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Abstract
Lack of an objective, accurate, and noninvasive embryo assessment strategy remains one of the
major challenges encountered in in vitro fertilization. Cumulus and mural granulosa cells reflect
the characteristics of the oocyte, providing a noninvasive means to assess oocyte quality.
Specifically, transcriptomic profiling of follicular cells may help identify biomarkers of oocyte
and embryo competence. Current transcriptomics technologies include quantitative reverse
transcriptase–polymerase chain reaction (qRT-PCR) for analysis of individual genes and
microarrays and high-throughput deep sequencing for whole genome expression profiling.
Recently, using qRT-PCR and microarray technologies, a multitude of studies correlated changes
in cumulus or granulosa cell gene expression with clinically relevant outcome parameters,
including in vitro embryo development and pregnancy. While the initial findings are promising, a
clinical benefit from the use of identified biomarker genes remains to be demonstrated in
randomized controlled trials.

Infertility affects approximately 15% of reproductive-age couples (1) and in addition to
medical consequences, has significant social and financial implications. Among the
treatment modalities available to infertile couples, IVF offers the highest success rates of
pregnancy and live-birth outcomes. A critical step in IVF treatment is assessment of oocyte
and embryo competence to determine the most viable embryo(s) to be transferred. Currently,
embryo assessment strategies rely primarily on embryo morphology and cleavage rate.
While these methodologies have been successful in improving pregnancy rates and reducing
multiple gestations, their precision is less than what is desired (2). Consequently, many
centers perform multiple embryo transfers (ETs) to increase the chances of success for a
given cycle, at the expense of a significantly higher risk of multiple gestations. Multiple
gestations, in turn, result in an increased risk of preterm birth and its complications, such as
cerebral palsy, and infant death (reviewed in reference 2). Therefore, the development of an
objective and accurate test to assess oocyte and embryo viability remains one of the most
significant contemporary goals of reproductive medicine.

In an attempt to develop novel embryo assessment strategies that can be used alone or in
combination with morphologic criteria, invasive and noninvasive methods have been applied
(reviewed in reference 3). These include the assessment of the genome using comparative
genomic hybridization (CGH) arrays, single nucleotide polymorphism (SNP) arrays,
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quantitative real time–polymerase chain reaction (qPCR), transcriptomic analysis of
cumulus/granulosa cells, and proteomic and metabolomic analysis of embryo culture media
(reviewed in reference 3).

Among these approaches, transcriptomic analysis of cumulus/granulosa cells has been
proposed as a noninvasive tool to assess oocyte quality and viability as a surrogate for the
reproductive potential of embryos. In this review, we first describe the basic aspects of
folliculogenesis and the interactions between the oocyte and the stromal cells of the follicle.
Methods used to study cumulus/granulosa cell gene expression are then outlined followed
by the review of the studies assessing transcriptional analysis of cumulus/granulosa cells in
correlation with oocyte and embryo competence. Lastly, the variations in the findings of
these studies are explored from a methodological perspective.

FOLLICULOGENESIS: BASIC ASPECTS
Folliculogenesis requires a carefully orchestrated cross talk between the oocyte and the
surrounding somatic cells. During fetal life, primordial germ cells (PGCs) migrate to the
future gonad, undergo mitosis, and give rise to oogonia (4). The oogonia are then
transformed into oocytes as they enter the first meiotic division. Primordial follicles are
formed perinatally as the oocytes arrested in prophase of the first meiotic division become
enveloped by a single layer of flattened granulosa cells that are surrounded by a basement
membrane (5) (Fig. 1). Thereafter, through an unknown selection mechanism, individual
primordial follicles are recruited from this resting pool to undergo growth and differentiation
(6). During this process, granulosa cells surrounding the oocyte become cuboidal and form
the primary follicle (7). Then granulosa cells proliferate and form multiple layers of somatic
cells that surround the oocyte, resulting in the formation of a secondary follicle. This is
followed by the formation of small, fluid-filled cavities within the follicle that coalesce to
form the early antral (or tertiary) follicle (8). In the absence of gonadotropin stimulation,
these follicles become atretic and disappear from the ovary. However, once puberty ensues,
pituitary follicle stimulating hormone (FSH) stimulates further follicular growth (5). Under
the influence of FSH, the antrum continues to enlarge, resulting in the formation of a
preovulatory (also called antral or late antral) follicle (Fig. 1). In the preovulatory follicle,
the oocyte is surrounded by cumulus cells, a specialized type of granulosa cell, distinct from
the mural granulosa cells that line the antrum (9).

The oocyte within the preovulatory follicle will remain arrested in prophase I until after the
LH surge, which precedes ovulation (10). Several critical steps are necessary to activate and
mature the preovulatory follicle. It is during this period that the cumulus cells undergo
“cumulus expansion,” a process that requires cumulus cells to produce hyaluronic acid that
is deposited into the extracellular space and further stabilized by secreted proteins (11, 12).
This newly formed extracellular matrix binds the oocyte and cumulus cells together (11, 12).
In the meantime, the oocyte resumes meiotic division and begins the process of maturation.
The culmination of these processes is the formation of a mature cumulus-oocyte complex
(COC) containing an oocyte arrested at the metaphase of the second meiotic division (MII)
and ready for ovulation and subsequent fertilization (10).

INTERACTIONS BETWEEN THE OOCYTE AND THE STROMAL CELLS OF
THE FOLLICLE

Follicular development, oocyte maturation, cumulus expansion, and ovulation rely on
continuing cross talk between the oocyte and the somatic follicular cells. In this section, we
will briefly review key aspects of these processes as they have implications for studies
investigating cumulus/granulosa cell gene expression as a proxy for oocyte viability.
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Implications of Oocyte-Somatic Cell Interactions for Follicular Development
Studies in murine models have shown that rodents deficient in oocytes, secondary to
mutations or chemical ablation, are also deficient in follicles, suggesting that the oocyte
plays a critical role in the growth and development of the surrounding follicle (13). During
folliculogenesis, factors exclusively or predominantly expressed by the oocyte are required
for the progression of the follicle through different developmental stages.

Among these, one of the earliest transcription factors implicated in postnatal oocyte-specific
gene expression is FIGα (8). FIGα is required for primordial follicle formation, and Figα-
knockout mice are devoid of primordial follicles (8). Another key factor expressed in the
oocyte is NOBOX, an oocyte-specific homeobox gene product expressed in germ cell cysts
and in the oocytes of primordial and growing follicles (14). Nobox-knockout female mice
are infertile and have atrophic ovaries that are devoid of oocytes at 6 weeks of age (15).
Interestingly, unlike the findings seen in Figα-knockout mice, germ cell proliferation and
initial primordial follicle formation occur in the absence of NOBOX (15). Thus the lack of
NOBOX inhibits follicle growth beyond the primordial follicle stage and accelerates the loss
of oocytes (15).

Another key mediator for folliculogenesis, growth differentiation factor-9 (GDF-9), is
produced by the oocyte from the primary follicle stage until the time of ovulation (16, 17).
In Gdf-9-knockout mice, follicular development is arrested at the primary follicle stage,
despite the presence of numerous primordial and early primary follicles (18). Additionally,
an oocyte-specific homolog of GDF-9 called bone morphogenetic protein 15 (BMP-15) has
been cloned on the X-chromosome (19). Yan et al. showed a synergistic role for BMP-15
and GDF-9 in ovarian folliculogenesis (20). Despite having relatively normal ovarian
histology, Bmp-15-knockout mice are subfertile, secondary to decreased ovulation and
fertilization rates (20). Double homozygous knockout females for BMP-15 and GDF-9
(Bmp-15–/–; Gdf-9–/–) experience oocyte loss resembling the phenotype seen in the GDF-9-
knockout mice. Interestingly, homozygous Bmp-15 and heterozygous Gdf-9-knockout
(Bmp-15–/–; Gdf-9+/–) females have oocytes that fail to adhere to cumulus cells and often
remain trapped in the corpus luteum (20).

