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Abstract
Named entity recognition is a crucial component of biomedical natural language processing,
enabling information extraction and ultimately reasoning over and knowledge discovery from text.
Much progress has been made in the design of rule-based and supervised tools, but they are often
genre and task dependent. As such, adapting them to different genres of text or identifying new
types of entities requires major effort in re-annotation or rule development. In this paper, we
propose an unsupervised approach to extracting named entities from biomedical text. We describe
a stepwise solution to tackle the challenges of entity boundary detection and entity type
classification without relying on any handcrafted rules, heuristics, or annotated data. A noun
phrase chunker followed by a filter based on inverse document frequency extracts candidate
entities from free text. Classification of candidate entities into categories of interest is carried out
by leveraging principles from distributional semantics. Experiments show that our system,
especially the entity classification step, yields competitive results on two popular biomedical
datasets of clinical notes and biological literature, and outperforms a baseline dictionary match
approach. Detailed error analysis provides a road map for future work.
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1. Introduction
An overwhelming amount of health and biomedical text is becoming available with the
recent adoption of electronic health records, the growing number of biomedical publications,
and the exploding prevalence of health information online. At the same time, in the research
community, significant efforts have been devoted to creating standard terminologies and
knowledge bases hence facilitating extraction of information from and reasoning over raw
data. The bottleneck of biomedical information processing thus has shifted from where to
collect data and resources to how to make use of the knowledge resources and build scalable
models to process large amounts of text. Since much of the data is recorded in narrative and
unstructured form, like in clinical notes and biomedical publications, the quality of basic
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natural language processing (NLP) tools has a critical impact on the performance of higher-
level tasks such as information retrieval, information extraction, and knowledge discovery.
Biomedical named-entity recognition (BM-NER) 1, sometimes referred to as biomedical
concept identification or concept mapping, is a key step in biomedical language processing:
terms (either single words or multiple words) of interest are identified and mapped to a pre-
defined set of semantic categories. Examples of BM-NER systems include extracting
clinical information from radiology reports [1, 2, 3], identifying diseases and drug names in
discharge summaries [4, 5, 6], detecting gene and protein mentions in biomedical paper
abstracts [7, 8, 9].

In the general domain, named-entity recognition (NER) focuses on identifying names of
persons, locations, and organizations in news articles, reports, and even tweets. Thanks to
the availability of annotated corpora, supervised learning methods have been widely adopted
and prevail unsupervised ones. Such state-of-the-art NER systems have achieved
performance as high as human annotators [10, 11]. On their side, BM-NER are getting better
with the advant of more annotated corpora to learn from. Recent supervised systems could
efficiently find gene names and clinical problems from certain type of texts with above 0.8 F
score [12, 6, 13, 14]. Traditional ways of tackling BM-NER range from dictionary matching,
heuristic rules, to supervised Hidden Markov Models(HMMs)/Conditional Random
Fields(CRFs)-based sequence labeling. The first two approaches do not require training data,
but usually involve ad-hoc rules and assumptions that may limit the type of entities and texts
to which they could apply. CRF-based labelers have yielded high performance in sequence
learning tasks, and are the state of the art for some biological and medical entity recognition
tasks. However, the supervised nature of CRF entails a fairly large amount of training data
which must be annotated by humans. As a result, it is only applicable in a limited number of
settings.

In this paper, we provide a stepwise unsupervised solution to biomedical named-entity
recognition. Our approach does not rely on hand-built rules or examples of annotated
entities, so it can be adapted to different semantic categories and text genres easily. Instead
of supervision, the entity recognition leverages terminologies, shallow syntactic knowledge
(noun phrase chunking), and corpus statistics (inverse document frequency and context
vectors). Experimental results demonstrate that our method yields competitive results in two
popular datasets of different genres, clinical notes and biomedical literature, respectively,
and different corresponding entity types.

2. Background
There are two main steps of named entity recognition: detecting boundaries of entity
mentions and classifying the mentions into pre-defined semantic categories. The task of
entity linking or concept normalization, that is linking a term to a unique concept identifier
in a terminology for instance is not typically part of NER, and as such is not the focus of this
paper. With sequence labeling models like Hidden Markov Models (HMMs) and
Conditional Random Fields (CRFs), the two tasks could be jointly handled taking advantage
of the Markov property which models transitions between labels [15, 16]. In an
unsupervised framework, however, boundary detection and entity classification are typically
conducted separately [17]. In this section we review related work from two perspectives,
unsupervised named entity recognition and biomedical named entity recognition, and direct
the reader to existing reviews of supervised approaches for NER in the general domain [17].

1In this paper, without further explanation, “biomedical entity”, “entity”, and “named entity” are all referring to biomedical entities.
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2.1. Unsupervised Named Entity Recognition
The NLP community has invested a lot of efforts in unsupervised NER. Early work [18, 19]
relies on heuristic rules and lexical resources such as WordNet [20]. More recently,
Alfonseca and Manandhar formulate named entity classification as a word sense
disambiguation task and cluster words based on the words with which they co-occur
frequently in online search results [21]. The context word frequency vector, which
represents the semantics of words to be classified, is called “signature.” Nadeau et al.
present a system of retrieving entity lists by web page wrapper, followed by disambiguation
through heuristic rules [22]. Sekine and Nobata give definitions and rule-based taggers for
200 categories of entities, as well as a standard taxonomy of general entities [23]. Shinyama
and Sekine observes that named entities often appear synchronously in several news articles,
whereas common nouns do not [24]. Exploiting this characteristic, they successfully
obtained rare named entities with 90% accuracy just by comparing time series distributions
of a word in two newspapers. This technique can be useful in combination with other NER
methods.

