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We tested the hypothesis that an altered community of gut microbes is associated 
with risk of colorectal cancer (CRC) in a study of 47 CRC case subjects and 94 control 
subjects. 16S rRNA genes in fecal bacterial DNA were amplified by universal primers, 
sequenced by 454 FLX technology, and aligned for taxonomic classification to micro-
bial genomes using the QIIME pipeline. Taxonomic differences were confirmed with 
quantitative polymerase chain reaction and adjusted for false discovery rate. All sta-
tistical tests were two-sided. From 794 217 16S rRNA gene sequences, we found that 
CRC case subjects had decreased overall microbial community diversity (P = .02). In 
taxonomy-based analyses, lower relative abundance of Clostridia (68.6% vs 77.8%) 
and increased carriage of Fusobacterium (multivariable odds ratio [OR] = 4.11; 95% 
confidence interval [CI] = 1.62 to 10.47) and Porphyromonas (OR = 5.17; 95% CI = 1.75 
to 15.25) were found in case subjects compared with control subjects. Because of the 
potentially modifiable nature of the gut bacteria, our findings may have implications 
for CRC prevention.
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The human gut hosts a diverse community 
of bacteria that play key roles in modulat-
ing host metabolism and immunity (1) and 
in the digestion and conversion of dietary 
constituents into active forms (2). Although 
a role for this gut microbiota in colorectal 
cancer (CRC) in humans is suspected (3–
6), particularly from comparisons of CRC 
tumor and adjacent normal tissue (7,8), 
systematic epidemiologic comparisons 
between CRC patients and control subjects, 
considering comprehensive confound-
ers and multiple comparisons, are lacking. 
From stool samples, we comprehensively 
surveyed the distal gut microbiota by 16S 
rRNA gene sequencing and compared the 
fecal microbial profiles between CRC case 
subjects and matched control subjects.

We used specimens and data from a 
case–control study that tested whether 
fecal mutagens were associated with CRC 
(9,10). Briefly, case subjects with newly 

diagnosed, histologically confirmed ade-
nocarcinoma of the colon or rectum were 
recruited before initiation of treatment 
during the period from 1985 to 1989 at 
three Washington, DC, area hospitals. 
Control subjects were recruited from con-
temporaneous patients awaiting elective 
surgery for nononcologic, nongastrointes-
tinal conditions at these hospitals. Before 
hospitalization and treatment, participants 
completed written informed consent and 
diet and demographic questionnaires and 
provided 2-day fecal samples that were 
freeze-dried. The lyophilates were pooled, 
mixed, and stored at −40°C. Among 69 
case subjects and 114 control subject, we 
included for study 47 colorectal cancer case 
subjects and 94 control subjects for whom 
at least 100 mg of lyophilized feces was 
available. Case and control subjects were 
frequency matched by sex and body mass 
index (Supplementary Table  1, available 

online). One subject in the CRC case sub-
ject group used antibiotics within the past 
year; results remained unchanged after 
exclusion of this subject. This study was 
approved by the National Cancer Institute 
and the New York Univeristy Institutional 
Review Board.

We extracted DNA from fecal samples 
using the Mobio PowerSoil DNA Isolation 
Kit (Carlsbad, CA) with bead-beating. As we 
reported previously (11),16S rRNA ampli-
cons covering variable regions V3 to V4 
were generated using primers (347F-5′GG
AGGCAGCAGTRRGGAAT′-3′ and 803R 
5′-CTACCRGGGTATCTAATCC-3′) 
incorporating Roche 454 FLX Titanium 
adapters (Branford, CT) and a sample 
barcode sequence (12). Amplicons were 
sequenced with the 454 Roche FLX 
Titanium pyrosequencing system fol-
lowing the manufacturer’s specifications. 
Laboratory personnel were blinded to 
case–control status.