Gene expression during oocyte maturation, fertilization, and early embryo development until
zygotic gene activation relies on translational activation of specific maternally derived
mRNA that was attained during the first meiotic arrest (reviewed in reference 21).
Embryonic poly (A)-binding protein (EPAB), which is exclusively expressed in gametes and
early embryos (22, 23), is the predominant poly (A)-binding protein that stabilizes maternal
RNAs and promotes their translation (10). Epab-knockout female mice are infertile owing to
the inability of the oocytes to undergo maturation. Interestingly, although EPAB is not
expressed in the somatic cells of the follicle (22), follicular development beyond the
secondary follicle stage is impaired. Furthermore, the follicles that reach the preovulatory
stage fail to undergo cumulus expansion in Epab-knockout mice (10).

The above-mentioned findings establish that follicular development is adversely affected by
the absence of normal oogenesis. The oocyte-specific genes that are required for follicular
development, and the stages at which follicular development is arrested in knockout mouse
models of these genes are shown in Figure 1 (8, 10, 15, 18, 20, 24–26).

Implications of Oocyte-Somatic Cell Interactions for Oocyte Maturation and Cumulus
Expansion

The growing oocyte derives most of its substrates for energy metabolism and biosynthesis
from the surrounding somatic cells, stressing the importance of the intercommunication
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between these cells (27, 28). Cumulus cells communicate with each other and with the
oocyte through specialized gap junctions that allow metabolic exchange and transport of
signaling molecules (29). The fundamental unit of the gap junctions is the connexon, which
is a hexamer of proteins called connexins (Cxs) (30). Cx43, is a major contributor to gap
junctions in human cumulus cells and is essential for the developmental competence of
human oocytes (30). Reduction of Cx43 expression in the COC has been shown to initiate
the resumption of meiosis by disrupting the gap junctions (30). Other genes involved in gap
junctions, such as Cx37 and Cx40, have also been detected on microarray studies and may
play an additional role in this process (31).

Cumulus cells play a vital role in regulating oocyte maturation (32, 33). During the meiotic
arrest, cyclic guanosine monophosphate (cGMP) from cumulus cells passes into the oocyte
through gap junctions and inhibits the hydrolysis of cyclic adenosine monophosphate
(cAMP) by the phosphodiesterase PDE3A. This inhibition maintains a high concentration of
cAMP in the oocyte and blocks meiotic progression. LH reverses the inhibitory signal by
lowering cGMP levels in the somatic cells and by closing gap junctions between the oocyte
and the somatic cells. The resulting decrease in oocyte cGMP relieves the inhibition of
PDE3A, causes a decrease in oocyte cAMP and leads to the resumption of meiosis (34). It is
noteworthy that while the development of the follicle is regulated by bidirectional signals
between the oocyte and surrounding somatic cells, the LH-induced maturation of the oocyte
is under the control of signals from the follicular somatic cells (reviewed in reference 35).

Cumulus expansion is another critical aspect in the final stages of follicular development.
Oocytes obtained from follicles with impaired cumulus expansion have limited potential for
implantation (36). GDF-9 secreted by the oocyte has been shown to play a key role in
cumulus expansion (37). GDF-9 functions as an oocyte-secreted paracrine factor that
regulates several key granulosa cell enzymes involved in cumulus cell expansion, thus
creating a microenvironment optimal for oocyte developmental competence (38).
Cyclooxygenase 2 (COX2), gremlin1 (GREM1), hyaluronic acid synthase 2 (HAS2), and
pentraxin 3 (PTX3) are all downstream GDF-9 target genes found in cumulus cells and have
been evaluated as markers for oocyte developmental competence (39, 40).

Evidence accumulating from several elegant studies using the model organisms described
above strongly suggests that key events during oogenesis and folliculogenesis rely on
interactions between the oocyte and the somatic cells. These data strongly suggest that
cumulus and granulosa cells may be used to gain insight into the viability and reproductive
potential of the oocytes. In the following sections we will introduce analytical methods that
are applied for cumulus and granulosa cell analysis and review the findings from clinical
studies.

MOLECULAR BIOLOGY AND BIOINFORMATICS METHODS APPLIED TO
THE ANALYSIS OF CUMULUS AND GRANULOSA CELLS

The survival and function of a cell relies on complex molecular pathways that are activated
in a timely manner in response to changing biological needs. Since gene expression
proceeds through transcription of the genetic code into messenger RNA (mRNA), relative
quantities of individual mRNAs can be assessed as an approximation of the expression
levels of corresponding genes and provide information on the well-being of a cell or tissue.

The total RNA content of a cell is termed the transcriptome and includes mRNAs, ribosomal
RNAs (rRNAs), transfer RNAs (tRNAs), and microRNAs (miRNAs). Transcriptomics
studies enable qualitative and quantitative characterization of gene expression in a cell or
tissue under physiologic or pathologic conditions.
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Within the context of IVF (3), transcriptomics analysis enables monitoring of gene
expression in somatic cells of the follicle, gametes, and embryos. Transcriptomics
technology offers quantitative reverse transcription polymerase chain reaction (qRT-PCR),
for analysis of individual genes, and microarrays and high-throughput deep sequencing
techniques for whole genome transcriptomic profiling. The result of genome-wide
transcriptome analysis is the generation of a list of genes that are differentially expressed
between the experimental conditions. Analysis of cumulus and/or granulosa cells
transcriptomics in association with oocyte maturation, fertilization, embryo competence, and
pregnancy outcome may help identify novel diagnostic biomarkers as an alternative to
conventional morphological criteria. Here we provide brief definitions of the transcriptomic
technologies and related cumulus cell–specific procedures.

Sample Collection, RNA Isolation, and Quality Assessment
The common initial step in transcriptomic experiments is sample collection and RNA
isolation, where high-quality starting material is a prerequisite for reliable analysis.
Sampling of somatic components of the follicle poses specific challenges. Compared with
granulosa cells, mechanical separation of COCs from contaminating cells is easier. In
addition, laser capture technology can be quite useful in minimizing the effect of regional
differences in the cumulus physiology. Cumulus cells must also be separated from the
attached mural granulosa cells, if any (3). In the context of granulosa cells, potential
contamination with blood during follicular aspiration may affect the gene-expression profile.
Interestingly, as demonstrated by principal component analysis (PCA) and flow cytometry
analysis, the granulosa cell gene-expression profile is closer to that of lymphocytes than of
cumulus cells (31). Therefore, granulosa cells need to be carefully separated from
leukocytes.

RNA must be purifiedimmediatelyafter tissue/cell isolation as RNA degradation results in a
rapid change in transcript profile. If the samples need to be stored before RNA isolation,
RNAses must be inactivated either by using inhibitors or by rapid cooling. RNA
stabilization is an absolute prerequisite for reliable gene-expression analysis. Immediate
stabilization of RNA in cumulus and granulosa cell samples is necessary because, directly
after harvesting the biological sample, changes in the gene-expression pattern occur owing
to specific and nonspecific RNA degradation as well as removal of the oocyte. Such changes
in gene-expression pattern need to be avoided for all reliable quantitative gene-expression
analyses, such as biochip and array analyses, qRT-PCR, or other nucleic acid–based
technologies (41).