The second category of methods is relatively new, and is essentially weakly supervised
instead of unsupervised. Such methods use a bootstrapping-like technique to strengthen the
models, starting from small sets of seed data or rules. The first notable work is done by
Collins and Singer, in which a small set of handcrafted rules are predefined as seed rules
[25]. The system iteratively labels the dataset based on current rules, and induces more rules
with high precisions on found entities. Riloff and Jones introduce mutual bootstrapping that
consists of growing a set of entities and a set of contexts in turn [26]. Several improvements
and extensions were later proposed following this bootstrapping approach [27, 28, 29]. It is
noteworthy that previous works in this category focus only on entity classification, which
assume that the named entities have already been correctly extracted from the text.

It is interesting that in many ways, unsupervised named entity recognition systems are
enlightened by previous works in word sense disambiguation, especially in classifying
extracted entities. On the one hand, the bootstrapping framework in [25] was initially used
by [30] for word sense disambiguation; on the other hand, the idea of classifying entities
based on their context signatures [21] is also similar with distributional methods in word
sense disambiguation [31], in which contexts of mentions are used to determine word
senses.

2.2. Biomedical Named Entity Recognition
There are two major reserach directions in BM-NER: finding gene, protein, and related
biological or genetic terms, as well as finding disease, drug names, and other medical terms.
We use biological NER and medical NER to denote these two research sub-domains
respectively. The early NER systems in both fields are typically rule-based or lexicon-based
[1, 32, 33, 34, 35, 36, 7], several of which are widely applied. MedLEE is a general natural
language processor for clinical texts, encoding and mapping terms to a controlled
vocabulary [1]; GENIES is a system extracting molecular pathways from journal articles,
which is modified from MedLEE [35]; EDGAR is a natural language processing system that
extracts information about drugs and genes relevant to cancer from the biomedical literature
[34]; AbGene is one of the most successful NER systems for gene and protein [7];
MetaMap, developed by National Library of Medicine(NLM), is a tool discovering UMLS
Metathesaurus concepts referred to in text [36]. Many of these systems highly resort to
lexical knowledge resources such as GO [37] and UMLS [38]. More recently cTAKES
provides concept identification and normalization to UMLS in clinical texts [39].
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Recent years have witnesses the rise of data-driven methods in biomedical named entity
recognition with the availability of annotated data sests. In biological NER, the release of
the GENIA corpus [40] has pushed forward related research using various supervised
learning models, including Support Vector Machines (SVMs) [41, 42, 43], Hidden Markov
Models (HMMs) [44], and Conditional Random Fields (CRFs) [8, 45]. The shared task of
BioNLP/NLPBA 2004 used GENIA as dataset [46], and 9 teams submitted their NER
systems to the event. In the first BioCreAtIvE challenge [47], gene mention identification
was the first subtask of task1 [9]. Such shared tasks and workshops continued every year
with new challenges, advancing the field with related information extraction tasks such as
gene normalization[48] and bio-event extraction[49]. So far, state-of-the-art systems for
these datasets are mostly supervised ones based on SVM [41] and CRF [8, 45].

In the medical domain, the first publicly available corpus for NER evaluation was created in
the i2b2 challenge 2010 [6]. In this event, 22 supervised and semi-supervised systems were
developed for entity extraction, and most of the leading systems used CRF, except for the
best performed system[50]. Before the availability of i2b2 corpus, recent research also focus
on evaluation on, extension to, and comparison with MetaMap and its predecessor MMTx.
Meystre and Haug evaluate MMTx with a automatically retrieved clinical problem list [51].
Abacha and Zweigenbaum make modifications to MetaMap, and compare MetaMap with
statistical based methods like CRF and SVMs[12, 52]. Patrick et al. implement a fuzzy
matcher which better maps terms to UMLS concepts [53]. Before i2b2 2010, Wang
annotates a dataset of clinical progress notes with 11 concept categories, evaluating the
performance of CRF on the dataset [54]. They also present a cascading system that
combines a CRF, an SVM, and a Maximum Entropy model to reclassify the identified
entities in order to reduce misclassification [13]. Most recent advances in clinical entity
recognition follow the trend of supervised learning, combined with ensemble system[55]
and large scale feature engineering [56, 57].

3. Methods
3.1. Datasets

We evaluate our systems upon two widely accepted datasets: the i2b2 and GENIA corpora.
The i2b2 corpus is a set of clinical notes with Problems, Tests, and Treatments annotated as
entities, while GENIA corpus is a collection of biomedical literature consisting of biological
entities such as DNA, RNA, and protein. i2b2 and GENIA are mainstream datasets for
evaluating NER and were leveraged in two major BM-NER shared task events: the i2b2
challenge 20102 and the BioNLP/NLPBA 20043, respectively. Evaluations and other details
of these two data sets are given in [6] and [40].

3.1.1. i2b2 Corpus—The i2b2 corpus was created for the i2b2/VA 2010 challenge [6].
The dataset includes discharge summaries from Partners Health Care, Beth Israel Deaconess
Medical Center, and University of Pittsburgh Medical Center (denoted in this paper as
Partners, Beth, and Pittsburgh for short). Pittsburgh notes were used as test set in i2b2
challenge and the other two sources as training set. All records in the dataset have been fully
de-identified and manually annotated for concept, assertion, and relation information. In this
paper, only concept annotations are used with three categories of entity annotations:
Problem, Treatment and Test.

