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Abstract
Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in
pathological states including inflammation and cancer. While much is known about the
biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of
the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not
to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to
highlight some of the areas where key questions remain to be addressed. These include substrate
preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the
relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the
contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid
receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface
receptor signaling.
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1 Introduction
Consumption of high levels of dietary lipids is usually associated with increased risk of
cancer, with the notable exception of ω3 polyunsaturated fatty acids (PUFA), which show
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protective effects against colon, breast, and prostate cancer in a number of experimental
systems [1–5]. Since ω3 and ω6 PUFA cannot be synthesized de novo, they are essential
fatty acids and must be taken in from the diet. However, PUFA elongation to longer chain
species shares malonyl-CoA as a common substrate with de novo fatty acid synthesis.
Hence, levels of specific PUFA in an organism depend on dietary intake and on metabolism
of these fatty acids by desaturases, elongases, cyclooxygenases (COXs), lipoxygenases
(LOXs), and other enzymes [5]. In turn, metabolism shows interindividual differences due to
polymorphism in the genes encoding the various metabolic enzymes [6]. Bioactive
metabolites of ω6 PUFA generated by COXs and LOXs (eicosanoids) have been extensively
investigated and play various roles in inflammation, cancer cell proliferation, and metastasis.
Overall, metabolites of ω3 PUFA oppose these actions, but their generation is still poorly
understood. In this review, we highlight the interplay between dietary PUFA intake,
elongation, β-oxidation, storage, and eicosanoid synthesis and de novo fatty acid synthesis.
We further discuss the potential roles of PUFA and their metabolites in prostate cancer, with
an emphasis on angiogenesis and cell surface receptors, and contrast the wealth of
information available on ω6 PUFA metabolism to the relative scarcity of knowledge on ω3
PUFA metabolism.

2 Source of ω6 and ω3 PUFA and conversion within each series
ω6 and ω3 PUFA cannot be interconverted in mammals, but within each series, metabolism
can produce various lipids that differ in chain lengths and number of unsaturated bonds.
Linoleic acid (LA, 18:2n-6) is an ω6 PUFA found in abundant supply in vegetable oils; it is
metabolized primarily to arachidonic acid (AA, 20:4n-6) through a series of alternating
oxidative desaturation and elongation steps. In the ω3 series, alpha linolenic acid (α-LNA,
18:3n-3), found at moderate levels in most terrestrial plants, is not converted efficiently to
long-chain ω3 PUFA such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic
acid (DHA, 22:6n-3; see below). Therefore, in humans the main source for these long-chain
ω3 PUFA is through dietary intake of fish or supplementation with fish oil.

During ω6 PUFA conversion, fatty acid desaturase 2 (FADS2) or delta-6 desaturase
converts LA to gamma linolenic acid (γ-LNA, 18:3 n-6). This enzyme represents a rate-
limiting step in the synthesis of AA from dietary LA [7] (Fig. 1). γ-LNA is elongated to
dihomo-gammalinolenic acid (DGLA, 20:3 n-6) through a process of four enzymatic
reactions. The first of these is condensation of the fatty acyl chain with malonyl-CoA,
catalyzed by an enzyme encoded by the ELOVL5 gene (elongation of very long-chain fatty
acids, family member 5). This is followed by a reduction reaction mediated by 3-ketoacyl-
CoA reductase (KAR, also known as HSD17B12), a dehydration reaction catalyzed by 3-
hydroxyacyl-CoA dehydratase (HACD), and finally a second reduction reaction catalyzed
by trans-2,3-enoyl-CoA reductase (TECR). After chain elongation, fatty acid desaturase 1
(FADS1) or delta-5 desaturase converts DGLA to AA. Again, this step is relatively
inefficient [7] (Fig. 1).

The same enzymes are involved in ω3 PUFA conversion. However, conversion of α-LNA to
DHA in humans appears to be very inefficient. Both α-LNA-feeding studies and stable
isotope studies have consistently demonstrated that increased consumption of α-LNA does
not result in increased DHA in plasma or cell lipids (reviewed in [8, 9]). Instead of being
further anabolized, most of the ingested α-LNA is subject to β-oxidation to provide energy
and only a small fraction is converted to EPA. From kinetic analyses of fatty acid
conversion, it was estimated that conversion of α-LNA to EPA might be as low as 0.2%,
conversion of EPA to DPA was estimated at 64%, and conversion of DPA to DHA at 37%
[10]. Therefore, the overall amount of DPA and DHA made from α-LNA would only
represent 0.13% and 0.05% of the starting α-LNA amount, respectively. These data suggest
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that FADS2, the first enzyme in the conversion sequence, is rate-limiting. Recently, it was
proposed that the limited conversion of α-LNA to DHA in HepG2 cells was in part due to a
competition of α-LNA and tetracosapentaenoic acid (24:5n-3) for FADS2 [11]. There is
some evidence of gender differences in efficiency of the elongation–desaturation pathway
suggesting that sex hormones may play a regulatory role [9, 12, 13].