The efficiency of downstream processes strongly depends on the concentration, purity, and
integrity of starting RNA molecules. According to UV spectroscopy–based analyses,
absorbance at 260 nm (A260) is considered a measure of RNA concentration and the ratio
A260/A280 indicates the purity of RNA content with respect to protein contamination (42).
On the other hand, all nucleic acids including DNA, RNA, and free nucleotides have a peak
absorbance at ~260 nm, which affects the accurate determination of RNA concentration.
RNA isolation techniques are usually coupled with a subsequent DNase treatment to
eliminate DNA contamination. However, it is almost impossible to completely eliminate
genomic DNA from RNA samples. Assessment of potential residual DNA contamination in
an RNA sample requires further analysis. The acceptable level of contamination may vary
depending on the requirements of the downstream application.

Typically, a minus reverse transcriptase (—RT) control (no amplification control, or NAC)
reaction is included in RT-PCR experiments to check for the presence of contaminating
DNA. A —RT sample contains all the PCR reagents and total RNA except for the RT. In a
—RT sample, the cDNA would not be synthesized. Therefore, a visible band in the —RT
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reaction on agarose gel would indicate DNA contamination. Also, it might be noted that RT-
PCR using primers that span an intron (i.e., primers are on two different exons) can prevent
DNA contamination from affecting the results.

Alternatively, DNA and RNA concentrations in an RNA sample can be measured separately
using a Qubit Fluorometer (Invitrogen), which uses fluorescent dyes to determine the
concentration of nucleic acids and proteins where each dye is specific for one type of
molecule.

RNA integrity is usually determined by agarose gel quantification of 28S and 18S in human
ribosomal RNAs (43). Intact total RNA ran on a gel should demonstrate clear 28S and 18S
bands with a 28S/18S ratio between 1.8 and 2. The major drawback of this method is the
amount of required RNA needed for analysis. In case of a limited amount of samples, such
as with oocyte and cumulus cells, a sufficient amount of RNA (~200 ng) may not be
available for integrity assessment. SYBR Gold and SYBR Green II stains allow smaller
amount of samples (1–2 ng) to be used for preexperimental analysis.

As an alternative to traditional gel–based methods, microfluidics technology provides
electrophoretic RNA separation enabling automated high-throughput integrity estimation.
Currently, Agilent 2100 Bioanalyzer (Agilent Technologies) and Experion automated
electrophoresis system (Bio-Rad Laboratories, Inc.) are the two most popular commercial
biodevices that integrate the quantitation and quality assessment of RNA samples in a single
step. The resulting data are usually displayed as an electropherogram where the 28S and 18S
rRNAs generate two separate peaks and the 28S/18S ratio is calculated as the ratio of the
areas under the peak signals. With the advent of these technologies, novel computerized
methods have been proposed for estimation of RNA integrity such as Degradometer for
Agilent Bioanalyzer by Auer et al. (44) and RNA Quality Indicator (RQI) for Experion
system by Denisov et al. (45). The most robust and common method for RNA quality
assessment, the RNA Integrity Number (RIN), was introduced by Schroeder et al. which
was constructed based on eight features extracted from the electropherogram signal
measurements and a Bayesian learning technique (46) (Agilent Technologies). The method
produces RIN, a number in the range of 1–10, with 10 being the highest quality samples
showing the least degradation.

The accepted level of RNA integrity is usually specific to procedures, tissues, and protocols.
In general, cDNA labeling for microarray analysis requires RNA of high integrity. Although
there is no universal RIN for all experiments, most microarray procedures require a RIN >7.
On the other hand, RT-PCR involves analysis of smaller regions of RNA and therefore is
more tolerant to partially degraded RNA. For qRT-PCR experiments, the RIN >5 and RIN
>8 have been recommended as good and perfect total RNA quality, respectively (47).

qRT-PCR
Once the sample integrity is confirmed, qRT-PCR analysis may be used to provide reliable
quantification of gene expression. PCR has been the most widely used tool to identify the
presence or absence of a particular DNA fragment in a biological sample. PCR may also be
used to amplify the input material to reach the micrograms of RNA required for microarray
and deep sequencing experiments from the picograms of RNA obtained from follicular cells.

The main idea behind the PCR is the exponential amplification of the target sequence using
a pair of primers, deoxynucleotides, and a polymerase enzyme that catalyzes the reaction.
Each amplification cycle involves three steps performed at specific temperatures:
denaturation of double strands (~94°C), primer annealing to complementary parts on both
strands (~65 to 55°C) and primer extension (~72°C), which in turn produces double-
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stranded molecules twice the amount of the starting material (Fig. 2). The annealing and
extension steps of a PCR cycle can also be performed as a single step either by using
polymerases that are highly active in the annealing temperature range or by designing longer
primers (≥23 bases) that would increase the annealing temperature. A two-step PCR would
be a time-saving procedure reducing the cycle period compared to three-step PCR.

The major landmark in the history of PCR was the identification of a thermostable
polymerase for DNA synthesis (48). The enzyme was isolated from the bacterium
Thermophilus aquaticus that grows in hot springs and hence is resistant to the high
temperatures required for PCR denaturation. This greatly simplified the procedure,
eliminating the necessity of adding the enzyme at the beginning of each cycle. After ~25 to
40 rounds of amplification, the resulting PCR product is analyzed on an agarose gel
containing a fluorescent DNA stain. Ethidium bromide (EtBr) has been used as a common
DNA stain in biology labs for a long time. However, owing to its mutagenic nature, the
newer trend is to replace EtBr by less harmful and as powerful fluorescent dyes (49). PCR
and the use of Thermophilus aquaticus polymerase (Taq polymerase) were discovered by
Kary Mullis (48, 50, 51); Kary Mullis was subsequently awarded the Nobel Prize for
Chemistry in 1993 for these achievements.

Transcriptomics studies make use of PCR after reverse transcription of mRNA molecules to
complementary DNA (cDNA). The combined method is called reverse transcription PCR
(RT-PCR) and is widely used for gene-expression analysis. Total RNA is primed with either
one of the oligo(dT), random hexamers or gene-specific primers, or a blend of these primers,
and cDNA is synthesized. The choice of primers used for RT [oligo d(T) vs. random
hexamers] is especially important when the sample may contain inactive transcripts with
short poly(A) tails [that may not be reverse transcribed by oligo d(T)] as in the case of
oocytes. Once RT is complete, PCR is performed as usual using the cDNA as the template
for amplification. The choice of priming strategy has been shown to be an important factor
affecting the results of mRNA quantification (52).

In theory, assuming 100% efficiency, the amount of input cDNA is expected to double at the
end of each PCR cycle. Conveniently, the resulting products are expected to be proportional
to the amount of the starting material. However, the exponential increase cannot go on until
the end of the reaction. The amplification reaction reaches a plateau phase, and
quantification of the PCR products at this stage may not reflect the actual relative quantities
of the input material. Consequently, conventional RT-PCR should not be considered a
quantitative strategy and can only be efficiently used to identify the presence or absence of a
particular mRNA within a biological sample.

