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ABSTRACT The Ly-5 system of the mouse is expressed
exclusively by hematopoietic cells and comprises a series of
glycoprotein isoforms that typify different hematopoietic cell
lineages. The 200-kDa isoform of T cells and the 220-kDa
isoform of B cells are known to differ in peptide composition.
The complete 1152 amino acid sequence of the 200-kDa isoform
protein deduced from cDNA sequence appears to comprise a
leader sequence of some 30 residues, an external N-terminal
domain of 370 residues, a  probably single transmembrane
domain of 22 residues, and an unusually large cytoplasmic
domain of 730 residues. Both the external and cytoplasmic
domains include regions of internal homology suggestive of
evolution from a smaller ancestral gene. RNA transfer blotting
has previously shown that B-cell nRNA for Ly-5 is larger than
T-cell nMRNA. S1 nuclease protection mapping with Ly-5 cDNA
probes suggests that this difference can be ascribed to inter-
polation of an extra B-cell sequence located at the 5' end of
B-cell mRNA, probably immediately following the leader
sequence. From restriction mapping of overlapping Ly-5
genomic clones spanning 60 kilobases it is coneluded that Ly-5
isoforms are generated by differential processing of transcripts
of a single gene, rather than from a family of linked Ly-5 genes.

Salient features of the Ly-5 system of the mouse are restric-
tion of its expression to the hematopoietic compartment of
development (1) and the generation of discrete Ly-S glyco-
protein isoforms (2-4), two of which are known to differ in
protein composition (5), that characterize different hemato-
poietic cell lineages. It has been suggested that functions of
Ly-5 observed in the lymphocyte lineage may represent one
category of a set of allied intercellular regulatory mechanisms
in which Ly-5 isoforms are involved throughout the hema-
topoietic compartment (6). The present report is concerned
mainly with the genetic mode of origin of Ly-5 isoforms.

Ly-5, originally defined by intraspecies alloantigens, is
deemed to be the same system as T200, originally defined by
monomorphic antigen recognized by rat antiserum. The rat
system L-CA (leukocyte-common antigen) is deemed to
represent the rat homologue of Ly-5/T200.

MATERIALS AND METHODS

Rescreening of the C1.Ly1-T1 cDNA Library. A sublibrary
of the original C1.Ly1-T1 cDNA library with insert size 4-7
kilobases was screened with the 5’ fragment C (probe 68.1) of
pLy-5-68 (7).

DNA Sequencing. This was conducted according to Sanger
et al. (8) on fragments subcloned in M13mp18 and mp19 (9).
Subcloning utilized both blunt-end and sticky-end cloning
strategies, and the sequences were confirmed on both
strands.
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Preparation of RNA. Total RNA was prepared (7) from the
cells and cell lines named using guanidium isothiocyanate
followed by centrifugation through a cushion of CsCl,.

S1 Nuclease Protection Mapping. Probes for S1 mapping
were prepared from pLy-5-68 subcloned in pBR322 vector.
As described by Maniatis et al. (10), 3'- or 5'-end-labeled
probe DNA (1 x 10° cpm) was hybridized with total RNA (30
ug) at various temperatures and digested with S1 nuclease
(37°C for 30 min), after which DNA-RNA hybrids were
electrophoresed on 1.5% agarose gels or 6% polyacrylamide/
7 M urea gels.

Construction and Screening of a A Genomic Library. This
genomic library was made from EARADI1-B2M-negative
cells, a (B6 X A)F,; T-cell leukemia variant with mutations in
both B2m alleles. Cellular DNA was partially digested with
Sau3A and inserted into A vector EMBL.4 according to
Frischauf et al. (11). About 1 x 10° plaques were screened
with pLy-5-68 cDNA.

RESULTS AND DISCUSSION

Nucleotide and Predicted Amino Acid Sequences for Ly-5
c¢DNA. The partial sequence of the 5’ region of pLy-5-68
c¢DNA (7) indicates that this clone is incomplete at the 5’ end.
The original T-cell cDNA library was therefore rescreened
with a 5' fragment of the original clone pLy-5-68. Of nine
positive clones (pLy-5-R1 to -R9), four with inserts longer
than pLy-5-68 were selected (pLy-5-R1 to -R4) and restriction
mapped (Fig. 1). These four clones are of two types. R3 and
R4 are identical in sequence to pLy-5-68 but have 111 and 132
more nucleotides, respectively, at their 5’ ends. R1 and R2,
which are identical, differed from pLy-5-68 in sequence in the
5’ region, displaying an Ava II site in that region, and are 663
nucleotides longer than pLy-5-68 at the 5’ end.

