z- most nearly equals zA*CM
is the gray level prediction of the model contrast
observers.

Combining estimates with relative reliability (Equa-
tion 3) assumes that the two estimates are statistically
independent and Gaussian, given the true gray level of
the missing pixel. While Equation 3 works well for the
LumOpt8 observer, we find that ConOpt8 and ConOpt4
performance is slightly better when the two estimates
are averaged rather than combined with relative
reliability. Below we report the performance of the
contrast observers based on averaging.

We also considered model observers based on
multiple linear regression: LumMIr§ and ConMIr§
(least squares linear estimators based on the same eight
pixels as LumOpt8 and ConOpt8), and LumMIr4 and
ConMIr4 (least squares linear estimators based on the
same four pixels as LumOpt4 and ConOpt4). These
linear models were also trained on the natural images.
Finally, we considered several simpler model observers:
Mean8 (the average of the surrounding eight pixels),
Mean24 (the average of the surrounding 24 pixels),
Median4 (median of the four nearest pixels), Median8
(the median of the surrounding eight pixels), and
Median24 (the median of the surrounding 24 pixels).
We also consider a NoContext observer, which has no
knowledge of the spatial context of the central pixel,
and therefore uses only the prior on gray levels in
natural images to estimate the missing pixel value.

The difference in estimation accuracy between using
the local mean and using the local statistics of natural
images is illustrated in Figure 2. In this demonstration
we removed every third horizontal row of pixels from
an original image (Figure 2b) and then estimated those

ZC(xvy) =
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Figure 2. Demonstration of model-observer estimates. (a) Original image. (b) Every third row of pixels is removed from an original
image. (c) Pixels estimated using local mean (notice artifacts near edges). (d) Pixels estimated using local statistics of natural images.
The different color channels were processed independently and identically.

pixels using the local mean (Figure 2c) and the local
luminance statistics (Figure 2d). Using the local mean
produces substantial artifacts, whereas using the local
luminance statistics produces no noticeable artifacts
and the image appears very similar to the original
(Figure 2a). This example demonstrates the potential
value of exploiting natural image statistics. Detailed
quantitative comparisons of model observers and
human observers are given below.

Subjects

Three observers performed the experiments. All had
corrected-to-normal vision. One observer was an
author, and the other two were naive to the purpose of
the experiment.

Stimuli

Stimuli were presented on a Sony GDM-F520
cathode ray tube (CRT) display (Sony Corporation,
Tokyo, Japan) with a 1600 x 1200 pixel resolution, at a
frame rate of 60 Hz. The display was linearized over 8
bits of gray level. The maximum luminance was 104.3
cd/m?. Each image pixel in the presented patches had a
visual angle of 4 arc min (4 x 4 display pixels). This size
was picked so that the individual test pixel was clearly
visible, yet the image appeared relatively smooth and
continuous.

The test stimuli consisted of 62 natural image
patches (128 x 128 pixels, 8-bit grayscale) sampled
from a set of 415 images (each 4284 x 2844 pixels).
Raw color 14-bit images were collected using a
calibrated Nikon D700 camera (Nikon Corporation,
Tokyo, Japan). The images were taken in the Austin
area, and contained no human-made objects. The
camera was set to a low ISO setting of 200 (which
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Figure 3. Local spatial statistics of natural gray-scale and contrast images. (a) The expected gray-scale value of a natural image pixel
Zopt 8iven the values of the neighboring pixels (s, t) in the horizontal or vertical direction. (b) The expected Weber-contrast value of a
natural image pixel 200,,, given the values of the neighboring pixels (s¢, tc) in the horizontal or vertical direction.

minimizes camera noise), and care was taken to
minimize clipping. The raw images were converted to
YUYV space. To obtain the test images, the Y values
were scaled and quantized to 8 bits such that the top
2% of the pixels had a value of 255. More details and
the images are available at http://www.cps.utexas.edu/
natural_scenes/db.shtml.

The specific image patches were selected to span the
range of local contexts that occur in natural images. If
image patches are randomly sampled, then they tend to be
dominated by cases where the central pixel is similar in
gray level to the contextual pixels. For such patches, pixel
estimation is relatively easy and all models perform nearly
equally well. By spanning the range of local contexts we
are able to better distinguish between different models.