3 Polymorphism of the FADS gene cluster and potential impact on PUFA
conversion

The human FADS gene cluster (FADS1, FADS2, and FADS3) is located on chromosome
11q12–13.1. Approximately 207 single-nucleotide polymorphisms (SNPs) were identified
on FADS1, 610 SNPs on FADS2, and 246 SNPs on FADS3 (http://www.ncbi.nlm.nih.gov/
snp/). Interestingly, microRNA hsa-mir-1908, which is expressed in embryonic stem cells,
cancer, and the female reproductive tract [14–16], is located in the first intron of the FADS1.
One SNP (rs174561) is present within the miRNA, and two additional SNPs (rs73487465
and rs75810419) flank it. Whether these SNPs have an effect on hsa-mir-1908 expression is
currently unclear.

Schaeffer et al. [17] first reported an association between genetic variants of the FADS gene
cluster and PUFA composition in phospholipids. Several SNP studies [18–28] and a
genome-wide association study [29] have replicated the observation. FADS polymorphisms
may affect both ω3 and ω6 PUFA desaturation–elongation. The topic has been the subject of
multiple reviews [30–34]. Recent evidence suggests that polymorphisms in the FADS gene
cluster which alters desaturase activity might differ between Caucasians and Asians [35]. An
intriguing question is whether this polymorphic difference, if confirmed, has an impact on
the effect of ω3 and ω6 PUFA on cancer risk among different populations.

4 Dependence of tumor cells on de novo fatty acid synthesis
Although fatty acids are consumed at high levels in a typical western diet, tumor cells
display an obligate requirement to synthesize fatty acid de novo [36, 37]. This is evidenced
by high expression levels of enzymes in the pathway in multiple types of cancer, including
prostate cancer. For example, fatty acid synthase (FASN), the enzyme that catalyzes the
synthesis of fatty acid, is expressed at high levels in prostate cancer and its expression is
correlated with disease progression and outcome [36, 38–43]. The fatty acid synthesis
pathway is turned on early in prostate cancer development and is regulated by androgen
[44–46]. In addition, the pathway is driven by the same processes that drive prostate cancer.
As one example, the PI3-kinase pathway is the primary driver of FASN expression in
prostate cancer [47]. Pharmacological blockade of the PI3-kinase pathway reduces FASN
expression, as does reexpression of PTEN in PTEN-null cells [48]. Moreover, patients with
tumors that are PTEN negative and express high levels of FASN have decreased disease-free
survival [38]. Conversely, the prostate-specific expression of FASN is sufficient to induce
prostatic intraepithelial neoplasia (PIN) lesions in mice [49]. Collectively, these findings
strongly suggest that that the de novo pathway of fatty acid synthesis is not only required for
prostate cancer but may have a role in promoting disease progression.

There are other enzymes upstream of FASN that are involved in fatty acid synthesis. Fatty
acid synthesis primarily uses glucose as the primary carbon source, although recent evidence
demonstrates that glutamine also serves as a carbon source in tumor cells [50–52]. To
generate the substrates for fatty acid synthesis, several enzymatic steps are required. First,
citrate is shunted out of the TCA cycle into the cytoplasm and converted to acetyl-CoA by
ATP-citrate lyase (ACLY) [50–52]. The resulting acetyl-CoA is converted to malonyl-CoA
by the cytosolic acetyl-CoA carboxylase 1 (ACC1) through an ATP-dependent
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carboxylation reaction [53, 54]. Generation of malonyl-CoA is the rate-limiting step of fatty
acid synthesis. The ultimate steps of fatty acid synthesis are performed by FASN, which also
resides in the cytosol, by combining 1 acetyl-CoA with 7 malonyl-CoA to synthesize the 16-
carbon fatty acid palmitate [55–58]. FASN also synthesizes the 14-carbon fatty acid
myristate and the 18-carbon fatty acid stearate, albeit to lesser degrees. Palmitate can
undergo a series of modifications before it is utilized in the cells. It can be elongated by two
carbons to stearate using malonyl-CoA as the elongation substrate, just as it is for PUFA.
Palmitate and stearate can also be desaturated by stearoyl-CoA desaturase-1 to form the
monounsaturated palmitoleate and oleate, respectively. Thus, the fatty acid synthesis
pathway generates the saturated fatty acid component of the cell but also provides the
precursor for the monounsaturated component of the cell.

The ubiquitous expression of FASN in tumor cells is paralleled by an absolute requirement
for de novo fatty acid synthesis to proliferate and survive [36, 43]. Because of the cellular
dependence on fatty acid synthesis to facilitate membrane biogenesis and other aspects of
cell biology, fatty acid synthesis impacts on virtually every aspect of cellular activity. For
example, it is required for cell cycle progression, protein synthesis, mitochondrial function,
and protein targeting [59–63]. Accordingly, blocking the activity of ACLY, ACC1 and
FASN reduces proliferation or induces cell death in vitro and inhibits tumor growth in vivo
[51, 59, 64–69].