2https://www.i2b2.org/NLP/Relations/
3http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
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3.1.2. GENIA Corpus—The GENIA corpus4 is the primary collection of biomedical
literature compiled and annotated within the scope of the GENIA project. The corpus was
created to support the development and evaluation of information extraction and text mining
systems for the domain of molecular biology. The corpus contains Medline abstracts,
selected using a PubMed query for the three MeSH terms “human,” “blood cells,” and
“transcription factors.” The corpus has been annotated with various levels of linguistic and
semantic information. The original GENIA corpus contains 36 classes of entities. A more
widely used version of GENIA corpus is the one simplified for the BioNLP/NLPBA shared
task, in which entities are grouped into only 5 major classes: protein, DNA, RNA, cell line,
cell type. We use these five categories in this paper.

3.2. Methods in a Nutshell
Our methods are partly inspired by [25] through the use of “seed knowledge,” and by [21]
through classification based on “signature” similarity. Our approach differs, however, in the
following ways: first, besides classifying entities, our method also identifies entities from
raw text; second, it leverages existing terminology in lieu of task-specific user defined rules
or online information retrieval; second, signature vector computation is refined through the
use of TF-IDF weights and adding internal words (words that are inside a term, instead of
being part of the context). To our best knowledge, our method is the first general and
complete unsupervised NER solution for biomedical text with both entity detection and
classification. Furthermore, it is the first time such system is applied to both biological and
clinical entities. There are three main steps in our unsupervised NER approach: seed term
collection, boundary detection, and entity classification. In the first step, for each target
entity class, seed terms are extracted from the UMLS metathesaurus automatically based on
mappings from the target class to either UMLS semantic groups, UMLS semantic types, or
individual UMLS concepts. In the second step, boundary detection, noun phrase chunking is
leveraged under the hypothesis that most entities are strongly correlated with noun phrases
(NPs), followed by a filter to get rid of non-entity NPs. In the last step, all the candidate
entities identified in the previous step are fed into a classifier to predict their semantic
category. The entire workflow is illustrated in Figure 1. No handcrafted rules or training
data is needed in our framework, and only the mapping in the first step needs to be adjusted
(easily) to generalize the method to other applications.

3.3. Step 1: Seed Term Collection
The first step in our approach is to collect seed terms for entity classes, upon which
signature vectors of the classes will be generated in the third step. The seed term sets are
gathered from external terminologies, not the input corpora. In order to make the method
general and portable, classes of entities are defined by users by choosing the corresponding
UMLS semantic types, semantic groups [58], or specific concepts which best represent the
semantic domains of the classes. We call the set of chosen semantic types, semantic groups
and concepts the domain representations of classes. Semantic groups and semantic types,
which form a hierarchy of categorization, are preferred since they by themselves describe
sets of concepts with similar meanings; however, it is not always feasible to represent an
entity class with them. In that case we would need specific UMLS concepts for the domain
representations. The three entity classes Problem, Treatment, Test in the i2b2 dataset are
represented by following semantic types or semantic groups:

• Problem: Disorders (Semantic group)

4http://www.nactem.ac.uk/genia/genia-corpus
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• Treatment: Therapeutic or Preventive Procedure (Semantic type) + Clinical Drug
(Semantic type)

• Test: Laboratory Procedure (Semantic type) + Laboratory or Test Result (Semantic
type) + Diagnostic Procedure (Semantic type)

For GENIA, following domain representations are assigned to entity classes:

• protein: Amino Acid, Peptide, or Protein (Semantic type)

• DNA: C0012854 (UMLS Concept)

• RNA: C0035668 (UMLS Concept)

• cell type: C0007600 (UMLS Concept)

• cell line: C0449475 (UMLS Concept)

Notice that the choices of domain representations might not be accurate (actually, for some
entity types like Problem, there is no clear UMLS semantic type). However, as our method
allows noises in the seed term set, it is acceptable to pick the most likely representation
based on one’s expertise. Once the domain representation is determined for a class, all the
UMLS concepts (and their lexical variants) which belong to the representative semantic
types or groups are extracted from the UMLS metathesaurus as part of the seed term set for
that target entity class. If the domain representation of a class is defined by individual
UMLS concepts, then all is-a descendants of those concepts will be included into the seed
term set. For example, there is no proper semantic type or semantic group that could be
mapped to the entity type “cell type” in the GENIA corpus. Instead, the individual UMLS
concept “C0449475: cell type” is a good choice for the representation; thus, we collect all
the is-a descendants of C0449475 (including all its lexical variants), as seed terms for “cell
type.” A mixed representation of semantic types/groups and UMLS concepts is also allowed
for an entity class.

At the end of this step, we will have a dictionary for each target entity class, which we
assume to be a set of known terms for that class.

3.4. Step 2: Boundary Detection
The second step is to detect boundaries of entities, collecting candidates for entity
classification. In our solution, we hypothesize that entities should be noun phrases (NPs),
and use an NP chunker to approximate the set of NPs. Although full parsing is needed to
find all NPs in a sentence, chunking is more time efficient and its coverage is quite
acceptable in most applications. However, it is clear that not all noun phrases in the text can
be entities. In order to remove those noun phrases that are clearly not entities of interest, we
employ an inverse document frequency (IDF) based technique to filter candidates generated
by the NP chunker. The intuition behind this filter is that noun phrases that are most
common in the texts, such as “the patient” and “date of birth,” are very unlikely to be
entities. IDF is a measure of whether a term is common or rare across all documents [59].
Given a corpus D of documents (sentences in our case) d and a specific term t, IDF is
defined as:

(1)

We calculate IDF value for every word in the dataset, and obtain the IDF value for a noun
phrase by averaging the IDFs of the words it contains. Then we filter all the candidate NPs
whose IDF value is lower than a predetermined threshold (set to 4 in our experiments). The
reason of using such averaged IDF for a noun phrase instead of calculating the IDF value of
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its own directly is to handle the inherent sparsity of the copora: there are much more
possible noun phrases than words in a given dataset.