To span the range of contexts we examined the local
gray level statistics in natural scenes. The left plot in
Figure 3b shows the optimal estimates, Z,,,, for the
missing pixel z(x, y) given the two neighboring
horizontal pixels, z(x — 1, y), z(x + 1, y). In the figure, s
and ¢ represent the neighboring pixels’ values. The
horizontal and vertical axes give the 8-bit gray values of
s and ¢ and the color scale gives the optimal estimate.
As expected, swapping the values of s and 7 does not
change the optimal estimate, and hence the plot is
symmetric about the diagonal.

If the optimal estimate were always the average of s
and 7, then the contours of constant color in this plot
would be straight lines with a slope of —1.0 (Geisler &
Perry, 2011). As can be seen, there are substantial
systematic deviations from the simple average, and the
deviations are in different directions in different regions
of s-t space. Therefore, it is important to sample from
the different regions of the space. At the same time, we
want to sample from regions of the space that are not
extremely rare. The white points in the central plot of
Figure 4 show the values of s and ¢ from which the
samples were drawn. The values of s and ¢ along the
diagonal are the pairs that occur most frequently. The
values of s and 7 that are off the diagonal occur less
frequently than those along the diagonal, but with
equal frequency to one another.

The white closed circles in the central plot specify
values of context pixels immediately adjacent to the
missing pixel. Those pixel values are shown at the tops
of the outer plots. The color scale in the outer plots
shows the optimal estimates (conditional means) given
all four context values (r, s, ¢, u). These plots show that
for fixed values of s and ¢, the optimal estimate can vary
dramatically, depending on the specific values of the
more distant pixels » and u. Therefore, to tile the range
of natural image patches, and to test whether the visual
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Figure 4. Selection of test patches. Test patches were selected to span the range of local contexts that occur in natural images. The
white closed circles in the central plot show the values of s and ¢ that were tested. For each of these values of s and ¢, the outer plots
show the expected value (optimal estimate) of the central pixel (Z,) given the values of r, s, t, and u. Notice that for each particular
pair of values of s and t, the optimal estimate is strongly modulated by the values of r and u. The white open circles show the

locations in (r, s, t, u) space from which the test patches were selected—two patches were randomly selected from the patches falling

within each white circle.

system incorporates the statistical structure revealed in
Figure 4, we selected patches whose values of r, s, £, and
u fell within the open circles of the outer plots. Two
patches were randomly selected from each circle.

The central 5 x 5 regions of the 62 selected patches
are shown in Figure 5. As might be expected, there is
substantial variety among the selected patches; there
are patches with different lightness, patches with
horizontal, vertical, and diagonal edges, patches with
vertical, horizontal, and diagonal bars, patches with
central spots, etc. This suggests that we succeeded in
selecting a set of stimuli that is representative of the
variety that occurs in natural images.

Procedure
Psychometric functions were measured for the 62 full

128 x 128 pixel patches and for the same patches
cropped to the central 5 x 5 pixels. The surrounding

gray level for both 5 x 5 and 128 x 128 patches was the
same as the overall mean gray level of the image from
which the patch was taken.

Seven point psychometric functions were measured
using the method of constant stimuli. The seven gray
levels for the central pixel were determined in a
preliminary experiment, and the same gray levels were
used for 128 x 128 and 5 x 5 patches. All patches and
central pixel gray levels were presented once, in a
random order, in each experimental session. There were
30 sessions. Thus each value at the seven levels of the
psychometric functions was based on 30 measurements
(210 measurements per psychometric function).

The observer’s head was stabilized via a chin rest
while viewing the monitor screen from a distance of 74
cm. At the start of a trial, the central pixel of the patch
blinked from black to white for 1 s to indicate its
location. Then one of the seven gray levels was
presented. The observer indicated whether they thought
the gray level of the central pixel was brighter or darker
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Figure 5. Test image patches. Shown are the 5 x 5 test patches that were randomly sampled from the regions of (r, s, t, u) space given
in Figure 4 (white circles in Figure 4). The numbers to the right of each patch give the percent error of the human estimate from the
true value of the center pixel. The black box indicates the test patch for the psychometric functions shown in Figure 5a.

than the true gray level in the patch. If the observer
became unsure of the location of the central pixel, they
could press a button that would cause it to blink again
for 1 s. The observer had unlimited viewing time to
perform each judgment. No feedback was given. After
the observer indicated their judgment, the screen
became uniform gray for 1 s, and then the next random
stimulus was selected and the process repeated.