To analyze the variations between different phenotypes, identification of the genes that are
expressed in the samples of interest is not sufficient; accurate measurement of gene-
expression levels is also crucial. Since agarose gel–based analysis of RT-PCR products does
not provide precise quantitative information, researchers sought for a way to accurately
quantify the mRNA of a specific gene within a sample. For this purpose, Higuchi et al.
pioneered a system for continuous measurement of PCR amplification results (53, 54). This
system provided quantitative analysis of RNA transcript levels, and the new approach
evolved into qRT-PCR (or so called real-time RT-PCR) technology, which is now widely
used for quantification of mRNAs for a number of genes within biological samples. Note
that the abbreviation used for real-time PCR is qPCR. Real-time reverse-transcription PCR
is denoted as qRT-PCR. The acronym RT-PCR commonly denotes RT polymerase chain
reaction and not real-time PCR, but not all investigators adhere to this convention (55, 56).
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To achieve accurate quantification, there should be a linear relationship between the amount
of input material and the resulting product, that is, if a number of samples with known
concentrations of cDNA are amplified, the final quantities should be proportional to the
initial concentrations. However, this linear relationship is usually observed only in the
earlier cycles of PCR, where the later measurements may result in erroneous quantification
(Fig. 3A). QRT-PCR is a kinetic approach in which the entire reaction can be observed at all
stages; SYBR green is commonly used as the fluorescence source, and the amount of
fluorescence included in the newly synthesized cDNA is measured. First the cycle threshold
value (Ct) is determined as the number of cycles where the fluorescence signal exceeds the
background level. Ct levels are inversely proportional to the amount of input cDNA; a
reaction with lower starting material takes more cycles before the amplification is
detectable. Then a standard curve is generated from a dilution series of a reference sample.
The standard curve plots Ct values versus relative concentrations of the diluted sample in an
experiment as shown in Figure 3B. Finally, relative quantities for target abundance in each
experimental sample are determined using the standard curve method. It is noteworthy that,
Ct, crossing point (Cp), and take-off point (Top) are all used to refer to the same
quantification cycle value (Cq) depending on the real-time instrument, and the term Ct is
mostly replaced by Cq, which is the official abbreviation in the Real-Time PCR Data
Markup Language (RDML) (57).

In a qRT-PCR experiment, in addition to RT control, which is used as a NAC, a no template
control (NTC) should be run in parallel to check for contamination of reagents. The NTC
reaction includes all of the RT-PCR reagents except the RNA template. Therefore, any
amplification product in the NTC indicates contamination by reagents or the environment.

In some cases, nonspecific amplification may occur owing to contamination, mispriming, or
primer-dimer artifacts. Mispriming refers to binding of the primers to a nontarget cDNA;
primer-dimer artifact is annealing of the primers to themselves and creation of small
templates for PCR amplification. To prove that only the target cDNA has been amplified, a
melting curve can be generated at the end of the reaction. The melting temperature of a
DNA molecule depends on its sequence composition and its length. Hence, unless there is a
PCR artifact, all PCR products resulting from the same primer pair should have similar
melting curves. Different products can generate different peaks on the melting curve, and
PCR artifacts typically have lower melting temperatures. The reactions producing such
different peaks must be eliminated from the analysis or the entire experiment must be
repeated. Alternatively, TaqMan technology can be used to increase the specificity of
quantification in qRT-PCR. The SYBR green dye intercalates to double-stranded PCR
products including both specific and nonspecific amplicons. In contrast, the fluorogenic-
labeled TaqMan probes, which are synthesized specifically to template sequence, enable
detection of only target products. Both TaqMan (40, 58–61) and SYBR green assays (61–
67) have been widely used in cumulus studies.

Unless absolute quantification is performed by using controls with a known amount of
cDNA, qRT-PCR gene-expression results need to be normalized using endogenous control
genes. Normalization to endogenous reference genes does not provide information on the
absolute amount of a specific mRNA or its cDNA in a sample. Rather, it provides very
reliable information on which sample has a higher (or lower) expression of a trancript (or its
cDNA) in a group of samples. These reference genes should be expressed at the same level
across all samples independent of the study treatments or the biological conditions being
investigated. The expression levels of the putative reference genes, including glyceraldehyde
3-phosphate dehydrogenase (GAPDH) and beta-actin (β-Actin), have been shown to be
variant across 16 different human tissues (68). Assessment of unstable reference genes for
normalization of expression levels would introduce a bias in the results. Thus, a key aspect
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of transcriptomics studies is the selection of the most invariant endogenous control
according to the tissue type or experimental conditions. It is recommended not to use a
single control gene in the qRT-PCR experiments, and mathematical models such as
NormFinder (69) and GeNorm (70) have been developed to help with selection of the most
suitable normalization genes among a set of candidate genes.

Accuracy of the relative gene-expression measurements in qRT-PCR also correlates with
PCR efficiency. The common ΔΔCt method assumes that the samples amplify with
comparable efficiencies. To provide precise calculations, the PCR efficiency should be
tested at least once, and alternative models adjusting for amplification efficiency should be
preferred, if necessary. Moreover, the use of biological and technical replicates is
recommended to ascertain the significance of the qRT-PCR results. The PCR reactions are
usually run in duplicates, or preferably triplicates, to control for well-to-well variation.

It is noteworthy that, while qRT-PCR is discussed as a transcriptomic methodology, it is not
used to assess the entire transcriptome. QRT-PCR is also used for confirmation of the gene-
expression levels obtained from high-throughput microarray or RNA-Seq experiments,
which will be discussed in the ensuing sections.

Microarrays
Within thepastdecade,microarraystudies havebecomea major component of the
transcriptomic investigation, helping to evolve gene-expression research from single-gene
analysis to genome-wide transcriptomic profiling. High-throughput microarray experiments
provided significant contributions to the scientific literature, with more than 50,000
publications in PubMed matching the keyword “microarray” to date. Microarray technology
has also been applied to the study of cumulus and granulosa cell transcriptome within the
context of IVF.

Microarray technology relies on hybridization of complementary nucleotide sequences. A
DNA microarray consists of single-stranded ~25 base length polynucleotide probes that are
synthesized in fixed positions in the form of a two-dimensional array on a solid surface.
Each probe is attached to a microscopic spot on the array and corresponds to the base
sequence of a specific mRNA. The large number of probes on a single microarray chip
enables simultaneous expression analysis for all known genes.

The microarray procedure proceeds through labeling, hybridization, scanning, and data
analysis stages (Fig. 4). The procedures presented here are mainly related to the Affymetrix
platform, which is the most commonly used microarray system.

Labeling, hybridization, and scanning for microarray analysis—First, total RNA
is isolated and mRNA is reverse transcribed to cDNA. Amplified and biotin-labeled cRNA
is obtained through in vitro transcription. Then fragmented cRNAs are deposited over the
array and hybridized overnight. Labeled targets bind to the complementary probes at a
quantity that is expected to be proportional to the level of expression of the gene represented
by that probe. The array is washed to exclude the targets that have not been hybridized. The
micro-array chip is then illuminated by a laser light; labeled molecules emit fluorescence
proportional to their quantity. Gene expression is quantified by means of fluorescence
intensity, which is captured by the scanners into an image (Fig. 4).

Microarray data analysis—The raw microarray data obtained from the image files need
to be processed before differential expression analysis. Considering microarrays, the entire
experimental process is more prone to error compared with qRT-PCR since thousands of
genes are analyzed simultaneously after a multistage experimental setting where errors
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might mainly result from the amplification procedure. To reduce possible nonbiological
variations and to ensure the integrity of the experiment, a number of controls are performed
at each stage.

Once the raw expression values are obtained, it is necessary to ensure the integrity of the
experimental procedure at the RNA extraction, amplification, labeling, and hybridization
stages. Affymetrix GeneChip Quality Control (71) uses the endogenous housekeeping gene
3’/5’ fluorescence ratio (beta-actin and gapdh), exogenous hybridization control
fluorescence intensity (bioB, bioC, bioD and Cre), and polyA control fluorescence intensity
(Dap, Lys, Phe, Thr, and Trp). The Microarray Quality Control (MAQC) Consortium (72)
provides resources to assess the performance of microarray platforms.