3.5. Step 3: Entity Classification
The intuition of our classification approach is that entities of same class tend to have similar
vocabulary and context. For example, in clinical text, the word “pain” is highly likely to be
inside an entity of class “Problem” (abdominal pain, incisional pain, back pain, etc.), but not
“Treatment” or “Test”; “mg”, as a unit usually used in medication orderings, is likely to be
after entities of class “Treatment” (Furosemide 20 mg, Amiodarone 200 mg, etc, in which
Furosemide and Amiodarone are entities of treatment). The similarity-based method is
primarily used in word sense disambiguation (WSD), assuming that the meaning of a word
is closely related to the distribution of words around it [31]. Such distributional semantics
have also been applied to several problems in biomedical informatics [60, 61]. In our
method, three improvements are made over the original signature-based approaches [21].
First, internal words of the named entity are included in the vector in addition to the context
words surrounding the entity. In WSD, occurences of same word are the target for
clustering, thus the internal words will always be the same for different mentions; but in
entity classification, candidate to be clustered are terms that have different internal words.
Second, we do not use any external resources such as web search results used in [21] to
generate signature vectors, which means our system can be used independently and is
favored in unsupervised BM-NER tasks that no resources could be resorted to. Instead, we
leverage the test corpus itself to generate the signatures, since an unannotated test corpus
could usually be available when the tool is used. Finally, we use TF-IDF, instead of raw
frequency, as weight for a word in their context vectors. The motivation is that TF-IDF is a
better measurement of how important a word or term is to a document than raw frequency.
As such, words that are more important and decisive will have larger weights in signature
vectors.

Signature generation—We use “signature” to denote the vector of internal and context
words for a certain object. Such object could be a term (single word or multi-word) or an
entity class. Assume the vocabulary (all possible unigrams) contains V unigrams v1, v2, …,
vV. For a term t in the text, its signature st is a vector of 2V dimensions:

(2)

Values in the vector are calculated as follows:

(3)

(4)

In above equations, TF function f(t, d) is defined as the raw frequency of term t in d, contextt
is defined as the previous two words and following two words of t, wi, wo represent the
weights for internal and context words respectively, and D is the set of all sentences in the
test data. Figure 2 shows an example of how to build the signature vector for the seed term
“abdominal pain”. We suppose this term occur 2 times in the data sets, and all IDF values of
words are already calculated.
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Then we define the signature of an entity class as the average vector of the signatures of all
the seed terms belonging to this category, i.e. each target entity class c, is represented by a
single signature vector sc

(5)

in which |c| is the number of seed terms belonging to this class.

If a seed term occurs more than once in the corpus, its signature will be obtained simply by
averaging signatures of all the mentions. However, if a seed term does not have a mention in
the corpus, it will simply be ignored in the computation of the class signature.

Similarity calculation—Once each target entity class has a signature vector computed,
and candidate named entities are generated at step 2, similarity between the candidate
signature and each class signatures can be computed. The candidate is assigned the class
with which it has the highest similarity, as long as the similarity is high enough as
determined by a threshold set experimentally. If the candidate’s similarity to all classes is
under the threshold, it is removed from the set of recognized named entities.

Similarity is computed by the cosine metric between two signature vectors. Given two
vectors v and w, the similarity is defined as:

(6)

3.6. Experimental Setup
In our experiments, seed terms are extracted from UMLS version 2012AB. For the boundary
detection step, noun phrases are identified through the OpenNLP chunker5, a fast
implementation based on maximum entropy model, which is also shown to be a state-of-the-
art chunker for biomedical literature [62]. The threshold for the IDF filter is experimentally
set to 4 for all evaluated datasets, a reasonable guess of how rare an entity should at least be.
For the entity classification step, 20 and 1 are chosen as values of wi and wo, following the
intuition that internal words are more informative than context words. The threshold for
signature similarity is experimentally set as 0.002, which means if a candidate has
similarities with all classes lower than 0.002, it will not be regarded as an entity. This
threshold could control the bias between high precision and high recall. In addition,
stopwords are removed from all signatures.

All the settings remain the same for both i2b2 and GENIA in order to test the portability of
our approach.

Following standard BM-NER evaluation, precision, recall, and F score (both exact and
inexact) are reported to measure performance of recognizing a single class of entities. Then
micro-F score is calculated to evaluate the overall performance across all entity classes. In
exact evaluation, a true positive is an entity recognized with both correct boundary and
correct class. In inexact evaluation, which is defined in i2b2 challenge [6], a true positive is
an entity with correct class and is at least overlapped with gold standard entity. Therefore,

5http://opennlp.apache.org/
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inexact evaluation lowers the requirement for boundary detection and accepts partial
matches as correct answers. For an entity class, precision, recall, and F score is defined as
follows.

(7)

(8)

(9)

In order to evaluate the overall performance of a recognizer, Micro F is calculated as
follows.