5 Relationship between de novo lipid synthesis and dietary lipid
metabolism pathways

The dependence of tumor cells on de novo fatty acid synthesis suggests that these cells have
different requirements for fatty acid compared to normal cells. Some portion of the
increased demand can be attributed to increased proliferation of tumor cells compared to
normal cells. It may also be possible that dietary and de novo fatty acids are subject to
different fates in a cell. In such a case, it may be that dietary fatty acid is unable to meet to
demands of the tumor cell. The fate of newly synthesized fatty acid in a tumor cells has been
well defined. Most of it is used to support membrane biogenesis in the form of
phospholipids, although some portion is used for protein palmitoylation and protein
targeting [63, 70]. Interestingly, recent evidence demonstrates that de novo synthesized fatty
acid is primarily used to support phosphatidylcholine (PC) synthesis [71]. Blockade of the
pathway has little effect on phosphatidylserine, phosphatidylethanolamine, and
phosphatidylinositol. It is tempting to speculate that dietary fat is required to support the
non-PC portion of tumor cell membranes. The pool of newly synthesized fatty acid used for
membrane biogenesis is preferentially enriched into detergent-insoluble microdomains
known as lipid rafts [70]. This is consistent with the finding that lipid rafts are rich in lipids
containing saturated fatty acid. It also suggests that fatty acid synthesis supports signaling
functions that are associated with lipid rafts.

Although the expression and activity of enzymes in the fatty acid synthesis pathway is
highly correlated with cancer, there are several examples of normal biology in which the
pathway is active. Embryonic development is an example of when the pathway appears to be
active and required as Fasn- and Acc1-deficient mice display an embryonic mutant
phenotype [53, 55]. Fasn-deficient embryos display lethality prior to implantation and
heterozygotes die at multiple stages during development [55]. Similarly, Acc1-deficient
embryos display lethality at around day 8.5 [53]. It is interesting to note that placing
pregnant mothers on a diet enriched in saturated fatty acid is not sufficient to protect
embryos from the effects of Fasn deletion. Whether this is because of differential utilization
of dietary fat compared to synthesized fat or from having to cross the placenta is unknown.
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The liver and adipose tissue are two other examples in which the fatty acid synthesis
pathway is active. In these tissues, fatty acid is generated and, following excessive caloric
consumption, stored as triglyceride for future energy. Mice with liver-specific deletion of
Acc1 and Fasn have also been generated [54, 72]. Mice engineered to have targeted Fasn
deletion in the liver display a phenotype that can be reversed with a peroxisome proliferator-
activated receptor (PPAR) α agonist, but not with a high-fat diet [72, 73]. It was
subsequently demonstrated that Fasn-dependent fatty acid synthesis was responsible for the
formation of the PPARα ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine
(16:0/18:1-GPC) [73]. Of note, this lipid is among the most abundant of all lipid species.
That a high-fat diet could not recapitulate the wild-type liver phenotype of the wild-type
mice suggests that dietary fat may be utilized differently than de novo synthesized fat in
cells.

Unlike what has been a demonstrated in vivo using total or tissue-specific knockout of Fasn,
exogenous fatty acid is able to protect cells from the effects of inhibiting FASN and ACC1
in tumor cell lines in vitro. As discussed earlier, when tumor cell lines are treated with
FASN and ACC1 inhibitors or transfected with siRNA against either of the two enzymes,
cell cycle blockade and cell death ensue. Many of the cellular effects can be delayed or
ameliorated by supplementing cells with exogenous fatty acid in their culture medium.
Palmitate supplementation can restore cell cycle progression and survival following siRNA
knockdown of FASN and ACC1 [59, 65, 74]. Recent studies also suggest that tumor cells
may obtain fatty acid from the circulation through a lipoprotein lipase and CD36-dependent
mechanism [75]. Moreover, it appears that this mechanism has the potential to protect tumor
cells from the effects of inhibitors of de novo fatty acid synthesis. Although in vitro
experimentation does not always adequately reflect in vivo biology, it is interesting to
consider that dietary fat may have a different influence on tumor cells than on normal cells.
This could be related to the fact that tumor cells have an absolute requirement for the
synthesis of saturated fatty acid.

Development of FASN, ACC1, and ACLY inhibitors is the subject of intense investigation.
Because PUFA elongation requires malonyl-CoA, one interesting possibility is that
inhibition of ACC1 or ACLY could reduce cellular malonyl-CoA level and consequently
diminish the LA to AA conversion. Since elongation of dietary ω6 PUFA appears to be
more efficient than that of ω3 PUFA, it is tempting to speculate that ACC1 and ACLY
inhibitors may preferentially reduce the formation of AA and consequently that of the ω6-
series eicosanoids.

6 PUFA oxidation and cycling
Human beings first evolved while consuming a diet containing roughly equivalent amounts
of ω6 and ω3 PUFA [76]. During the last two centuries, however, the consumption of ω6
PUFA has increased dramatically due to the increased intake of vegetable oils. Today, the
ratio of ω6 and ω3 PUFA in western diets is approximately 30:1. The low intake of α-LNA
from the diet is consistent with the observation that α-LNA is underrepresented relative to
LA in various tissues and organs in the body [77–79]. Even with an equal amount of ω6 and
ω3 PUFA intake, some evidence suggests that this phenomenon may also be the result of
rapid β-oxidation of α-LNA relative to other fatty acids [80, 81]. Indeed, carnitine
palmitoyltransferase (CPT1), a key enzyme in fatty acid β-oxidation, exhibits the fastest
maximum turnover capacity with α-LNA as substrate relative to other fatty acids, whether
the substrates are presented as nonesterified fatty acids or as acyl-CoA esters [82].