Multiplexed, barcorded sequencing data 
were deconvoluted. Poor-quality sequences 
were filtered based on sequence less than 
200 or more than 600 base pairs, missing 
or mean quality score less than 25, or mis-
matched barcode and primer sequences. 
Chimeric sequences were removed with 
ChimeraSlayer (13). Filtered sequences 
were binned into operational taxonomic 
units with 97% identity and aligned to 
fully-sequenced microbial genomes (IMG/
GG GreenGenes) using the QIIME pipe-
line (14). Blinded quality control specimens 
in all sequencing batches (38 aliquots from 
9 unmatched parent study control subjects) 
had good reproducibility. Intraclass corre-
lation coefficients were 0.84 for Shannon 
diversity index, and 0.43 to 0.59 for relative 
abundances of major phyla (Supplementary 
Table  2, available online). To confirm 
sequencing associations, we performed 
quantitative polymerase chain reaction for 
genera Fusobacterium and Porphyromonas 
with the SYBR Green method (15) using 
genus-specific primer sets (16,17).

Rarefaction curves were estimated by 
bootstrapping of 500 random samples at 
500 sequence increments. Alpha diversity 
(Shannon’s diversity and evenness indi-
ces) differences between case and control 
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subjects were compared with t tests with 
Monte Carlo permutations using com-
pare_alpha_diversity.py, a built-in function 
in the QIIME pipeline (14). Carriage 
(presence or absence; ie, prevalence) of 
specific taxa was compared by χ2 analy-
sis, and relative abundances were com-
pared using the nonparametric Wilcoxon 
test. Odds ratios (ORs) were calculated 
for taxa, based on logistic regression, 

adjusting for age and, additionally, for 
sex, body mass index, race, smoking, 
and sequencing batch. We report nomi-
nal P values and highlight associations 
that meet a false discovery rate (FDR) 
adjusted P less than or equal to .05 by the 
Benjamini and Hochberg method (18). 
All statistical tests were two-sided, and 
a P value of less than .05 was considered 
statistically significant.

From the 141 fecal study samples 
(n = 47 CRC case subjects and 94 control 
subjects), we obtained 794 217 16S rRNA 
filtered gene sequences (mean ± standard 
deviation  =  4919 ± 2942 reads per sam-
ple in control subjects and 4863 ± 2784 
per sample in case subjects; P  =  .91). We 
assessed sample gut microbial community 
structure by diversity (ie, how many differ-
ent taxa are present) and evenness (ie, how 

Figure  1. Human gut microbiome in relation to colorectal cancer case-
control status. A) Shannon diversity index in 47 colorectal cancer case 
subjects and 94 control subjects. B) Evenness index in 47 colorectal cancer 
case subjects and 94 control subjects. Rarefaction curves were estimated 
by bootstrapping of 500 random samples at 500 sequence increments. 
Alpha diversity (Shannon’s diversity and evenness indices) differences 
between case and control subjects were compared with t tests with Monte 

Carlo permutations using compare_alpha_diversity.py, a built-in function 
in the QIIME pipeline. C) Cladogram representation of gut microbiome taxa 
associated with colorectal cancer. Red indicates taxa enriched in colorectal 
cancer case subjects, and blue indicates taxa enriched in control subjects. 
Only taxa with nominal P less than .05 based on χ2 test (dichotomized) or 
Wilcoxon test (continuous) are labeled. The tests were two-sided. Figure 
was constructed using data presented in in Table 1.
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evenly distributed are the taxa in a sam-
ple) and found that CRC case subjects had 
decreased community diversity (P  =  .02) 
(Figure 1A) but did not differ from control 
subjects on community evenness (P = .43) 
(Figure 1B).