(10)

(11)

(12)

We compare the overall performance of our system with a baseline dictionary match system
and a supervised system. The dictionary match approach MetaMap 6 is not designed
specifically for the datasets we use, but it is proper to be a benchmark since it is also a
portable unsupervised system. In our experiments we use the release version 2011v2 with all
default settings. The output of MetaMap is processed by choosing entities that are mapped
by MetaMap to UMLS concepts or semantic types which are in the domain representation of
target semantic classes. Finally, in order to get a sense of how unsupervised approach
performs against supervised ones, we also compare our system with the best corresponding
supervised systems [6, 41] in the i2b2 2010 challenge and the BioNLP 2004 shared task,
which reported performances on Pittsburgh and GENIA respectively.

4. Results
4.1. Datasets

There are 3 and 5 types of entities in i2b2 and GENIA, respectively. Numbers of documents,
sentences, and entities are given in Table 1.

4.2. Step 1: Seed Term Collection
Domain representations and number of seed terms collected according to the representations
for entity classes are described in Table 2. For GENIA, “RNA” and “cell type” have
relatively small amount of seed terms because the UMLS concepts they map to have limited
number of is-a descendants. The class “cell line” has a significantly larger but noisier set of
seed terms than other classes in GENIA, which is caused by some incorrect is-a links from

6http://metamap.nlm.nih.gov/
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lower level concepts to very high level concepts in UMLS. These links bring several high
level concepts into the seed term sets, which further introduce more incorrect descendants.

4.3. Step 2: Boundary Detection
In order to verify the hypothesis that entities are NPs, we report the coverage of noun phrase
chunks on entities (Figure 3). In all the three corpora of i2b2 as well as GENIA, around 45%
of the entities are NP chunks, and nearly 30% of the entities are part of (but not) NP chunks.
Only less than 5% of them are completely out of NP chunks without any overlapping words
with them. Thus, if we use the collection of NP chunks as an approximation of entity
candidate set, around half of entities will be covered. If we allow fuzzy match (i.e., we do
not expect the boundaries to be exactly matched with ground truth), only a very small
portion of the entities will be missing.

To evaluate the effectiveness of the IDF filter followed by the NP chunking, we look into
the candidate sets before and after IDF filtering for Pittsburgh dataset. Before IDF filtering,
the NP chunker finds 72,768 noun phrases from the text, 15,254 of which are entities in gold
standard and 57,514 of which are not. The IDF filter removes 17,058 (30%) incorrect
candidates successfully, at the expense of only wrongly removing 967 (6%) NPs that should
be entities. This supports our hypothesis that phrases that are too common tend not to be
entities, and demonstrates the effectiveness of using averaged IDF value to filter candidates.

4.4. Step 3: Entity Classification
In order to evaluate the entity classification step on its own, an experiment is conducted with
gold standard entity boundaries for all the entities in the corpus. In this experiment we
assume all entities have already been extracted successfully from text, and our task is only to
classify them into categories using signature similarity. Table 3 shows the classification
results on Pittsburgh and GENIA. Similar results to Pittsburg are obtained for Beth and
Partners, but are not shown for simplicity of presentation. The performance of the target
class “cell line” is very low, which is a result of a very noisy seed term set. As discussed
before, the UMLS metathesaurus contains a lot of incorrect relationships, which lead to an
abnormally large (and probably un-representative) seed term set for the class “cell line.”
Since it is a 5-class classification task, the mistakes made on “cell line” also affects the
accuracy for the other classes. However, all other GENIA categories reach F scores, as well
as overall accuracy, higher than 50%.

Overall, the classification of entities shows very good results for all entity classes provided
in the datasets, considering that only 34% and 19% of the entities in i2b2 and GENIA
respectively could be found in UMLS as entries, which means that the distributional
semantics contribute significantly to the coverage of the algorithm.

4.5. Overall System Performance
We compare the overall performance of our system with a baseline unsupervised system and
supervised ones in Table 4 (Only Pittsburgh and GENIA are shown, since results on Beth
and Partners show exactly the same pattern as that on Pittsburgh). Detailed performance on
all the datasets are given in Table 5 and F scores are illustrated in Figure 4. Our system
outperforms MetaMap significantly on both clinical and biomedical datasets. As expected,
since our system has very weak supervision, it is not as competitive as supervised systems
based on SVM or CRF equipped with deep knowledge resources. However, we would
emphasize that our method has stable performance on all the datasets, spanning different
types of entities and different types of texts.
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5. Discussion
The strategy to tackle boundary detection and entity classification using a stepwise solution
shows much promise, especially considering that our system is unsupervised and highly
portable. Our experimental results indicate that seed terms extracted automatically from
UMLS act as a good proxy for training data, which equips the model with the expertise
necessary to recognize specific entities. For boundary detection, NP chunking, although not
perfect, is still a good approximation, followed by an IDF filter which effectively removes
unrelated candidates. Finally, it should be highlighted that entity classification based on
distributional vector similarity of both internal and external words could yield very
competitive and stable performance, even if it does not rely on any training data or
heuristics. When all the steps are combined, the overall system outperforms existing
unsupervised dictionary match system significantly in all classes of entities in the two
datasets.

Our system, while performing worse than supervised ones that rely on training data, has the
large advantage that no annotation is required (this is true for the candidate named entities,
but even so for the seed terms, which are not manually selected). As such, the level of
supervision is very low in our approach: only domain representations that map entity classes
to UMLS concepts, semantic types, or semantic groups need to be defined manually.