Although the rate of esterification may be comparable between ω6 and ω3 PUFA [83], data
indicate that the release of fatty acids from phospholipids could be quite different. Three
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major groups of phospholipase A2 (PLA2) enzymes have been identified: secreted PLA2 or
sPLA2, cytosolic PLA2 or cPLA2, and calcium-independent PLA2 or iPLA2. sPLA2 and
cPLA2 can selectively release AA from the sn-2 position of phospholipids and the released
AA is then the substrate of oxygenases. Interestingly, phospholipids with ω3 PUFA (EPA or
DHA) in the sn-2 position are poor substrates for cPLA2 [84, 85]. In contrast, iPLA2 may
selectively release DHA [86]. Therefore, the extent to which ω3 and ω6 PUFA are released
from phospholipids would be expected to depend on the relative expression of the various
phospholipases.

To date, it is unclear whether ω6 and ω3 PUFA are differently β-oxidized and how ω6 and
ω3 PUFA are cycled in tumor cells. The role of cPLA2 and sPLA2 in cancer has been
discussed previously [87–89]. A study found that sPLA2 was upregulated and that
endogenous inhibitors of cPLA2 were downregulated in prostate cancer, with resulting
effects on cancer cell growth [90]. In another study, the mRNA and protein levels of sPLA2
were significantly higher in Gleason pattern grade 2–4 carcinomas than benign prostate
samples and correlated with proliferation, but the expression was lower in metastases [91].
Compared to cytosolic and secreted phospholipases, little is known about the expression and
function of iPLA2 enzymes in prostate cancer.

7 Relative contribution of oxygenases in prostate cancer
AA is metabolized by a number of enzymes belonging to the COX and LOX families as
well as cytochrome P450 epoxygenases. COXs catalyze the first reaction in the conversion
of AA to prostaglandins (PG) G and H, which are further metabolized into other
prostaglandins (PGE, PGF, PGJ), prostacyclins (PGI), and thromboxanes (TXA, TXB),
whereas LOXs mediate the first step in the conversion of AA to leukotrienes and
hydroxyeicosatetraenoic acids (HETEs). Cytochrome P450 oxygenases convert AA to
HETEs by the action of omega-hydroxylase activity and to epoxyeicosatrienoic acids
(EETs) by epoxygenase activity. The resulting lipid metabolites have multiple biological
activities and have been implicated in various pathological processes, including
inflammation, autoimmunity, and cancer [92, 93]. Long-chain ω3 fatty acids are also
believed to be substrates of COX, LOX, and P450 enzymes, and the resulting products tend
to have opposing effects to their ω6 counterpart [94]. However, in contrast to ω6 PUFA, the
metabolism of ω3 PUFA is not well understood.

COXs (also known as prostaglandin G/H synthases, PTGS) have two well-characterized
isoforms, namely COX1 or PTGS1 and COX2 or PTGS2. COX1 is a constitutively
expressed gene in most tissues whereas COX2 is an immediate-early response gene, highly
induced during tumor progression [95]. A third isoform, COX3, appears to be a splice
variant of the COX1 gene. Due to its induction in inflammation and cancer, COX2 has been
the object of intense study and proposed as a target for cancer therapy. Numerous review
articles have been written on this topic [96–99]. There are several types of LOXs in
mammals, the most widely studies of which are LOX5 (ALOX5), LOX12 (ALOX12) and
LOX15 (ALOX15), where the names reflects the substrate specificity in terms of the carbon
number [100]. LOXs have been suggested to play roles in cancer as well [101].

Due to the existence of multiple oxygenases, the role of specific enzymes in the
development of prostate cancer has not been studied systematically in a single system or
animal model. In addition, studies performed in animals rarely take diet into account for the
design and interpretation of the experiments. For this reason, it is still unclear whether all
oxygenases play an important role or some oxygenases are more critical in the development
of prostate cancer in animals consuming different diets. To systematically assess the
interaction between oxygenases and dietary PUFA in a single in vivo model of prostate
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cancer, we knocked out Cox1, Cox2, Lox5, Lox12, or Lox15 in prostate-specific Pten-null
mice. We have previously demonstrate that ω3 and ω6 PUFA differentially modulate the
growth and progression of prostate tumors in this model [3]. Preliminary results indicate that
loss of Cox1 had significant effects on prostate tumor growth in a PUFA-dependent manner;
namely, tumor growth was significantly increased in Cox1 knockout mice on ω3 diet
compared to Pten-null, Cox1-positive mice on the same diet, essentially negating the
protective effects of ω3 PUFA. In other words, Cox1 appears to be required for the
protective effects of ω3 PUFA, suggesting that ω3 metabolites of Cox1 reduce cancer
formation. On the other hand, tumor growth was decreased in mice on ω6 diet compared to
Pten-null, Cox1-positive mice on the same diet, suggesting that ω6 metabolites of Cox1
(e.g., PGE2) play a promoting role on tumor formation. Loss of Cox2 reduced prostate tumor
growth regardless of diet, suggesting that metabolites of Cox2 promote tumor growth and
that suppressive effects of ω3 PUFA do not depend upon Cox2. Loss of Lox5 reduced
prostate tumor growth on ω6 diet but had no effect on ω3 diet, suggesting that ω6
metabolites of Lox5 promote tumor growth, and protective effects of ω3 PUFA are
independent of Lox5. Loss of Lox12 or Lox15 did not affect prostate tumor growth on either
diet, suggesting that either PUFA metabolites are not generated from these two enzymes, or
metabolites generated are not critical for prostate tumor in this animal model (Chen et al.,
unpublished). It is clear from these studies that the interaction between diet and metabolic
genes can play an important role in determining cancer risk and response of cancer to dietary
PUFA.