Robust Multichip Average (RMA): Several statistical methods for preprocessing of
microarray data have been developed. Among those methods, there is a consensus on Robust
Multi-chip Average (RMA) as the most efficient approach to date. RMA consists of three
steps: background adjustment, quantile normalization, and probe set summarization (73–75).

A portion of the observed intensities on a scanned array may be due to background noise,
that is, optical noise and/or nonspecific hybridization. RMA background adjustment is a
model-based approach using only perfect match values to estimate background density (73).
The probe intensities are modeled as the sum of a normal noise component and an
exponential signal component.

Among various normalization methods, the widely used Quantile Normalization (74) is
based on the assumption that the microarray chips have identical intensity distributions.
According to the underlying biological reasoning, a treatment would up-regulate only a
number of genes, down-regulate only a number of genes, and leave the rest of the genes
unaffected. Moreover, since equal amounts of RNA are processed and loaded to each array,
the cumulative expression would be the same among the samples in an experimental setting.
When there is a global mRNA change among the samples and the main assumption does not
hold, additional external controls should be used to measure actual expression levels (76).

In an Affymetrix GeneChip, probes consist of 25 base oligomers and a gene is represented
by a set of probes (n~27). Each probe maps to well-supported exons of known genes. After
background adjustment and quantile normalization at the probe level, the intensities of
probes within a probe set are summarized to a single value (75). The resulting intensity
value is assigned to the gene represented with that probe set. Differential expression analysis
is then performed on the background adjusted, normalized, and summarized intensities.

Differential expression analysis: multiple testing issue: The preprocessed gene-
expression data are stored in an m × n matrix, where the rows correspond to genes and the
columns correspond to samples. Samples are usually categorized as wild type versus
knockout, treated versus untreated, diseased versus healthy, or tumor versus normal. In the
case of cumulus cell analysis, the samples are categorized according to the outcome
measure; that is, oocytes developing to low-quality versus high-quality embryos, oocytes
resulting in pregnancy versus failed cycle, and so on. Each category is assumed as a
response variable. In a typical microarray experiment, the total number (n) of samples is
expected to be around 10 to a few hundreds, and the number (m) of genes is several
thousand depending on the species and platforms.

The differential expression analysis can be stated as the simultaneous test for each gene of
the null hypothesis of equal mean expression levels in two populations of cells. In this
context, a false-positive (type I error) declares that a gene is differentially expressed when it
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is not. When thousands of hypotheses are tested simultaneously, one for each gene, with a
specified type I error probability (e.g., 0.05), the chance of type I errors increases with the
number of hypotheses. Statistical literature offers various approaches for multiple
hypotheses testing to avoid excessive type I errors (77). The widely used false discovery rate
(FDR) is the expected proportion of type I errors among the rejected hypotheses. A common
approach to apply FDR in a microarray setting is by calculating the q-value, which is the
FDR analog of the P value (78, 79). Commercial tools such as the Partek Genomic Suite and
the Bioinformatics toolbox of Matlab exist for differential expression analysis of microarray
data.

In a routine microarray data analysis procedure, the expression levels are also investigated in
terms of fold change, a parameter that stands for the ratio of mean expression values for
each gene among the sample groups, which is expected to be higher than a predefined
threshold value, for example, two folds. To conclude that a gene is differentially expressed,
the data analysis should consider both FDR and fold change rate.

The results of robust FDR-corrected significance tests may [1] reveal no difference between
the populations of interest, [2] point out just a few genes up-regulated or down-regulated in
either population, or [3] determine hundreds of differentially expressed genes. In the case of
[2], target genes may be further investigated as potential biomarkers of the research interest,
especially in case of high fold changes. In the case of [3], more sophisticated analyses are
required for biological interpretation, that is, pathway analysis of microarray data.

Pathway analysis: Biological interpretation of the differentially expressed genes is usually
explored in the form of gene-ontology (GO) functional categories or metabolic and
regulatory pathways. A review of approaches and tools employed for pathway analysis is
presented in reference (80). Two of the popular tools are the DAVID, a widely used web-
based application focusing on GO classification (81), and Ingenuity Pathway Analysis
(IPA), a commercial software with enhanced visualization capabilities (Ingenuity Systems,
www.ingenuity.com).

Validation of microarray data: Validation of microarray data is a key component of the
transcriptomics approach. Selected transcripts that are found to be significantly different in
the experimental group compared with controls should be validated in independent
biological replicates using qRT-PCR. In this setting, “independent” signifies that the
samples used to validate microarray results should be collected separately from those used
for microarray experiments.

Potential pitfalls of microarray analysis—In the last decade, microarrays have been
the most popular biotechnological tools for monitoring whole-genome expression levels.
Microarray technology has also been a popular research interest for the bioinformatics
community as the statistical analysis of microarray data poses significant challenges. The
underlying reasons for the complex data analysis procedure may be summarized in three
points. First, the experimental procedure consists of multiple stages (RNA extraction, RT,
amplification, labeling, and hybridization); each stage results in additional potential for a
systematic or random variation in the resulting data. Second, simultaneous multiple
hypothesis testing is likely to result in high false-positive rates unless appropriate statistical
methods are applied. And third, very large GO databases are searched for identification of
biological processes associated with the differentially expressed genes.

Considering such complexities, it is crucial to understand the main assumptions of
microarray experiments and reassess the experimental design based on these assumptions. It
is also essential to assure reliability, comparability, and reproducibility of microarray
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experiments. Data obtained from different platforms or different sites may not be consistent
(82). Recently, evaluation of reproducibility of the results presented in 18 articles on
microarray-based gene-expression profiling revealed that only the data from two studies
could be reproduced, while six could be partially reproduced and 10 could not be reproduced
(83). Publication of any false discoveries may lead to an undesired domino effect in the
scientific literature since the biological databases are extended using the published results.

RNA-Seq
Despite the increasing use of microarrays to explore complex transcriptional mechanisms,
the underlying technology has certain limitations. Primarily, existing knowledge about the
genomic constitution of the species is a prerequisite for the microarray probe design. This
constraint limits detection of alternative splicing patterns or previously unmapped genes.
Although tiling arrays are constructed that span exon junctions and overlapping genomic
sequences, both expression arrays and tiling arrays suffer from high levels of background
noise due to cross-hybridization. Moreover, microarrays have a limited dynamic range of
detection that compresses the fold change of highly expressed genes.

Recently, next-generation sequencing technologies have provided an alternative approach
called RNA-Seq, which appears to be a more precise characterization of RNA transcripts
(84, 85). The RNA-Seq procedure starts with the construction of a cDNA library from a
population of RNA. Unlike smaller RNAs, long RNA molecules such as mRNAs first need
to be fragmented into smaller pieces (by hydrolysis or nebulization) to be compatible with
the sequencing technology. Alternatively, the reverse transcribed cDNA can be fragmented
by DNAse I treatment or sonication. Direct single-molecule RNA sequencing is also
possible without prior conversion of RNA to cDNA (86).

By using the cDNA library that has been constructed, short sequence reads (30–400 bp) are
obtained by high-throughput sequencing of single molecules from one end (single-end
sequencing) or both ends (pair-end sequencing). The resulting sequence reads are either
mapped to a reference genome or assembled de novo without a priori knowledge of the
underlying genome. Each read may correspond to a known exon, a splice variant, or a new
candidate gene. Reads are also counted to assess the level of gene expression based on the
principle that the number of sequence reads that map to a particular transcript is proportional
to its expression level.