Furthermore, our method shows great portability and stability since the performance remains
good when the target dataset changes from clinical notes to biological papers. It should be
highlighted that the workflow and settings (except for the UMLS terminology and domain
representations that are chosen in the initial step) do not change when applying our methods
to different genres of text and different target semantic classes. Thus, our solution is capable
of being applied directly in other unsupervised BM-NER tasks in which parameter tuning is
not tolerated.

5.1. Impact of Seed Term Set
Signatures are computed based on mentions of seed terms in the data; thus the quality of
seed terms influences if a class signature is truly representative. For example, the class “cell
line” has a large seed term set of more than 260,000 terms. However, it is extremely noisy,
containing terms like “human chromosomes” that is incorrect itself and misleading in terms
of introducing more terms. This is caused by the imperfection of the relationship network of
UMLS metathesaurus. On the contrary, “RNA” and “cell type” have small but accurate seed
term set, which lead to much better performance in both precision and recall. Note that when
the domain representation of an entity class contains only semantic types and semantic
groups, performance is always satisfactory and stable, which may indicate that semantic
type annotations of UMLS concepts is a more reliable resource than the UMLS relationships
for this task.

In order to verify the hypothesis that a more reliable seed term set is beneficial, we replace
UMLS with Cell Line Ontology [63] and Cell Ontology[64] targeting cell types and cell
lines, and report performance on the two corresponding classes in GENIA. For the class
“cell line”, seed term set using all entries in Cell Line Ontology yields inexact precision,
recall, and F of 53.8, 59.6, and 56.5 respectively, which are significantly higher than those
yielded by extracting seed terms from UMLS and hence supports our hypothesis. Cell
Ontology, on the other hand, brings no significant increase over UMLS. Precision, recall, F
of recognizing cell types are 51.5, 49.9, and 50.7. However, this may indicate that UMLS is
sufficiently reliable as a terminology for cell types.
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5.2. Should Entities Be Noun Phrases?
Our experimental results suggest that performance of such a combined system is largely
determined by the part of boundary detection, which is the bottleneck of unsupervised
named entity recognition. Rule based and distributional semantics based methods have
limited potential handling boundary detection with satisfactory accuracy. Syntax based
method is usually preferred practically. In this paper, we attack boundary detection by
assuming that all entities are noun phrases, which is a reasonable but imperfect assumption.
Results show that around 40% entities are inside(but not) noun phrases, which means in
exact evaluation our system will automatically miss nearly half of the correct entities. By
observing output of the system, we summarize that about 47% and 36% errors (errors = false
positives + false negatives) in exact evaluations on Pittsburgh and GENIA respectively are
more or less caused by the imperfection of this assumption. Typical errors of this type (we
call them chunking related errors) are given as follows.

The first category of chunking related errors is caused by the fact that chunkers are not
capable of finding all noun phrases from text. Chunking, by its definition [65], is a shallow
parsing step generating non-overlapping phrases. This means that nested NPs will not be
found by a chunker. For instance, in the sentence “Sinus node dysfunction s/p pacemaker,”
our recognizer labels the whole sentence as an entity of type “Problem,” because the
sentence as a whole is a noun phrase identified by the chunker. However, in the gold
standard, “sinus node dysfunction” is annotated as an entity of type “problem.” It is clear
that “sinus node dysfunction” is a nested NP which could not be found by a chunker. In our
error analysis we found that 31% in Pittsburgh and 36% in GENIA of chunking related
errors are of this type. In the future work, this type of error could be eliminated by doing full
parsing instead of chunking, followed by choosing all NPs in the parse tree as candidates.

The second major category is inconsistency with annotation. One of the most noticeable
questions is whether to include determiners in the entities. Determiners are usually annotated
inside the entities in i2b2 corpus, but are excluded from entities in GENIA. For instance, in
GENIA, “IL-6 gene,” instead of “the IL-6 gene” is annotated, which is inconsistent with
output of chunker. A similar type of error is about negations. For example, “no
hemodynamically significant lesions bilaterally” is recognized as a noun phrase and an
entity, instead of “hemodynamically significant lesions bilaterally” in the ground truth.
Negations are excluded from entities in both i2b2 and GENIA, leading to 7% and 9%
chunking related errors respectively. From the perspective of information extraction
application, errors caused by determiners are insignificant, but negations should be taken
care of, possibly by adding a negation detection component to the system.

In these two situations, it is unfair to blame the NP chunker since errors are caused by the
limitation of our assumption that all entities are NP chunks. However, chunking errors also
contribute to part of the failures, especially in i2b2. According to [62], OpenNLP could
reach 89.7% F score of NP chunking on GENIA, which is a quite satisfactory performance.
However, since clinical notes are usually more noisy and ambiguous than scientific
literature, chunking on i2b2 is much more challenging than on GENIA. Thus, nearly half of
the chunking related errors on Pittsburgh are exactly chunking errors.

In summary, the assumption that entities are noun phrases is reasonable and acceptable in a
named entity recognition system. However, it could be further improved by considering all
NPs instead of only NP chunks, adding negation detections, as well as a more effective
chunker (parser) for clinical notes in future work.
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5.3. Impact of IDF
IDF is leveraged in two ways in our framework. One is the IDF filter which removes
common noun phrases with very low IDF; the other is the TF-IDF weights in signatures.
The effectiveness of the two usages could be evaluated by comparing to systems without
them. For example, on Pittsburgh, introducing IDF filter and TF-IDF weights independently
could make the Inexact F score raise from 45.6 to 49.1 and 50.2 respectively, and a joint
usage of them could bring performance increase of 7.5 to 53.1. Both IDF filter and TF-IDF
bring visible improvements on the baseline system that does not rely on IDF filter and use
only term frequency as signature weights. Similar improvements are obtained for all other
data sets. The impact of IDF filter indicates that named entities are unlikely to be the most
common noun phrases. This is especially true when the dataset contains multiple documents
on different topics that usually contain different keywords. Phrases occurring frequently
across all the documents are always general ones like “father”, “date of birth”, “the
genome”, etc.