Substantial evidence from human studies supports the important role of COXs in PUFA
metabolism and cancer [92]. LOX5 has also been implicated in the progression of several
types of human cancers [102–106] including that of the prostate [107–110]. Interestingly,
interactions between dietary intake of PUFA and polymorphisms in COX2 and LOX5 genes
may determine cancer risk [111–114]. Such reports are consistent with our animal studies,
but the role of COX1 as well as specific polymorphisms of eicosanoid metabolic enzymes in
human prostate cancer warrants further investigations.

8 Role of prostaglandin, prostacyclin and thromboxane synthases, and
prostanoid receptors in cancer

As mentioned above, COX1 and COX2 convert arachidonic acid into prostaglandin G2,
which undergoes conversion to PGH2 through the peroxidase activity of COX. In turn,
PGH2 is converted to other prostaglandins, prostacyclin, and thromboxanes by the action of
several isomerases also called terminal synthases (Fig. 2). Three terminal synthases capable
of producing PGE2 from COX-derived PGH2 have been reported: prostaglandin E synthase
(PTGES) or microsomal PGES-1 (mPGES-1), PTGES2 or mPGES-2, and PTGES-3 or
cPGES. A prostaglandin D2 synthase responsible for converting PGH2 to PGD2 has been
described in the brain, whereas in immune cells this conversion is catalyzed by
hematopoietic prostaglandin D synthase. Prostaglandin I2 (prostacyclin) synthase (PTGIS) is
involved in the conversion of PGH2 to PGI2. In platelets, thromboxane A synthase 1
(TBXAS1) converts PGH2 to TXA2. ω3 PUFA EPA is thought to serve as a substrate of the
same set of enzymes to generate 3-series eicosanoids (PGH3, PGE3, etc.) [115]. However,
for many of these enzymes, the extent to which ω3 PUFA can serve as substrates is unclear.

mPGES-1 is a microsomal glutathione-dependent prostaglandin E synthase that can be
induced by LPS, the proinflammatory cytokine interleukin 1 beta, by tumor suppressor
protein TP53, as well as in pathological conditions such as cancer. Therefore, mPGES-1 has
been proposed as a therapeutic target in cancer [116, 117]. mPGES-2 is also a microsomal
prostaglandin E synthase, but its expression seems to be independent of inflammation and
there is less evidence linking it to cancer. cPGES is a cytosolic protein also known as p23,
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described as an HSP90 co-chaperone involved in the stabilization of the glucocorticoid
receptor complex. A role for cPEGS in PGE2 synthesis has been suggested experimentally
[118, 119], but the results of mouse knockout studies failed to support this function [120].

One report showed that mPGES-1 is expressed at high levels in DU145 human prostate
cancer cells and in human prostate cancer tissues compared with benign hyperplasia. Short
hairpin RNA-mediated mPGES-1 knockdown in DU145 decreased clonogenic survival and
increased sensitivity to adriamycin-induced apoptosis, which could be rescued by exogenous
PGE2. mPGES-1 knockdown also decreased the tumorigenic potential of xenograft tumors
in nude mice [121]. Polymorphisms in the mPGES-2 and leukotriene A4 hydrolase (LTA4H)
genes were found to be inversely associated with prostate cancer risk [122].

In contrast with other prostaglandin synthases, PTGIS may reduce cancer risk (reviewed in
[123]). The PTGIS gene promoter was identified as being hypermethylated in 43 out of 100
colorectal cancers and in colorectal cancer cell lines [124]. Promoter repeat polymorphism
in PTGIS has also been found to be associated with risk of adenomas in a case–control study
of individual with colorectal polyps versus polyp-free controls [125]. In human lung cancer,
PGI2 and PGE2 appear to play antagonistic roles: PTGIS and PGI2 are downregulated,
whereas PGE2 synthase and PGE2 are upregulated [126, 127]. Moreover, transgenic mice
with selective pulmonary prostacyclin synthase overexpression are protected from
carcinogen-induced lung tumor formation [128]. The role of prostacyclin and PTGIS in
prostate cancer is less clear.

Thromboxane A4 synthase (TBXAS1) is overexpressed in a number of cancers and has been
proposed to contribute to tumor development and progression by modulating tumor growth,
angiogenesis, thrombosis, invasion, and metastasis and by inhibiting apoptosis. The balance
in the expression of PTGIS and TBXAS1 has been suggested to be clinically relevant [123].
In prostate cancer, immunohistochemical analysis of tumor samples showed significantly
elevated TBXAS1 expression in prostate tumors compared to normal luminal or secretory
cells, with a marked increased in tumors presenting perineural invasion [129]. In addition,
migration of PC-3 cells, which express high levels of TBXAS1, was reduced by inhibition
of this enzyme, whereas motility of TBXAS1-negative DU145 cells was stimulated by its
overexpression.