The psychometric data were fit with a cumulative
Gaussian function using a maximum likelihood proce-
dure. Confidence intervals on the mean and standard
deviation of the cumulative Gaussian fits were calcu-
lated by bootstrapping. On each trial, each point on the
psychometric function was randomly drawn from a
binomial distribution with p given by the measured
value (proportion of “brighter” responses) at that level,
and n equal to 30. These randomly drawn points were
then refit with a cumulative Gaussian using a maximum
likelihood procedure. This was repeated 10,000 times,
and the resulting distributions for the mean and
standard deviation of the cumulative Gaussian were
used to generate 95% confidence intervals (*20).

Example psychometric functions for the three
observers and both patch sizes are shown in Figure 6a
(the specific patch is indicated by the black box in
Figure 5). The standard errors of the point of subjective

equality (PSE) estimates were very small (an average of
1.38 gray level steps out of 255; Figure 6b), and hence
the estimates are quite reliable. The observers’ esti-
mates (PSEs) for all of the 5 x 5 and 128 x 128 patches
are plotted in Figure 7a as a function of the true gray
level. If observers’ estimates perfectly predicted the true
gray levels, then the data points would lie on the dashed
line. Observers’ PSEs follow the dashed line fairly
closely, showing that human observers are quite
accurate at estimating the true value of a missing pixel.

On the other hand, there are clear systematic
differences between the human estimates and the true
values. This is illustrated in Figure 7b, which plots the
estimation errors as a function of the true value.
Roughly speaking, the observers tended to overesti-
mate low true values and underestimate high true
values. Overall, the observers tended to underestimate
the gray value. Finally, notice that the specific pattern
of errors in Figure 7b is similar across the three
observers and across the two patch sizes.

To quantify these differences we computed the MSE
between the estimated and true values:

n
Estimation Error = MSE = %Z(z} — z,~)2 (5)

i—1
The MSEs are given in Figure 7a. Interestingly, the

human estimation accuracy is only slightly better for

the full 128 x 128 context than for the 5 x 5 context (an
average MSE of 238 vs. 257). Also, the specific pattern
of errors, across patches, made by the three observers is
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Figure 6. Human pixel estimation psychometric functions. (a) Psychometric functions for three observers and two context sizes, for
the image patch indicated with the black box in Figure 5. Human estimates (PSEs) were taken to be the 50% point of the psychometric
functions, which were fitted with a Gaussian integral function. Error bars indicate 95% confidence intervals of the 50% point. (b)
Histogram of standard errors for the PSEs for all 372 psychometric functions (3 observers x 2 context sizes x 62 patches). (c)
Histogram of the sigmas of the fitted cumulative Gaussians for all 372 psychometric functions. The average sigma is 9.32. The average

sigma in (a) is 7.62.

very similar. To quantify the similarity in the pattern of
errors we compute the MSE between the observers’
errors, which is equivalent to the mean square error
between their estimates:

Prediction Error = PE

1 n 5 )
S R
i=1
1< 2
22 G
(6)
where 7¢ and 7 are the estimates by two observers for

the i patch. The average prediction error (PE)
between pairs of observers is 87, which is small relative
to their MSEs. In other words, the error between
observers’ estimates is much smaller than the error
between the observers’ estimates and the true values.
The numbers to the right of each test patch in Figure
5 show the sign and magnitude of the human errors
(averaged over the three observers and patch sizes),
expressed as a percentage of the ground truth gray
value of the center pixel. Although the pattern of errors
is complex, the errors tend to be smallest when the gray

levels of the pixels near the center pixel are similar to
each other and to the center pixel.