Figure 5 shows the performance on Pittsburgh data set using different IDF filter cutoffs. The
peak of performance on GENIA, which is not shown here for the sake of brevity, lies around
4.5. Since the IDF filter is just a pre-processing step to remove spurious candidates with low
IDF, the choice of threshold is favored towards lower values so as not to miss too many true
candidates. In all experiments, we thus chose a threshold of 4 for the IDF filter.

Nevertheless, the exploitation of IDF filter in this paper could be further improved. In our
current system, the IDF value of a noun phrase is obtained by averaging IDF values of all
the words in the phrase. The reason is to reduce dimensions, especially when the dataset is a
small one with limited number of noun phrases, which leads to the situation that most noun
phrases appear only once or twice, thus, have similar IDF values. However, such approach is
sometimes not so reasonable when a very informative (entity) word is in a long phrase and
all the other words are common ones. It is also possible that a long phrase is an entity, but all
of the words inside are common ones. For example, “No known drug allergies” is an entity
of type Problem in Pittsburgh dataset, but all the words inside the phrase are among the most
common ones in the dataset.

5.4. Impact of Internal and Context Words
Several previous systems classify term semantics based on context words, which is a typical
approach in natural language processing. In our method, we not only resort to context words,
but leverage internal ones as well. Moreover, we found that at least in our experimental
settings, internal words are more informative than context words. Removing internal words
from signature will make the performance (Inexact F) on Pittsburgh drop significantly from
53.1 to 32.9. It is interesting that the system using only internal words(F 44.1) outperforms
the system using only context words(F 32.9), indicating that internal words are somehow
more helpful in deciding entity types. This is because judging type of an entity by its internal
words is essentially doing a fuzzy dictionary match between seed terms and candidates. If an
entity contains a word, say “pain”, that occurs frequently inside seed terms of a certain entity
class (Problem), it is highly likely that the entity belong to that class (Problem). Combining
internal and context words is more effective than either relying only on internal words,
which ignores context information, or only on context words, which does not make fully use
of the seed terms as a dictionary. The use of internal words is a vital change to distributional
semantics, which traditionally only focus on contextual information of objects.

Figure 6 indicates that overall performance increases as the weights for internal words get
larger, until it plateaus around 20. The same phenomenon is observed on the GENIA corpus,
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with the plateau starting around 20 as well. Thus, 20 was chosen experimentally as the
weight for internal words when building signature vectors in all our experiments.

5.5. Impact of Data for Signature Generation
A major limitation of our method is the need of a fairly large test dataset for signature
generation, which hinders the method to be employed in online settings in which users input
single or multiple sentence at a time instead of a corpus. This problem could be solved by
using a backup corpus to generate signatures. However, such a backup corpus should be of
the same type of text as the target input, since distributions of terms and their context words
in distinct types of text have dramatic differences. In order to validate the efficacy of such
backup corpus, we tested on Pittsburgh using Beth, Partners, and GENIA respectively for
signature generation, and got Inexact F scores of 52.7, 53.3, and 21.2. Comparing with the
original system using signatures generated from Pittsburgh itself (F = 53.1), using corpora of
the same type (discharge summaries) from i2b2 corpus (Beth and Partners) does not change,
even increase in the case of Partners, the performance on Pittsburgh, but using GENIA will
decrease the F score dramatically. It should be emphasized that such backup corpus does not
need any annotation as well, and such a raw text set is often easier to collect.

A possible alternative is relying only on internal words when signatures are generated,
which could be extracted from seed terms directly. Results have showed that such
compromise does not harm the results so significantly as discarding internal words.

Although our system is fully unsupervised and as such its comparison to supervised
approach might be unfair, we wanted to have confidence that the approach does not overfit
the input corpus, and the signature knowledge gained from one data set is applicable to other
similar corpora as well. 10-fold cross validation was conducted on Pittsburgh and GENIA
data sets. On Pittsburgh, average performance over the 10 folds yielded 23.9 exact micro F
(stdev=0.12) and 53.0 inexact micro F (stdev=0.10). On GENIA, our system yielded average
exact micro F of 15.1 (stdev=0.08) and inexact micro F of 39.0 (stdev=0.11). The results
have no significant difference from the performance reported in section 4.5, which indicates
that generating signatures from other sources than the target data is acceptable as long as
they are of the same genre of text. In addition, the experiments on Pittsburgh with signatures
generated from Beth and Partners act similarly as cross validation, and also indicate that the
performance of our system is not a result of over-fitting on the source dataset, and can cross
from one corpus to another within the same domain and genre. While the signatures are
domain dependent, they are not data set dependent.