Nine prostanoid receptors have been identified, which belong to the G protein-coupled
receptor family and are conserved from mouse to human (Fig. 2). There are two PGD2
receptors, called PTGDR or DP1 and GPR44 or DP2, four subtypes of PGE receptors,
named PTGER1–4 or EP1–4, one PGF receptor (PTGFR or FP), one PGI2 receptor (PTGIR
or IP), and one TXA2 receptor (TBXA2R or TP) [130]. In mouse prostate cells, expression
of Ep1, Ep2, and Ep4 is detectable (Chen et al., unpublished). Only EP2 and EP4 were
detected in PC3, DU145, and LNCaP human prostate tumor cells, which is consistent with
the literature [131, 132]. Aberrant TXA2 signaling and TP expression is associated with
prostate cancer, where a direct correlation was observed with tumor Gleason score and
pathological state [133, 134]. However, much remains to be learnt about the expression of
these prostanoid receptors and their activation by ω6 and, especially, ω3 prostanoids in
cancer cells.

9 Role of PUFA in tumor angiogenesis
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert some of their anti-inflammatory and
antitumor effects by reducing prostanoid production through the inhibition of COX enzyme
activity. NSAIDs have been reported to have beneficial effects on reducing the risk of
developing prostate cancer [135–138]. The role of eicosanoids in tumor inflammation and
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proliferation has been reviewed extensively [92, 93, 139–143]. Here we will focus on the
potential role of PUFA in angiogenesis and cell surface receptor signaling.

Angiogenesis plays a major role in tumor progression by providing a blood supply to the
growing tumor and facilitating its dissemination [144, 145]. The significance of
angiogenesis in human prostate cancer progression is evidenced by correlations of
microvessel density with Gleason score, pathologic stage of disease, and patient survival
[146, 147]. The most investigated stimulator of angiogenesis is VEGF (reviewed in [148]).
ω3 PUFA were shown to suppress VEGF-stimulated endothelial cell proliferation,
migration, and tube formation during sprouting angiogenesis [149, 150], and endothelial cell
expression of the VEGF receptor FLK-1 was reduced by EPA [151]. Effects of ω3 PUFA on
in vivo models of VEGF-induced angiogenesis are inconsistent. Both EPA and DHA
inhibited VEGF expression and reduced microvessels in tumors arising from HT-29 colon
cancer cell transplants in nude mice. This involved inhibition of a pathway comprising
COX2, PGE2, and HIF-1α [152]. However, in a mouse model of hypoxia-induced retinal
angiogenesis, an ω3 PUFA diet or expression of the Caenorhabditis elegans fat-1 gene to
endogenously enrich tissues in ω3 PUFA was shown to reduce pathological
neovascularization without suppression of VEGF [153–155]. Likewise, an ω3 PUFA diet-
induced decrease in tumor microvessel density in a mouse breast cancer xenograft model
was not accompanied by a reduction in VEGF mRNA [156]. Using a random crossover
design, a Mediterranean diet enriched in ω3 PUFA was compared to an ordinary Swedish
diet for the ability to reduce indices of inflammation [157]. A 45% reduction in the ω6 to ω3
PUFA ratio in serum was accompanied by a significant decrease in VEGF following the
Mediterranean diet phase.

PDGF is another key regulator of angiogenesis. Studies examining the role of fish oil in
reducing risk of cardiovascular disease showed that ω3 PUFA almost completely eliminated
endothelial cell production of PDGF in vitro [158]. Further, in human volunteers fed with
dietary fish oil, increased monocyte ω3 PUFA levels were associated with a 66% and 70%
decrease in mRNA for PDGF-A and PDGF-B, respectively [159]. Similar studies have yet
to be conducted with cancer patients.