Currently, among the existing technologies, the most commonly used platforms for RNA-
Seq are the Genome Analyzer (Illumina), SOLiD (ABI), and 454 Sequencing (Life
Technologies) for sequencing of DNA and DRS (Helicos) for direct RNA sequencing.

Typical RNA-Seq protocols require at least 1 μg of total RNA. However, this amount of
starting material may not be available when studying small tissues such as oocytes.
Recently, Antoniou and Taft (87) provided a protocol, specifically for Illumina, to prepare
sequencing libraries from mouse oocytes and suggested that this protocol can also be used
for follicular cells. Unfortunately, to date there are no publications applying the RNA-Seq
approach for analysis of follicular cells in the context of assisted reproduction. While RNA-
seq has not yet been applied to the analysis of cumulus/granulosa cell transcriptome, we
believe that its use would increase accuracy of testing and may help resolve the
inconsistencies between clinical studies discussed in the following sections.

Potential promises and pitfalls of RNA-Seq analysis—An important concern about
RNA-Seq is the depth of sequencing since transcriptome coverage strongly depends on the
sequencing depth. A small amount of sequencing data would be sufficient for the highly
expressed genes where more reads are required for accurate quantification of lower level
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expressions. Obviously, the cost per sample and the size of the resulting data increase as the
sequencing depth increases. The raw data obtained from RNA-Seq experiments are already
too large (approximately 20–30 MB sequencing file per sample), requiring parallel
processing of high-performance computers for alignment of the reads to an existing genome
or assembling the reads into a new genome. Despite these challenges, RNA-Seq would
detect tissue (cumulus cell) specific and currently unknown splice variants and
polymorphisms.

Reproducibility is also a critical aspect of RNA-Seq experiments. A recent study on the
analysis of technical reproducibility of RNA-Seq reported that sequencing data are highly
reproducible, with few systematic differences among technical replicates (88). In the same
study, the gene-expression differences between two tissues were estimated using the
Illumina sequencing platform and compared with data obtained from Affymetrix arrays
using the same samples. The results revealed that 81% of genes significantly differentially
expressed from the array data were also detected in RNA-Seq. In another study, on the basis
of the compatibility of the results obtained from both technologies and with the proven
superiority of RNA-Seq, the authors concluded that microarrays remain useful and accurate
tools for measuring expression levels and RNA-Seq complements and extend microarray
measurements (89). Usually, RNA-Seq is the method of choice for transcript discovery and
de novo genome annotation, whereas due to the lower costs and easier data analysis,
microarrays are preferable in the experiments involving large number of samples from
species with well-annotated genomes. A comparison of the major characteristics of qRT-
PCR, microarray, and RNA-Seq is presented in Table 1.

ANALYSIS OF CUMULUS AND GRANULOSA CELLS AS POTENTIAL
BIOMARKERS FOR OOCYTE AND EMBRYO QUALITY

Novel embryo assessment strategies take advantage of the rapid developing transcriptomic
approaches to explore the gene-expression profile of cumulus and granulosa cells. Recent
studies suggest that the transcript levels of the candidate genes in cumulus and granulosa
cells are associated with oocyte maturation (40, 62, 63, 90), embryo competence (39, 40,
58–63, 67, 90), or pregnancy (59, 61, 62, 64, 66, 67, 90–92), or live birth outcome (61, 65).
The studies are discussed in three groups: qRT-PCR analysis of cumulus cell markers of
oocyte and embryo competence (Table 2), microarray analysis of cumulus cell markers of
oocyte and embryo competence (Table 3), and granulosa cell markers of oocyte and embryo
competence (Table 4).

qRT-PCR Analysis of Cumulus Cell Markers of Oocyte and Embryo Competence
Human chorionic gonadotropin (hCG) or luteinizing hormone (LH) induces the rapid and
transient expression of epidermal growth factor (EGF)-like factors (amphiregulin [AREG],
epiregulin [EREG], and betacellulin [BTC]) in mural granulosa and cumulus cells. AREG,
EREG, and BTC each induce the expression of prostaglandin synthase-2 (PTGS2, also
termed COX2), tumor necrosis factor alpha-induced protein (TNFAIP6), and HAS2, which
are necessary for synthesis and stabilization of the extracellular matrix by cumulus cells,
cumulus expansion, and subsequent ovulation. These genes’ products and others with
similar function were assessed as potential bio-markers by the studies using qRT-PCR for
cumulus/granulosa cell transcriptome analysis.

In the first study investigating the association between cumulus cell gene expression and in
vitro embryo development, McKenzie et al. assessed the expression levels of HAS2, PTGS2,
and GREM1 in 108 human oocytes in correlation to oocyte maturity, fertilization, and
embryo quality (40). Using qRT-PCR, they assessed cumulus cells from individual oocytes
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and found that the expression of PTGS2 and HAS2 was 6-fold higher and that of GREM1
was 15-fold higher in cumulus cells surrounding oocytes that developed into high-grade
embryos compared with the cumulus cells of oocytes that resulted in low-grade embryos on
day 3. Subsequent studies confirmed the association between GREM1 expression and day 3
embryo development (39, 63). However, Anderson et al. (63) and Gebhardt et al. (65) failed
to show a significant association between GREM1 expression and clinical pregnancy, while
Wathlet et al. (90) reported GREM1 to be elevated in the cumulus cells of oocytes that
resulted in a pregnancy in women treated with GnRH antagonist and recombinant FSH
(rFSH) but not with GnRH agonist and highly purified menotropin (HP-hMG). Among the
other candidate genes targeted by the initial studies using qRT-PCR, HAS2 or TNFAIP6
have not been consistently associated with embryo development or pregnancy (40, 63, 65)
(Table 2).

Feuerstein et al. also used qRT-PCR and focused on target genes that are up-regulated in
cumulus cells in response to the preovulatory LH surge that precedes cumulus expansion:
steroidogenic acute regulatory protein (STAR), PTGS2, AREG, two Stearoyl-Coenzyme A
Desaturases (SCD1 and SCD5), and Cx43 (62). Expression levels of all genes investigated,
except Cx43, were increased after resumption of meiosis. Nuclear maturation was thus
associated with increased expression of STAR, PTGS2, AREG, SCD1, and SCD5 by cumulus
cells. When considering only cumulus associated with metaphase II oocytes, gene
expression was independent of morphological status at day 2. In contrast, transcript levels
were lower and distributed over a narrower range in cumulus-enclosing oocytes achieving
blastocyst development at day 5/6 (62). Based on these results, the authors suggested that
the expression levels of the genes investigated might vary in a precise chronological pattern
throughout the embryo development.

More recently, Gebhardt et al. reported a significantly higher expression of Versican
(VCAN) and PTGS2 in cumulus cells obtained from oocytes that yielded a live birth (65).
The same study also identified a correlation between birth weight and expression levels of
VCAN and the GREM1 and PKFP genes. It is noteworthy that the studies mentioned above
(39, 40, 62, 63, 65) have assessed the expression of individual genes but did not attempt to
generate predictive models based on the expression pattern of multiple genes.