How do the human estimates compare with those of
the various model observers? Given that human
performance was similar across the three observers and
patch sizes, we compared model predictions with the
average performance across the three observers and
patch sizes. These average human estimates (gray
circles) are shown along with the predictions of four
different models (black circles) in Figure 8a. The MSEs
of the model observers are shown in the upper left
corner of each plot. Again each plot in Figure 8a gives
the estimated gray value as a function of the true value.
The estimates of the LumOpt8 observer are substan-
tially more accurate than those of the human observers
(MSE =92 vs. MSE =215). This indicates that there is
substantial statistical structure in natural images that
the human visual system does not exploit efficiently. On
the other hand the Mean24 observer performs far worse
than humans (MSE = 1814 vs. MSE = 215). The
multiple linear regression observer that uses the four
nearest pixels (LumM/Ir4) also performs worse than
humans (MSE = 363). The model that best matches
overall human estimation accuracy is the ConOpt4
observer (MSE = 203). The natural image statistics
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Figure 7. Human pixel estimation accuracy. (a) Performance accuracy for all conditions for all observers. The horizontal axis is the
actual gray level of the missing pixel and the vertical axis is the value estimated by the human observers. If performance were perfect
all points would fall along the diagonal line. Also, given is the MSE of the human estimates. (Note that these MSE values correspond
to standard deviations of around 15 to 16 gray-level steps.) (b) Human estimation errors for all conditions and observers. The
horizontal axis is the actual gray level of the missing pixel and the vertical axis is the difference between the observer’s estimate and

the actual gray level of the missing pixel.

upon which the ConOpt4 observer is based are shown
in Figure 3b.

The MSEs for all the model observers (and human
observers) are shown in the second column of Table 1.
Also, the first row of the table shows the performance
based on using only the prior probability of gray levels
in natural images (i.e., not using the context at all).
There are several points to make about the MSE
values. First, the MSE of the LumOpt8 observer is
much lower than that of the ConOpt8 observer. This
implies that there is considerable useful information
contained in the absolute gray levels that is not
contained in the relative gray levels (see also Geisler &
Perry, 2011). Second, the MSE of the LumOpt4
observer is higher than that of both the ConOpt8 and
ConOpt4 observers, which are similar to each other.
Presumably, this occurs because ConOpt4 observer’s
estimates incorporate pixel values over a larger area
than the LumOpt4 observer. Third, the MSEs of the
observers based on the local median and the mean are
similar and much higher than the MSE of the human
observers. The MSEs of the Median4 and LumMIr4

observers are similar. This is expected since LumMIr4
(in this case) is similar to the mean of the four nearest
pixels. Fourth, the ConMIr observers perform better
than the ConOpt observers. This unexpected result
occurs because the model observers are optimized
based on the entire training set of natural image
patches. On both the training set and test set, which
each consisted of many millions of patches, the ConOpt
observers perform substantially better than the ConMIr
observers. Thus, the reversal is only for the specific set
of 62 patches in the experiment.

More important than predictions of overall perfor-
mance is the question of how well the models predict
the specific estimation errors made by the human
observers. Figure 8b plots the predicted estimation
errors of four of the model observers as a function of
the estimation error of the human observers, for all 62
test patches. If a model observer predicted the human
estimates exactly, then the data points would fall along
the dashed diagonal line. The average prediction error
of each model is indicated in the figure. The prediction
error of the ConOpt4 observer is the smallest (Table 1).
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Figure 8. Predictions of model observers. Human estimates have been averaged across observers and context size, and therefore are
the same in every panel. (a) The black symbols show the gray level estimated by four of the model observers, as a function of the true
gray level of the missing pixel. For reference, the gray symbols show the estimates made by the human observers. Note that human
data are the same in every panel. The MSEs of the model observers’ estimates are shown in the upper left corner of each panel. (b)
Estimate errors of the four model observers, for each test patch, as a function of the human estimation error. If a model observer
precisely predicted the human errors then all the points would fall along the positive diagonal. Also shown is the PE—the MSE

between model and human estimates.

Interestingly, the prediction error of all the ConOpt and
ConMIr observers are substantially lower than the
prediction error of the other models. This result
suggests that for any randomly chosen natural image
patch, the local contrast-image statistics of natural
images predict (with good accuracy) both the magni-
tude and sign of human estimation errors in the pixel
estimation task.

In addition to the model observers shown in Table 1
we also ran multiple linear regression models with a full

Observer MSE PE

NoContext 8,897 7,717
LumOpt8 92 107
LumOpt4 297 95
ConOpt8 164 48
ConOpt4 203 34
LumMIr8 111 144
LumMir4 363 87
ConMir8 129 57
ConMir4 160 41
Mean24 1,811 1,024
Mean8 590 186
Median24 1,727 1,051
Median8 580 256
Median4 343 85
Human 215 —

Table 1. Model observer estimation error and prediction error.
Note: MSE = mean squared error; PE = prediction error.