Nucleotide and predicted amino acid sequences are given
for clones pLy-5-R2 and pLy-5-R4 in Fig. 2. pLy-5-R4 (4590
nucleotides) appears to include the complete coding region.
There are two ATG triplets (positions 100-102 and 106-108)
near the beginning of the same reading frame. The second
ATG (positions 106-108) should be the initiation codon
because the sequence ACCATGG agrees with the consensus
sequences suggested for eukaryotic initiation sites (12). This
initiation codon (positions 106-108) marks an open reading
frame coding for a protein of 1152 amino acids terminating at
the stop codon TAG (positions 3562-3564). There are two
potential polyadenylylation signals, AATAAA hexamers,
positions 4347-4352 and 4567-45472, in the long 3'-untrans-
lated region, and polyadenylylation begins 18 nucleotides
downstream from the second AATAAA. The first polyad-
enylylation signal is apparently also used because we have
observed a third type of Ly-5 cDNA, clone pLy-5-RS, to
which the poly(A) tail was attached 12 nucleotides down-
stream. The sequence of pLy-5-RS was identical to R4 except
for a shorter 3’ end.

Abbreviations: L-CA, leukocyte-common antigen; PF, protected
fragment (in S1 nuclease protection mapping); M¢, macrophages.
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Computer-aided hydrophobicity analyses suggest that the
first 30 or so amino acids represent a leader peptide, and the
22 amino acids, positions 426-447 (numbered from the
initiation codon) represent a transmembrane segment. The
portion =44 kDa proximal to the N terminus is presumably
extracellular and 14 theoretical N-linked glycosylation sites
are predicted in this region from the sequence Asn-Xaa-
Thr(Ser). There are only four theoretical N-glycosylation
sites in the unusually large C-terminal cytoplasmic region of
~83 kDa. Intotal, there are 30 cysteines, 18 of them evidently
extracellular. These 18 cysteines are probably involved in
intramolecular disulfide bonding, as has been suggested for
cysteines similarly placed in rat L-CA, the rat homologue of
mouse Ly-5/T200 (13). Ly-5 is known to be phosphorylated
exclusively at serine residues (14, 15). Several potential
phosphorylation sites are found in the cytoplasmic region of
Ly-5 protein. The region including amino acids 844-861 is a
candidate for phosphorylation by glycogen synthase kinase 5
(16), and the regions of residues 453-458 and 817-823 are
both potential sequences for phosphorylation by protein
kinase type C (17).

The molecular size of the predicted protein is =127 kDa
(without leader peptide), which is =33 kDa less than the
previously estimated 160 kDa of the T-cell Ly-5 isoform
devoid of N-linked carbohydrates (5). This discrepancy may
reflect inaccuracy of molecular sizes estimated by NaDod-
SO,/PAGE; the reported molecular size for T-cell Ly-5/T200
ranged from 175 to 200 kDa. Also, phosphate side chains
and/or O-linked carbohydrate may increase the apparent size
in NaDodSO,/PAGE.

By computer analysis, certain nucleotide and amino acid
sequences within the extracellular and cytoplasmic domains
of pLy-5-R4 are repetitious, suggesting evolution by dupli-
cation of a smaller ancestral gene. Thus in the extracellular
domain there is 38% homology between nucleotide regions
20-130 and 570-680 and 37% homology between regions
290-420 and 1030-1160. Similarly, the cytoplasmic protein
coding domain appears divisible into two roughly equal parts
that include stretches of 100-200 nucleotides of 30-50%
homology (nucleotides 1590-1710 vs. 2460-2580, 1770-1950
vs. 2690-2870, and 2230-2350 vs. 3170-3290).

The R2 sequence from position 798 to the 3’ end is identical
to the R4 sequence from position 267 to the 3’ end and thus
R2 is 531 nucleotides longer at its 5’ end. There would be 16
stop codons in the first 798 nucleotides of R2 if the reading
frame were the same as for R4 and 20 or 22 stop codons if
either of the two alternative frames were used, making it
unlikely that R2 represents a functional message that could
account for the second Ly-5 product defined in T cells by
serological and biochemical criteria (18).