6. Conclusion
Biomedical named entity recognition (BM-NER) is a challenging task in biomedical natural
language processing. In this paper, we design a framework which provides a stepwise
solution to BM-NER, including a seed term extractor, an NP chunker, an IDF filter, and a
classifier based on distributional semantics. In our framework, shallow syntactic analysis
and lexical semantics are properly exploited in different phases. Our method does not rely
on any rules, heuristics, or training data, which makes it easy to be applied in different
settings and applications. Experimental results on two mainstream biomedical datasets
demonstrate the effectiveness and generalizability of our methods. For individual steps, we
show that quality of seed term sets is an important factor of a successful system, and the
usage of NPs as entity candidates is a reasonable approximation to boundary detection. After
filtering candidates with IDF filter, our distributional similarity based classifier shows
competitive performance on entity classification, taking advantage of both internal and
context information. Finally, this paper envisions possible improvements on the approach,
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including nested NPs as candidates, better chunker for medical text, better domain
representations, and improved IDF values of phrases.
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Figure 1.
Overall approach to unsupervised biomedical named entity recognition.
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Figure 2.
Building a signature vector for the seed term “abdominal pain” from IDF table and corpus,
considering previous and following two words as well as internal words, assuming w0 = 1,
wi = 20
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Figure 3.
Proportions of entities in the corpora that are noun phrases (NPs), sub-phrases of an NP,
overlap with an NP, and out of any NP.
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Figure 4.
F-scores on the Pittsburgh, Beth, Partners, and GENIA corpora.
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Figure 5.
IDF threshold - F score curve on Pittsburgh.
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Figure 6.
Internal word weight - F score curve on Pittsburgh.
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Table 1

Numbers of documents, sentences, and entities in the i2b2 and GENIA corpora.

Corpus # Documents # Sentences # Entities

i2b2-Pittsburgh 477 27,627

Problem: 12,586

Treatment: 9,343

Test: 9,225

i2b2-Beth 73 8,798

Problem: 4,187

Treatment: 3,072

Test: 3,036

i2b2-Partners 97 7,517

Problem: 2,885

Treatment: 1,768

Test: 1,570

GENIA 2,000 18,546

protein: 24,966

DNA: 8,557

RNA: 719

cell type: 6,221

cell line: 3,663

J Biomed Inform. Author manuscript; available in PMC 2014 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang and Elhadad Page 26

Table 2

Domain representations for entity classes in the i2b2 and GENIA corpora (ST: semantic type; SG: semantic
group; C: concept).

Dataset Class Domain representation # Seed terms

i2b2

Problem Disorders (SG) 398,725

Treatment Therapeutic or Preventive Procedure (ST) + Clinical Drug (ST) 153,084

Test Laboratory Procedure (ST) + Laboratory or Test Result (ST) + Diagnostic Procedure (ST) 66,015

GENIA

protein Amino Acid, Peptide, or Protein (ST) 35,351

DNA C0012854 (C) 45,671

RNA C0035668 (C) 1,029

cell type C0007600 (C) 423

cell line C0449475 (C) 264,729
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Table 4

Overall performance of our system, MetaMap, and the best supervised systems for the i2b2 and BioNLP2004
challenges.

Dataset System Exact Micro F Inexact Micro F

Pittsburgh

Ours 26.5 53.1

MetaMap 11.3 27.9

Supervised 85.2 92.4

GENIA

Ours 15.2 39.5

MetaMap 7.7 19.2

Supervised 72.6 N/A

J Biomed Inform. Author manuscript; available in PMC 2014 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang and Elhadad Page 29

Ta
bl

e 
5

D
et

ai
le

d 
sy

st
em

 p
er

fo
rm

an
ce

 o
n 

th
e 

Pi
tts

bu
rg

h,
 B

et
h,

 P
ar

tn
er

s,
 a

nd
 G

E
N

IA
 c

or
po

ra
.

D
at

as
et

C
la

ss
E

xa
ct

In
ex

ac
t

P
R

F
P

R
F

Pi
tts

bu
rg

h

O
ve

ra
ll 

(M
ic

ro
)

29
.4

24
.1

24
.1

49
.6

57
.2

53
.1

Pr
ob

le
m

26
.7

31
.7

29
.1

49
.2

71
.5

58
.3

T
re

at
m

en
t

28
.6

15
.9

20
.4

45
.4

37
.9

41
.3

T
es

t
36

.9
22

.1
27

.7
54

.6
52

.6
53

.6

B
et

h

O
ve

ra
ll 

(M
ic

ro
)

28
.8

22
.6

25
.3

50
.5

54
.1

52
.2

Pr
ob

le
m

28
.1

30
.5

29
.3

51
.5

66
.1

57
.9

T
re

at
m

en
t

27
.4

13
.4

18
.0

45
.9

33
.2

38
.5

T
es

t
31

.3
21

.1
25

.2
51

.8
54

.4
53

.1

Pa
rt

ne
rs

O
ve

ra
ll 

(M
ic

ro
)

30
.0

29
.4

29
.7

48
.6

60
.4

53
.9

Pr
ob

le
m

26
.5

33
.5

29
.6

50
.0

72
.8

59
.3

T
re

at
m

en
t

30
.0

17
.4

22
.1

43
.1

34
.6

38
.4

T
es

t
38

.7
35

.3
36

.9
49

.2
62

.2
54

.9

G
E

N
IA

O
ve

ra
ll 

(M
ic

ro
)

15
.4

15
.0

15
.2

37
.0

42
.3

39
.5

pr
ot

ei
n

20
3

11
3

14
.5

52
.8

36
.7

43
.3

D
N

A
5.

6
9.

1
6.

9
30

.0
53

.2
38

.4

R
N

A
29

.9
41

.3
34

.7
48

.6
69

.8
57

.3

ce
ll 

ty
pe

40
.7

36
.7

38
.6

50
.4

48
.7

49
.5

ce
ll 

lin
e

5.
0

11
.8

7.
1

12
8

33
.1

18
.5

J Biomed Inform. Author manuscript; available in PMC 2014 December 01.