In 2011, Wathlet et al. (90) reported the analysis of cumulus cells from intracytoplasmic
sperm injection (ICSI) patients stimulated with GnRH antagonist and rFSH or GnRH
agonist and HP-hMG. Based on their unpublished microarray results, cumulus cells were
analyzed for the expression of eight genes (Syndecan 4 [SDC4], PTGS2, VCAN, activated
leukocyte cell adhesion molecule [ALCAM], GREM1, transient receptor potential cation
channel, subfamily M member 7 [TRPM7], Calmodulin 2 [CALM2], and inositol 1,4,5-
trisphosphate 3-kinase A [ITPKA]) using qRT-PCR. The investigators analyzed their results
in relation to the stimulation protocol and correlated within-patient variation in gene
expression to oocyte maturity and developmental potential. Models predictive for day 3 or
day 5 embryo development and pregnancy in single ET cycles were developed. Wathlet et
al. found cumulus cells from mature oocytes to have higher PTGS2 and lower VCAN
expression. All genes except VCAN had a positive correlation with day 3 or day 5
morphology and were used to develop predictive models for embryo or blastocyst
development. Specific models were obtained for the two stimulation protocols. In both
groups, better cleavage-stage embryo prediction relied on TRPM7 and ITPKA expression
and pregnancy prediction relied on SDC4 and VCAN expression. The proposed model
achieved a pregnancy prediction with a sensitivity of 70% and a specificity of 90%.

In a subsequent study, the same group assessed 11 genes and found no significant difference
in the cumulus cell expression of VCAN among the pregnant versus nonpregnant groups,
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whereas EphrinB2 (EFNB2) and ITPKA were up-regulated and calcium/calmodulin-
dependent protein kinase 1D (CAMK1D) showed the same trend in the pregnant group (61).
Once again, the investigators developed models for pregnancy prediction. EFNB2,
CAMK1D, and Stanniocalcin-2 (STC2) were used for the live-birth prediction model.

Two additional aspects of the studies from Wathlet et al. are noteworthy. First, in addition to
generating predictive models based on transcript expression, they provided additional and
stronger models combining transcript levels with other clinical parameters such as hormone
levels or days of stimulation (61, 90). Second, to identify the appropriate gene for
normalization, they assessed the expression of 13 primer pairs: ACTB, GAPDH, ubiquitin C
(UBC), beta-2-microglobulin (B2M), tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein (YWHAZ), splicing factor 3a, subunit 1 (SF3A1), 18S,
cytochrome c-1 (CYC1), eukaryotic translation initiation factor 4A2 (EIF4A2), succinate
dehydrogenase complex, subunit A (SDHA), topoisomerase (DNA) I (TOP1), ATP synthase
subunit beta (ATP5B), and AluJ. They found that B2M and UBC were stably expressed in
human cumulus cells and used the geometric mean of the B2M and UBC expression as the
endogenous normalization factor (90).

Microarray Analysis of Cumulus Cell Markers of Oocyte and Embryo Competence
In the first study applying microarray to investigate cumulus cell transcriptome in women
undergoing IVF, Zhang et al. compared pooled cumulus cells from oocytes that failed to
fertilize to those derived from oocytes that developed into an 8-cell embryo on day 3 and
identified 160 genes differentially expressed between the two groups (58). Among the 160
genes, subsequent qRT-PCR quantification of PTX3 confirmed the association of PTX3
expression with oocyte development. However, this observation was contradictory to the
results obtained by Cillo et al. where no difference was observed in PTX3 levels in the
cumulus cells isolated from oocytes that resulted in high-quality embryos on day 3
compared with those from oocytes that did not fertilize or developed into poor-quality
embryos (39). Similarly, using qRT-PCR, Anderson et al. (63) had not found an association
between PTX3 and embryo development or pregnancy.

Van Montfoort et al. conducted a microarray experiment for comparison of gene expression
in cumulus cells from eight oocytes resulting in early cleavage embryos and from eight
oocytes resulting in non–early cleavage embryos (60). Obtained results revealed that a total
of 611 genes were differentially expressed; these genes were involved in a number of
biological processes including cell cycle, angiogenesis, and apoptosis. Among the identified
genes, cyclin D2 (CCND2), chemokine (C-X-C motif) receptor 4 (CXCR4), glutathione
peroxidase 3 (GPX3), catenin delta 1 (CTNND1), 7-dehydrocholesterol reductase (DHCR7),
disheveled, dsh homolog 3 (DVL3), heat shock 27 kDa protein 1 (HSBP1), and tripartite
motif containing 28 (TRIM28) were reported to be the most significant ones confirmed by
subsequent qPCR analysis. The altered expressions of these genes were suggested as an
indication of hypoxic conditions or delayed oocyte maturation in non–early cleavage
embryos.

Subsequently, using pregnancy as the primary outcome measure in the study, Assou et al.
presented a microarray-based comparison of gene-expression profiles in cumulus cells that
resulted in the identification of 630 differentially expressed genes (59). The majority of
these genes had higher expression levels in the pregnant group, suggesting that
transcriptional activation in cumulus cells is essential for the developmental competence of
embryos. The up-regulated expression of BCL-like protein 11 (BCL2L11) and
phosphoenolpyruvate carboxykinase 1 (PCK1) and the down-regulated expression of
nuclear factor IB (NFIB) in the pregnant group were further confirmed by qRT-PCR in that
study (59).
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It is noteworthy that the number of biological replicates performed in microarray studies has
significant implications in determining the potential validity of the data. Increasing the
number of biological replicates requires the performance of a higher number of microarrays.
This in turn is associated with additional cost and makes the bioinformatics analysis more
challenging. In microarray studies investigating cumulus cell biomarkers, a wide range of
replicates were used (Table 3). Most recently, Feuerstein et al. (67) collected 197 individual
cumulus cell samples from 106 patients undergoing the ICSI procedure and studied cumulus
cell gene expression using 96 microarrays to determine the genes associated with oocyte
maturation and subsequent blastocyst development. Microarrays were followed by a meta-
analysis of the behavior of these genes in other data sets available in the Gene Expression
Omnibus, which showed the consistency of this list of genes. Finally, eight genes were
selected according to oocyte developmental competence from the 308 differentially
expressed genes for further validation by qRT-PCR. Three of these eight selected genes
were validated as potential biomarkers (perilipin 2 [PLIN2], regulator of G-protein signaling
2 [RGS2], and angiogenin [ANG]). Experimental parameters including interpatient
variability were then assessed, and only the expression level of RGS2 was confirmed to be
related to oocyte developmental competence as well as clinical pregnancy.

At the same time, but using a different approach, Fragouli et al. reported up-regulation of
SPSB2 in the cumulus cells of oocytes that produced a healthy live birth (93). The main
objective of that study was to assess the cumulus cells gene expression as a potential
indicator of oocyte aneuploidy. The investigators analyzed the expression of 96 genes using
TaqMan low-density array (TLDA) and observed down-regulation of splA/ryanodine
receptor domain and SOCS box containing 2 (SPSB2) and TP5313 in cumulus cells from
chromosomally abnormal oocytes. These results might suggest that transcriptome analyses
of cumulus cells may also help in the identification of novel noninvasive markers of meiotic
errors in the oocyte as an alternative to invasive genomic diagnostic tests.

Analysis of Granulosa Cell Markers of Oocyte and Embryo Competence
Three consecutive studies by Hamel et al. reported a correlation between pregnancy
outcome and the transcriptome of mural granulosa cells (64, 91, 92). In the first study, the
gene expression of granulosa cells has been analyzed using both a custom-made cDNA
microarray and an Affymetrix GeneChip (91). The custom-made microarray contained
granulosa/cumulus expressed sequence tags (ESTs) from subtracted libraries obtained from
pooled samples representing pregnant versus nonpregnant patients. The samples were
investigated in two groups: the follicular cells from oocytes that resulted in a positive
pregnancy and the follicular cells from oocytes resulting in embryos that represent
developmental failure. Among the 115 differentially expressed genes, altered expression of
3-beta-hydroxystreoid dehydrogenase (HSD3β1), ferrodoxin 1 (FDX1), serine (or cysteine)
proteinase inhibitor clade E member 2 (SERPINE2), cytochrome P450 aromatase
(CYP19A1), and cell division cycle 42 (CDC42) were significantly associated with
pregnancy outcome. Using the findings of this initial study, the investigators subsequently
identified phosphoglycerate kinase 1 (PGK1), RGS2, regulator of G-protein signaling 3
(RGS3), CDC42 (92), and UDP-glucose pyrophosphorylase 2 (UGP2), and pleckstrin
homology-like domain, family A, member 1 (PHLDA1) (64), as potential follicular markers
associated with embryo quality resulting in a successful pregnancy.