Nevertheless, two Ly-5 RNA species represented by R2
and R4 cDNAs are revealed in T cells by S1 mapping. Thus
with probe 68.1a (comprising 288 nucleotides from the 5’ end
to the first downstream Xba I site of pLy-5-68, positions

133-420 of R4), two prominent protected fragments (PFs) are
seen (see Fig. SA and below). One is a complete PF of 288
nucleotides representing R4. The other is a 153 nucleotide PF
representing R2. The length of each PF corresponds with the
homologous sequences between R2 and R4 (Fig. 2).

Comparison Between Ly-5 and Rat L-CA. Computer-aided
comparison of protein and nucleotide sequences of pLy-5-R4
(Fig. 2) with rat L-CA (13) substantiates the homology of
mouse pLy-5-R4 with rat L-CA. Overall amino acid homol-
ogy with respect to the extracellular domain of Ly-5, where
antigens accessible on intact cells should be situated, is 47%,
and nucleotide homology is 69% (both allowing small gaps).
The presumed transmembrane domains are identical in amino
acid sequence and also in nucleotide sequence except for the
silent substitution of cytosine for thymidine in L-CA at
position 1429. Overall amino acid and nucleotide homologies
for the cytoplasmic domain are 87 and 89%, respectively. The
incomplete noncoding 3’ sequence reported for the L-CA
c¢DNA clone pLC-1 (13) has 262 nucleotides, and the first 60
nucleotides of this clone downstream of the stop codon show
80% homology with the equivalent region of pLy-5-R4.
However, the remaining sequence (=200 nucleotides) of
pLC-1 shows no homology with Ly-5-R4. But the sequence
near the 3’ end of another L-CA ¢cDNA clone, pLC-2 (105
nucleotides) (13), shows =70% homology with the equivalent
region of pLy-5-R4, including a stretch of 22 perfectly
matched nucleotides that contains the second AATAAA
hexamer of Ly-5-R4. Thus sequences near the beginning
(=60 nucleotides) and the end (=100 nucleotides) of the
untranslated 3’ region of pLy-5-R4 (1029 nucleotides) show
70-80% homology with those of L-CA ¢cDNA. The middle
portion (=870 nucleotides) of this region, however, is prob-
ably quite different in pLy-5-R4 as compared with L-CA.

The positions of 15 of the 18 cysteine residues in the
extracellular domain of Ly-5 protein match those of L-CA
protein and the number of matchable cysteines may be higher
because N-terminal sequencing of L-CA protein is not
complete, implying that similar conformations can be
reached by intramolecular disulfide bonding. The three
potential phosphorylation sites in the cytoplasmic domain,
noted above, are conserved in L-CA and Ly-5.

A Difference in the 5’ Region of Ly-5 RNA that Distinguishes
T Cells from B Cells and Macrophages. In RNA transfer
blotting with the pLy-5-68 probe, B-cell Ly-5 RNA (=5 kb)
is =0.3 kb longer than T-cell Ly-5 RNA (7), which accords
with the difference in protein size of the respective Ly-5
isoforms of tunicamycin-treated cells (190 kDa and 160 kDa,
respectively), which are known to differ in peptide compo-
sition (5). Similarly, RNA transfer blotting has distinguished
mRNAs of cytotoxic T lymphocytes and helper T cells (19).
Appropriate Ly-5 cDNA clones of B cells and macrophages
(M¢) are not yet available, but S1 mapping gives further
information on the respective mRNAs.
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FiG. 2. DNA and predicted
amino acid sequences of Ly-5
cDNA clones. (A) pLy-5-R4 with
the deduced amino acid sequence.
The open box indicates the puta-
tive transmembrane region. The-
oretical N-glycosylation sites are
underlined. Two poly(A) sites are
doubly underlined. The vertical
arrow marks the 5’ end of pLy-5-
R3. The horizontal arrow marks
the start of the sequence that
matches R2. (B) pLy-5-R2 (only
the first 900 nucleotides are
shown). The portion underlined
and the subsequent remaining se-
quence (not shown) to the 3’ end is
identical to pLy-5-R4.
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FiG. 3.

Nine cDNA probes for S1 nuclease protection mapping. cDNA probes were generated by restriction enzyme digestion of pLy-5-68

and inserted into pBR322. Positions related to pLy-5-R4 and sizes (excluding vector sequences) of probes (68.1-68.9) are indicated. Vector
sequence (not shown) should not be protected by RNA during S1 digestion.