S x 5 context (minus the center pixel). This model
predicted human estimates less accurately than the
contrast models in Table 1. Its estimates were 1% more
accurate than the LumOpt8 observer on the 62 test
patches (MSE =91 vs. MSE = 92), but were 4% less
accurate on five million randomly selected test patches
(MSE = 14.51 vs. MSE = 13.97).

A simple pixel interpolation task was used to assess
how well the human visual system exploits the local
structure of natural images. Sixty-two representative
gray-level patches of natural image were selected. For
each patch, psychometric functions were measured,
where the task was to report (without feedback)
whether the central pixel in the patch was too bright or
too dim given the surrounding context of image pixels.
The PSE was taken as the human estimate of gray level.
The observers reported that the task was relatively
easy, which was consistent with the fact that the
estimates of the PSEs were reliable and similar across
observers.

Although the human estimates are quite accurate,
there are clear systematic deviations from the ground
truth values. These deviations are very similar for the
three observers. Further, the observers’ estimates are
nearly the same for 5 x 5 and 128 x 128 pixel patches,
revealing that the visual system primarily uses the
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Figure 9. A simple model of missing pixel estimation in humans. The input image is passed through a center-surround linear filter and
normalized by the local luminance, producing a Weber contrast response at each pixel location (similar to the response of a ganglion
cell). The estimate of Weber contrast at the missing pixel is obtained by applying a fixed set of linear weights (shown on the right) to
the eight pixel locations immediately surrounding the missing pixel. These weights were learned on a training set consisting of

millions of randomly selected natural image patches.

information in a local 5 x 5 pixel neighborhood to
estimate missing points in an image. This result is
consistent with the falloff of correlation in natural
images (Deriugin, 1956; Field, 1987) and with our
previous statistical analysis of natural image patches,
which strongly suggests that the most informative
pixels are the two on each side of the missing pixel in
the vertical and horizontal directions (Geisler & Perry,
2011).

Human performance was compared with that of a
number of model observers. Humans outperform
simple model observers (local mean, local median), but
do not reach the performance of an observer that
makes near-optimal use of the local spatial statistics of
natural luminance images. However, human perfor-
mance closely matches that of an observer that makes
optimal use of the local spatial statistics of natural
contrast images (images where each pixel has been
converted from a luminance value to a Weber contrast
value). Apparently, the human visual system uses
precise knowledge of local contrast-image statistics in
the pixel estimation task.

A recent study also provides evidence for sophisti-
cated mechanisms in very local estimation tasks. Hofer,
Singer, and Williams (2005) used adaptive optics to
stimulate individual cones and asked subjects to
estimate the perceived color of the stimulus. They
found that humans produce different color names from
stimulation of the same type of cone, depending on the
specific types of cones in the surrounding region.
Subsequent statistical analysis, using the specific cone
mosaics of the human observers, showed that in fact
this complex pattern of estimates is consistent with a

sophisticated Bayesian estimation mechanism (Brai-
nard, Williams & Hofer 2008).

Kersten (1987) showed that performance for one
human observer in the Shannon guessing task was very
similar for 8-pixel and 1224-pixel contextual neighbor-
hoods. A similar result is reported by Bethge et al.
(2007). Kersten also blocked out the nearest 24 pixels
and showed that performance dropped precipitously,
but not to chance, indicating that humans can use more
distant information. We have not carried out similar
psychophysical tests, but we have carried out statistical
analyses showing that there is predictive information in
the more distant pixels; that information is simply
dwarfed by the much better information in the nearby
pixels. This is not a surprising result given the long-
range correlations implied by the 1/f amplitude spectra
of natural images (Deriugin, 1956; Field, 1987).

The present study (like the previous studies listed in
the Introduction) demonstrates the value of measuring
natural image statistics that are relevant for specific
tasks. In particular, the measured contrast image
statistics directly predict much of the human observers’
estimation performance in the pixel estimation task.
Furthermore, given that the test patches were selected
to be generally representative of those in natural scenes,
there is every reason to think that the measured image
statistics would do a good job of predicting human
performance for arbitrary natural image patches. This
finding complements our previous study demonstrating
that the statistics of contour shape in natural images
predict human performance in a contour occlusion task
where the observers’ task is to estimate whether
contour elements passing under an occluder belong to
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the same or different physical contours (Geisler &
Perry, 2009).