We compared case and control sub-
jects for presence and relative abundance 
of taxa. Case subjects tended to have 
enrichment of phylum Bacteroidetes 
(16.2% vs 9.9% relative abundance for 
case and control subjects, respectively) 
and depletion of Firmicutes (74.0% vs 
80.3% for case and control subjects, 
respectively) (Supplementary Figure  1, 
available online). Within Firmicutes, the 
relative depletion was most prominent 
for the class Clostridia (68.6% vs 77.8%; 
P  =  .005; FDR-adjusted P ≤ .05), includ-
ing Coprococcus and other taxa in the fam-
ily Lachnospiraceae (Table  1; Figure  1C). 
Gram-positive Clostridia, especially 
Coprococcus, efficiently ferment dietary 
fiber and other complex carbohydrates to 
butyrate, a major colonic metabolite that 
may inhibit colonic inflammation and car-
cinogenesis (2,19). Consistent with our 
result, Clostridia have also been reported 
to be less abundant in colon tumors than 
in adjacent normal tissue (7).

Carriage of the genus Fusobacterium was 
statistically significantly greater in case sub-
jects (31.9% vs 11.7% in control subjects) 
(Table  1; Figures 1C) and was associated 
with increased CRC risk (multivariable-
adjusted OR = 4.11; 95% confidence interval 
[CI] = 1.62 to 10.47; P = .004; FDR-adjusted 
P ≤ .05). Relative abundance of Fusobacterium 
taxa in carriers did not differ (case subject 
range  =  0.009%–28.9%; control subject 
range = 0.01%–1.3%; P = .32) (Table 1).

Gram-negative, anaerobic Fusobacterium 
contributes to colitis (20) and to periodon-
tal disease (21), which itself may be related 
to colon cancer (22). Consistent with our 
findings, two studies recently reported 
that Fusobacterium was enriched in human 
CRC tissue compared with adjacent nor-
mal tissue (7,8), and another study reported 
enrichment of Fusobacterium in rectal swabs 
from CRC case subjects compared with 
control subjects (23).

In our study, increased carriage of gen-
era Atopobium and Porphyromonas was also 
associated with CRC (OR  =  14.36, 95% 
CI = 2.78 to 74.30, P < .001; and OR = 5.17, 
95%CI = 1.75 to 15.25, P = .001, respectively) 

(Table 1). Atopobium, a Gram-positive anaer-
obic bacterium, is associated with Crohn’s 
disease (24) and reported to inhibit colon 
cancer apoptosis in vitro (25). Porphyromonas, 
commonly found in the mouth and gastro-
intestinal track, is associated with oral peri-
odontal disease (26). Increased risks of CRC 
with carriage of Porphyromonas (P  =  .05; 
OR  =  1.44; 32.1% vs 16.2% in case sub-
jects vs control subjects, respectively) and of 
Fusobacterium (P = .01; OR = 1.44; 34.3% vs 
28.1% in case subjects vs control subjects, 
respectively) were confirmed by quantitative 
polymerase chain reaction.

This is the first epidemiologic study 
comparing the gut microbiome of CRC 
patients and noncancer control subjects 
while controlling for potential confound-
ers and taking into account the multiple 
comparisons involved in microbiome anal-
ysis. Other strengths of this study include 
nonculture-dependent sequencing-based 
microbiome assessment, which provided a 
comprehensive survey of the human fecal 
microbiome.

We did not examine mucosal adherent 
gut bacteria, which is a limitation because 
these might be more closely linked to 
colon carcinogenesis than are bacteria in 
feces. Possible effects of lyophylization and 
long-term frozen storage are unknown. 
However, lyophilization is an excellent 
method to preserve DNA for long-term 
storage (27); reproducibility in our masked 
replicates was good; and taxon distribu-
tions of our data are comparable with those 
of other published fecal microbiome data 
(28,29). Results from these analyses could 
be affected by selection bias and other 
biases that are common to case–control 
studies. Large prospective studies are war-
ranted to confirm our findings.

In conclusion, this survey of the gut 
microbiota found that CRC risk was asso-
ciated with decreased bacterial diversity in 
feces; depletion of Gram-positive, fiber-fer-
menting Clostridia; and increased presence 
of Gram-negative, proinflammatory genera 
Fusobacterium and Porphyromonas. Because 
of the potentially modifiable nature of the 
gut bacteria, our findings may have impli-
cations for CRC prevention.
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