The FGF family in vertebrates consists of 22 proteins that range in size from 17 to 34 kDa
and share 17–31% sequence identity [160, 161]. FGFs display variable affinities for four
cognate tyrosine kinase receptors, designated FGFR1–4, and all of which are upregulated in
prostate cancer [162]. FGF1, FGF2, FGF6, FGF8, FGF9, and FGF17 show elevated
expression in prostate tumors compared to normal human prostate [162–164]. Of these,
FGF1 and FGF2 are well-defined promoters of angiogenesis [165]. Over 80% of prostate
cancers express FGF1, and expression was shown to positively correlate with Gleason score
[166]. The biological significance of FGF2 in prostate cancer was demonstrated in the
transgenic adenocarcinoma of the mouse prostate mouse model, in which elimination of one
or both Fgf2 alleles reduced metastasis and increased survival [167]. FGF8 has also emerged
as an important promoter of angiogenesis. An alternatively spliced isoform, FGF8b is the
major isoform of FGF8 present in human prostate cancer and is strongly associated with
stage and grade of disease [168]. Xenografts of PC3 cells overexpressing FGF8b in mice
demonstrated an extensive capillary network and metastases [169]. Targeted prostate
expression of Fgf8b in transgenic mice was shown to induce a hypercellular reactive stroma
enriched in vasculature, prior to the development of PIN [170]. Although there is no
evidence to date for regulation of any FGF by ω3 PUFA, enrichment of tumor cells with the
ω6 PUFA linoleic acid was shown to convert the growth-promoting activity of FGF from a
transient to a sustained effect [171].
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10 Effects of PUFA on cell surface receptor signaling
Toll-like receptors (TLRs) are a family of transmembrane receptors that mediate an innate
immune response through recognition of conserved patterns of microbial and viral
components. They play a major role in defense against pathogens, particularly at mucosal
surfaces. Although TLRs were originally detected only on immune cells [172], it is now
known that tumor cells express functional TLRs that are stimulated by endogenous ligands
in addition to those of microbial origin [173–175]. The physiological functions of TLRs in
relation to cancer have been reviewed [175]. In prostate cancer, increased risk has been
linked to sequence variations in TLR4 [176] and the TLR6–10 cluster [177]. Although the
biological consequences of these polymorphisms are not understood, they are consistent
with a major role of inflammation in prostate cancer and suppression of TLR activity may be
one of the anti-inflammatory roles of ω3 PUFA. Dietary fish oil was shown to inhibit TLR4
activity in peripheral blood monocytes from human volunteers [178], and DHA acted as a
pan inhibitor of TLRs in a macrophage cell line [179]. In prostate cancer cells, TLR3
activation was shown to trigger apoptosis and promote angiogenesis through upregulation of
HIF-1α [180]. Effects of ω3 PUFA on prostate cancer cell TLRs remain to be determined.

The syndecan family of cell surface proteoglycans consists of four members with a shared
structure of small conserved cytoplasmic and transmembrane domains and larger, distinct
ectodomains. The ectodomains are substituted predominantly with heparan sulfate
glycosaminoglycan chains, but syndecan-1 can also exist as a hybrid bearing both heparan
sulfate and chondroitin sulfate chains [181]. A biologically active ectodomain can be shed
by the action of matrix metalloproteinases (reviewed in [182]). Syndecan-1 is the most
widely studied in relation to cancer, but its role is complex and far from clear. Its heparan
sulfate chains interact with a variety of extracellular matrix components, growth factors,
cytokines, and enzymes to facilitate a role in regulation of cell proliferation, apoptosis,
adhesion, and migration. Syndecan-1 is expressed primarily by epithelial cells, but with
malignant conversion and tumor progression, syndecan-1 expression is reduced and this
reduction is associated with poor prognosis in various epithelial-derived tumors [183–186].
However this may be tumor or stage specific, since syndecan-1 increases have been
associated with unfavorable prognosis in some cancers [187–189]. Mounting evidence
indicates that tumor progression is accompanied by a shift from an epithelial to stromal
distribution for syndecan-1 [190–192]. This may result in changes in the fine structure of
syndecan-1 that lead to altered function. Syndecan-1 has not been well studied in prostate
cancer. An inverse relationship was reported between syndecan-1 and Gleason score [193,
194], but a tissue microarray analysis showed an increase in syndecan-1 with tumor
progression [195]. In vitro studies have shown reduced expression of syndecan-1 in prostate
cancer cell lines compared to normal prostate epithelial cells and lower expression in
androgen-dependent LNCaP cells compared to androgen independent PC3 and DU145 cells
[196].

Our studies have shown that in a mouse model of prostate cancer, the reduction in tumor
growth as a result of dietaryω3 PUFA [3] is accompanied by an increase in the expression of
syndecan-1 [196, 197]. Moreover, in human and mouse prostate cancer cells lines,
syndecan-1 was upregulated by DHA but not EPA. This led to increased apoptosis through
syndecan-1-dependent suppression of the PDK-1/AKT/BAD signaling pathway [196].
Syndecan-1 upregulation by DHA has also been demonstrated in human breast cancer cells
[2, 198, 199] and in ω3 PUFA-enriched mammary glands and liver of Fat-1 mice (Sun et al.,
in press).

New evidence points to an important role for syndecan-1 as a negative regulator of
angiogenesis and suggests that ω3 PUFA modulation of angiogenesis may involve
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syndecan-1. Shedding of the syndecan-1 ectodomain is triggered by inflammatory
conditions [200, 201]. In a mouse model of lung injury, binding of the chemokine CXCL1 to
syndecan-1 was shown to induce enzymatic shedding of the ectodomain-CXCL1 complex
by MMP-7. This generated a transepithelial chemokine gradient to direct neutrophils to the
injury site [201]. In addition, syndecan-1 is a negative regulator of leukocyte-mediated
inflammatory responses by binding chemokines CCL7, CCL11, and CCL17 to inhibit CC
chemokine-mediated T cell migration [202]. Mice with a deletion of the gene encoding
syndecan-1 (Sdc1−/−) demonstrated increased leukocyte adhesion to endothelial cells and
increased inflammation-mediated corneal angiogenesis [203, 204]. The inflammatory
cytokine, tumor necrosis factor (TNF)α promotes retinal angiogenesis [205]. TNFα was
shown to also suppress endothelial cell syndecan-1 expression [206]. Dietary ω3 PUFA
reduced retinal TNFα and protected against retinal neovascularization [153]. Further the
antiangiogenic effect of ω3 PUFA was shown to be mediated by activation of the nuclear
receptor PPARγ [154]. SDC1 is a PPARγ-responsive gene, and we have shown that DHA
upregulates syndecan-1 in prostate cancer cells through activation of PPARγ [197]. Critical
experiments confirming a role for syndecan-1 in ω3 PUFA suppression of angiogenesis have
yet to be conducted.