Methodological Framework for Implementation of Cumulus/Granulosa Cell
Transcriptomics as an Embryo Assessment Methodology in the IVF Laboratory

While the application of cutting-edge transcriptomic and bioinformatic tools in the IVF
laboratory is exciting, a number of questions remain to be answered before implementing
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cumulus/granulosa cell transcriptomics as a clinically useful tool. In this section, we will
attempt to address some of these questions.

How will the analysis be done in clinical practice?—Microarray analysis requires
dedicated equipment and technical staff that would be cost prohibitive in most embryology
laboratories and may not produce results quickly enough to allow the information to be used
clinically in the limited window of time acceptable for ET. It is therefore unlikely that
cumulus/granulosa cells from individual oocytes will be subjected to microarray analysis to
obtain a full transcriptomic profile. Instead, a limited number of transcripts identified in
microarray studies as predictors of oocyte/embryo viability may be assessed by qRT-PCR.
In that case, it will also be important to establish whether an absolute quantification would
be necessary or the laboratory would just choose the embryo(s) associated with the highest
or lowest expression. In our opinion, as a single gene product is unlikely to predict outcome,
multiple genes would need to be used within an algorithm, necessitating absolute
quantification.

Are there any concerns about the safety of the procedure?—While the collection
of cumulus or granulosa cells is considered noninvasive, it may be associated with
additional time for each oocyte outside the incubator. This approach may also result in
unindicated removal of cumulus cells and performance of ICSI procedures. In addition, to
maintain the identity of each cumulus/granulosa cell sample-embryo relationship, individual
culture will be necessary, adding to workload and financial cost in the laboratory. These
aspects will need to be studied and a risk-benefit analysis performed before clinical
implementation.

What data should be produced before implementation of cumulus or
granulosa cell transcriptomic analysis in clinical practice?—The clinical studies
summarized above include hypothesis-driven (candidate gene analysis by qRT-PCR) and
hypothesis-generating (global analysis by microarray) studies investigating the association
between altered cumulus and/or granulosa cell mRNA expression and embryo development
and viability. A key second step is to validate the identified predictive transcripts in blinded
studies. This has been accomplished for some of the candidates identified by qRT-PCR
(GREM1 [39, 40, 63]) and others identified by microarray (PGK1, RGS2, RGS3, CDC42;
[92]). Finally, the transcripts or algorithms involving a group of transcripts will need to be
tested in randomized clinical trials to determine whether their use alone or in combination
with morphology improves IVF outcome parameters such as implantation rate, pregnancy
rate, or live-birth rate.

SUMMARY AND CONCLUSIONS
Interactions between the oocyte and the surrounding somatic follicular cells are central to
the normal development of the female gamete. Importantly, aberrations in oocyte gene
expression have implications for cumulus and granulosa cell proliferation, differentiation,
and function. Therefore, it is plausible to assess cumulus or granulosa cells to identify
markers of oocyte and embryo viability. On the basis of these observations and assumptions,
a number of investigators have studied cumulus and granulosa cell transcriptome to gain
insight into the reproductive potential of oocytes and embryos.

Studies published to date demonstrate extensive use of qRT-PCR as a sensitive and efficient
method for quantification of individual transcripts. On the other hand, use of microarrays for
genome-wide expression profiling has opened a new perspective for researchers, promising
identification of the transcriptomic signature of the viable embryos. However, variations in
the design and methodology of the microarray experiments and technological limitations
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complicate the interpretation of the results of microarray studies. Although RNA-Seq
technology has been proposed recently as an alternative to microarrays, it has not yet been
applied to cumulus/granulosa cell transcriptomic analysis.

The overview of the published results presented in studies assessing cumulus and granulosa
cells transcriptomics revealed limited consensus on the identified markers. This may be due
to variations in laboratory environment, studied outcome measures, size of study
populations, and utilized technologies. In addition, the treatment protocol used and the age
of women studied may affect the transcriptomic profile (94). Moreover, the majority of the
studies testing the diagnostic power of follicular cells’ gene expression are based on
retrospective cohort designs, are limited in extensive performance evaluation, and suffer
from lack of clinical validation of the identified markers. We are optimistic that a group of
cumulus and/or granulosa cell transcripts will be validated as predictors of oocyte
competence. Whether, the use of these markers in the setting of IVF will result in an
improvement in pregnancy outcome will need to be tested using a randomized controlled
trial design (95).
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FIGURE 1.
Oocyte specific genes studied in mouse that are required for folliculogenesis. FIGa: factor in
the germline, alpha; NOBOX: newborn ovary homeobox protein; SOHLH1:
spermatogenesis and oogenesis specific basic helix-loop-helix 1; SOHLH2: spermatogenesis
and oogenesis specific basic helix-loop-helix 2; LHX8: lim homebox protein 8; GDF-9:
growth differentiation factor-9; EPAB: embryonic poly(A) binding protein; ZFP2: zinc
finger protein 2; and BMP-15: bone morphogenic protein-15. Scale bars represent 10 μm.
Reproduced with permission, from Guzeloglu-Kayisli et al. Biochemical Journal
2012;446:47–58 (10).
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FIGURE 2.
Illustration of the three steps (denaturation, primer annealing, and strand extension) involved
in PCR resulting in the exponential amplification of PCR products assuming the theoretical
efficiency of 2.

Uyar et al. Page 24

Fertil Steril. Author manuscript; available in PMC 2013 December 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 3.
Graphs representing the qRT-PCR results: (A) Hypothetical amplification plots of a series of
10-fold dilutions with arbitrary fluorescence units. (Technical replicates were not shown in
the figure.) (B) The standard curve obtained from the Ct values of the diluted samples.
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FIGURE 4.
Major steps of a typical microarray experiment. (A) Total RNA is extracted from the
follicular cells samples, and mRNA is reverse transcribed into cDNA. Amplified and biotin-
labeled cRNA is obtained through in vitro transcription. (B) Fragmented cRNA samples are
hybridized to microarray slide. Labeled targets bind to their complementary oligonucleotides
attached in the microscopic probes. The array is then washed and scanned to obtain the
fluorescent image, which is further processed to get the intensity values for data analysis.
(C) Relative gene expression values are first normalized to eliminate the possible
nonbiological variations. Then statistical analyses are performed to identify the differentially
expressed genes. Two sample methods and related graphs for analysis and visualization of
microarray data are shown: PCA for visualization of the expression data by projection into a
reduced dimensional space where each point in the graph represents a single sample; and
HeatMap analysis for hierarchical clustering of samples and genes based on the differential
expression observed.
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TABLE 1

Major characteristics of transcriptomics technologies: a comparative representation.

Feature qRT-PCR Microarray RNA-Seq

Technique Primer annealing and strand extension Hybridization High-throughput sequencing

Genome-wide analysis No Yes Yes

Reliance on genomic sequence Yes Yes No

Throughput Low High High

Resolution Hundreds bp A few tens of bp Single base

Precision High Medium High

Background noise Low High Low

Required amount of starting RNA material Low High Low

Cost per sample Low Medium High

Bioinformatics requirement Low Medium High
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