The fact that human pixel estimation performance is
accurately predicted by an observer that makes efficient
use of the local spatial statistics of contrast images must
place strong constraints on the underlying neural
mechanisms. However, the constraints are not as strong
as for the contour occlusion task. In the contour
occlusion task, humans approach the best performance
possible, and hence the detailed structure of the natural
image contour statistics must be implemented implicitly
(or explicitly) in the neural mechanisms. On the other
hand, in the pixel estimation task, humans do not reach
the best performance possible, which is that of the
observer that makes optimal use of the local spatial
statistics of luminance images. This gap leaves room for
a wider range of neural mechanisms. For example, the
human visual system could make suboptimal use of
both the local luminance-image and contrast-image
information. It is possible that such models predict
performance as well as the contrast-image ideal.
Nonetheless, it is quite remarkable that the specific
errors that humans make can be so accurately predicted
by natural image statistics.

Although the image statistics were obtained by
measuring a very large number of conditional means
(one mean for each configuration of context values),
the statistics are smooth functions of the context values
(see Figures 3 and 4). Thus, these functions may be
implemented with relatively simple neural circuits that
could have evolved or been learned during develop-
ment. Indeed, the multiple linear regression models
show that appropriate linear weights on the contrast
image can predict human errors quite well. Figure 9
shows a simple ConMIr model (outside the family of
models in Table 1) that predicts human errors slightly
more accurately than the ConOpt4 model in Table 1.

Finally, the present pixel estimation task is subjec-
tively easy, yielding precise estimates that are consistent
across observers. Thus, this task is a promising tool
that could be used to explore how the human visual
system exploits both the luminance and chromatic
structure of natural and artificial images.

Keywords: visual interpolation, natural scene statis-
tics, contextual processing, brightness perception

This research was supported by NIH Grant
EY11747.

Commercial relationships: none.
Corresponding author: Anthony D D’Antona.
Email: anthonydantona@gmail.com.

D’'Antona, Perry, & Geisler 12

Address: Center for Perceptual Systems and Depart-
ment of Psychology, University of Texas at Austin, TX,
USA.

Albright, T. D., & Stoner, G. R. (2002). Contextual
influences on visual processing. Annual Review of
Neuroscience, 25, 339-379.

Barlow, H. B. (1961). The coding of sensory messages.
In W. H. Thorpes & O. L. Zangwill (Eds.), Current
problems in animal behavior (pp. 331-360). Cam-
bridge, UK: Cambridge University Press.

Bethge, M., Wiecki, T. V., & Wichmann, F. A. (2007).
The independent components of natural images are
perceptually dependent. Proceedings of SPIE Hu-
man Vision & Electronic Imaging XI1I, 6492, 1-12.

Bishop, C. M. (2006). Pattern recognition and machine
learning. New York: Springer.

Brainard, D. H., & Williams, D. R. (1993). Spatial
reconstruction of signals from short-wavelength
cones. Vision Research, 33, 105-116.

Brainard, D. H., Williams, D. R., & Hofer, H. (2008).
Trichromatic reconstruction from the interleaved
cone mosaic: Bayesian model and the color
appearance of small spots. Journal of Vision, 8(5):
15, 1-23, http://www.journalofvision.org/content/
8/5/15, doi:10.1167/8.5.15. [Pubmed] [Article]

Brunswik, E., & Kamiya, J. (1953). Ecological cue-
validity of “proximity” and of other Gestalt factors.
American Journal of Psychology, 66, 20-32.

Burge, J., Fowlkes, C. C., & Banks, M. S. (2010).
Natural-scene statistics predict how the figure-
ground cue of convexity affects human depth

perception. Journal of Neuroscience, 30, 7269—
7280.

Deriugin, N. (1956). The power spectrum and the
correlation function of the television signal. Tele-
communications, 1(7), 1-12.

Field, D. J. (1987). Relations between the statistics of
natural images and the response properties of
cortical cells. Journal of the Optical Society of
America, 4, 2379-2394.

Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour
integration by the human visual system: Evidence
for a local association field. Vision Research, 23,
173-193.

Fine, 1., MacLeod, D. I. A., & Boynton, G. M. (2003).
Surface segmentation based on the luminance and


http://www.journalofvision.org/content/8/5/15
http://www.journalofvision.org/content/8/5/15
http://www.ncbi.nlm.nih.gov/pubmed/18842086
http://www.journalofvision.org/content/8/5/15.long

Journal of Vision (2013) 13(14):11, 1-13

color statistics of natural scenes. Journal of the
Optical Society of America, 20, 1283-1291.

Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli,
E. P., & Movshon, J. A. (2013). A functional and
perceptual signature of the second visual area in
primates. Nature Neuroscience, 16, 974-981.

Geisler, W. S. (2008). Visual perception and the
statistical properties of natural scenes. Annual
Review of Psychology, 59, 167-192.

Geisler, W. S., & Perry, J. S. (2009). Contour statistics
in natural images: Grouping across occlusions.
Visual Neuroscience, 26, 109—121.

Geisler, W. S., & Perry, J. S. (2011). Statistics for
optimal point prediction in natural images. Journal
of Vision, 11(12):14, 1-7, http://www.
journalofvision.org/content/11/12/14, doi:10.1167/
11.12.14. [PubMed] [Article]

Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D.
P. (2001). Edge co-occurrence in natural images
predicts contour grouping performance. Vision
Research, 41, 711-724.

Gerhard, H. E., Wichmann, F. A., & Bethge, M.
(2013). How sensitive is the human visual system to
the local statistics of natural images? PLoS
Computational Biology, 9(1), €1002873, doi:10.
1371/journal.pcbi.1002873.

Hofer, H., Singer, B., & Williams, D. R. (2005).
Different sensations from cones with the same
photopigment. Journal of Vision, 5(5):5, 444-454,
http://www.journalofvision.org/content/5/5/5, doi:
10.1167/5.5.5. [PubMed] [Abstract]

Ing, A. D., Wilson, J. A., & Geisler, W. S. (2010).

D'Antona, Perry, & Geisler 13

Region grouping in natural foliage scenes: Image
statistics and human performance. Journal of
Vision, 10(4):10, 1-19, http://www journalofvision.
org/content/10/4/10, doi:10.1167/10.4.10.
[PubMed] [Article]

Kellman, P. J., & Shipley, T. (1991). A theory of visual
interpolation in object perception. Cognitive Psy-
chology, 23, 141-221.

Kersten, D. (1987). Predictability and redundancy of
natural images. Journal of the Optical Society of
America, 4(12), 2395-2400.

Laughlin, S. B. (1981). A simple coding procedure
enhances a neuron’s information capacity. Zeits-
chrift fur Naturforschung C, 36, 910—12.

Maloney, L. T. (1986). Evaluation of linear models of
surface spectral reflectance with small numbers of
parameter. Journal of the Optical Society of
America, 3, 1673-1683.

Oruc, 1., Maloney, L. T., & Landy, M. S. (2003).
Weighted linear cue combination with possibly
correlated error. Vision Research, 43, 2451-2468.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural
image statistics and neural representation. Annual
Review of Neuroscience, 24, 1193—-1216.

Singh, M., & Fulvio, J. M. (2005). Visual extrapolation
of contour geometry. Proceedings of the National
Academy of Sciences, USA, 102, 939-944.

Williams, D. R., MacLeod, D. 1. A., & Hayhoe, M.
(1981). Foveal tritanopia. Vision Research, 21,
1341-1356.


http://www.journalofvision.org/content/11/12/14
http://www.journalofvision.org/content/11/12/14
http://www.ncbi.nlm.nih.gov/pubmed/22011382
http://www.journalofvision.org/content/11/12/14.long
http://www.journalofvision.org/content/5/5/5
http://www.ncbi.nlm.nih.gov/pubmed/16097875
http://www.journalofvision.org/content/5/5/5.long
http://www.journalofvision.org/content/10/4/10
http://www.journalofvision.org/content/10/4/10
http://www.ncbi.nlm.nih.gov/pubmed/20465330
http://www.journalofvision.org/content/10/4/10.long

	Introduction
	Model observers
	e01
	f01
	e02
	e03
	e04
	Methods
	f02
	f03
	f04
	Results
	e05
	f05
	e06
	f06
	f07
	Discussion
	f08
	t01
	f09
	Albright1
	Barlow1
	Bethge1
	Bishop1
	Brainard1
	Brainard2
	Brunswik1
	Burge1
	Deriugin1
	Field1
	Field2
	Fine1
	Freeman1
	Geisler1
	Geisler2
	Geisler3
	Geisler4
	Gerhard1
	Hofer1
	Ing1
	Kellman1
	Kersten1
	Laughlin1
	Maloney1
	Oruc1
	Simoncelli1
	Singh1
	Williams1