11 Conclusions
Dietary ω3 and ω6 PUFA are subjected to complex metabolic processes involving genes for
lipid release from glycerolipids, elongation, β-oxidation, storage, eicosanoid synthesis and
signaling. Much of the knowledge is derived from the study of ω6 PUFA. Relatively little is
known about ω3 PUFA metabolism. Moreover, the interplay between dietary fat and de
novo synthesis is not fully understood, especially in cancer. We will end this review by
posing a series of questions, which we believe are some of the key challenges in the field of
PUFA research.

12 Key unanswered questions
1. Does FADS2 have the same activity towards LA and α-LNA?

2. Is the low conversion rate of α-LNA to EPA primarily due to low bioavailability of
α-LNA or low activity of FADS?

3. Are there differences in FADS polymorphisms between Caucasians, Asians, and
African-American populations, and do these differences have an impact on the
effect of PUFA on cancer risk?

4. Considering the amount of fat in a typical diet, why do tumor cells require de novo
fatty acid synthesis?

5. Are dietary and de novo synthesized fatty acids utilized differently in tumors
compared to normal tissues and in vivo compared to cell culture?

6. Are ACC1 and FASN good cancer therapeutic targets, and can dietary fat
compensate for the loss of ACC1 or FASN in tumor tissue?

7. Can ACC1 inhibition affect arachidonic acid formation and metabolism?

8. What are the relative contributions of cyclooxygenases and lipoxygenases during
human prostate cancer development, and what is the influence of diet?

9. How do polymorphic variants of lipid metabolizing enzymes interact with dietary
fat to modify cancer risk and progression?
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10. Which metabolites of EPA and DHA are found in prostate tissues and play a major
role in suppression of prostate cancer?
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Fig. 1.
Conversion of ω6 and ω3 series PUFA by metabolic enzymes and interaction with de novo
fatty acid synthesis. The main dietary ω6 and ω3 PUFA (LA, 18:2 n-6 and αLNA, 18:3 n-3)
undergo a series of desaturation (FADS2, FADS1) and elongation (ELOVL5, KAR, HACD,
TECR) steps converting them to AA and EPA, respectively. The in vitro conversion rates of
these enzymatic steps are indicated as percent of product formed from 150 nmol substrate
incubated with 5 mg of rat liver microsomal protein for 3 min [7]. Long-chain PUFA are
converted to prostaglandins (PG) and thromboxanes (TX) by cyclooxygenases (COX1–2) or
to leukotrienes (LT) and hydroxyeicosatetraenoic acids (HETE) by lipoxygenases (LOX).
EPA can be further elongated and desaturated to DHA in a pathway involving β-oxidation in
the peroxisome. In the presence of aspirin, COX2 metabolizes EPA and DHA to resolvins.
The various products play important roles in inflammation, cell proliferation and apoptosis,
and angiogenesis. In the de novo lipid synthesis pathway, acetyl-CoA and malonyl-CoA can
be interconverted by acetyl-CoA carboxylase (ACC1) and malonyl-CoA decarboxylase
(MLYCD). Acetyl-CoA and malonyl-CoA are used as substrates by fatty acid synthase
(FASN) to generate long-chain saturated fatty acids, which can be elongated further
(ELOVL6) or desaturated (SCD) to form monounsaturated fatty acids. Malonyl-CoA is also
required for elongation of ω6 and ω3 PUFA
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Fig. 2.
Main enzymes and G protein-coupled receptors in the cyclooxygenase pathway.
Arachidonic acid is converted to PGG2 by cyclooxygenase 1 or 2 and PGG2 then undergoes
conversion to PGH2 through the peroxidase activity of COX. Several isomerases convert
PGH2 to other 2-series prostaglandins, prostacyclins or thromboxanes, which act in part by
binding to specific prostanoid receptors (green). EPA is thought to serve as a substrate for
the same set of enzymes to generate three-series eicosanoids (PGH3, PGE3, etc.). Some
prostanoids have also been shown to bind to PPARs (not shown). Official protein symbols
are shown in red for enzymes and in green for receptors, with common abbreviations in
parenthesis. PTGS1–2 prostaglandin-endoperoxide synthase 1–2, PTGDS PGD2 synthase
(brain), HPGDS hematopoietic PGD synthase, PTGES1–3 PGE synthase 1–3, PTGIS PGI2
(prostacyclin) synthase, TBXAS1 TXA synthase 1, PTGDR PGD2 receptor, PTGER1–4 PGE
receptor 1–4 (subtype EP1–4), PTGFR PG F receptor, PTGIR PGI2 (prostacyclin) receptor,
TBXA2R TXA2 receptor
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