Probes for S1 mapping were prepared from subclones of
pLy-5-68. The nine probes obtained (68.1-68.9) spanned the
length of pLy-5-68 from 5’ to 3’ (Fig. 3). Each was end-labeled
and hybridized with total RNA of leukemia ISL-57 T cells
(isoform 200 kDa), B-cell leukemia 1.29 (isoform 220 kDa),
and the PU-5 M¢ cell line (isoform 205 kDa) at optimal
temperature determined for each probe. After S1 digestion,
DNA-RNA hybrids were electrophoresed on 1.5% agarose
gels.

Probe 68.9 was unsatisfactory, perhaps because of inter-
ference by a poly(A) tail. Probes 68.2—-68.8 did not distinguish
between the three sources of RNA; Fig. 4A is typical,
showing one common PF for all three cell types. However,
with probe 68.1 (705 nucleotides, from the 5’ end to the first
downstream BamHI site of pLy-5-68), at its optimal hybrid-
ization temperature of 52°C, the PF for RNA of 1.29 and PU-5
cells was shorter than that of ISL-57, which gave an expected
complete PF of =700 nucleotides (Fig. 4B), suggesting that
Ly-5 mRNAs of B cells and M ¢ differ in sequence from T-cell
mRNA. This mRNA distinction of T cells from B cells and
Mo was verified with RNA from normal spleen cells, which
include all three cell types and yielded both PFs, and from
thymocytes, which yielded only the same PF as ISL-57 (Fig.

4B). To determine the exact point of difference in sequence,
a shorter probe 68.1a (288 nucleotides, from the 5’ end of
pLy-5-68 to the first downstream Xba I site) was derived, and
PFs were analyzed on 6% polyacrylamide/7 M urea DNA
sequencing gels. At 52°C (Fig. SB), results with 68.1a and 68.1
were similar (i.e., ISL-57 RNAs gave a complete PF of 288
nucleotides whereas 1.29 and PU-5 RNAs gave a shorter PF
of 230 nucleotides). 1.29 and PU-5 cells also yielded a 288 PF,
faint at 52°C but intense at 42°C (Fig. 5A4).

These data may signify two possibilities: First, that B-cell
Ly-5 mRNA differs in sequence from T-cell mRNA by an
extra sequence interpolated at about 58 nucleotide down-
stream from the 5’ end of probe 68.1a—i.e., immediately
following the presumed pLy-5-R4 leader sequence. This
extra sequence would form an internal loop during
DNA-RNA duplex formation. Hybridization at lower tem-
perature (e.g., 42°C) may enhance duplex bonding in the
vicinity of the loop and thus protect the probe from digestion
during digestion of the loop, thus accounting for the complete
288 PF seen. At higher temperature (e.g., 52°C), duplex
bonding in the vicinity of the loop may not be complete, thus
allowing cutting through by S1 nuclease to give PFs of 230
nucleotides, as observed, and 58 nucleotides (not seen
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Fi1G. 5. S1 nuclease protection with the shorter probe 68.1a. (A)
A complete PF of 288 nucleotides (R4-type RNA) and a 153
nucleotide PF (R2-type RNA) were seen for T cells. Two PFs (288
and 230 nucleotides, respectively) were seen for B cells and M¢.
Hybridization temperature, 42°C. (B) The intensity of the 288-
nucleotide PF decreased when hybridization was carried out at 52°C.
The 153-nucleotide PF was not seen in T cells at 52°C probably
because the low G+C content (37%) of this PF is unfavorable to the
stability of hybrids at the higher temperature. Hybridization tem-
perature, 52°C. (C) The structure of the end-labeled (0) probes
(hatched box represents vector sequences), and of PFs are
diagramed.

because not radiolabeled). Since the inclusion of the extra
sequence is predicted at the point immediately following the
signal peptide, it can be envisaged that this added sequence
represents an exon(s) used in B cells but not in T cells via
alternative splicing from a single Ly-5 gene (see also below).
Second, that B cells express two species of Ly-5S mRNA, of
which one has a sequence similar to T-cell mRNA and thus
gives the complete PF of 288 nucleotides (the lower temper-
ature favoring this hybrid), the other differing in sequence
from T-cell mRNA at around 58 nucleotides downstream
from the 5’ end of probe 68.1a. However, no 200-kDa Ly-5
isoform has been identified in B cells, making this second
possibility less likely.

Evidence that Distinct Ly-5 mRNAs Are Generated from
One Ly-5 Structural Gene. Screening of the genomic DNA
library with pLy-5-68 yielded seven overlapping clones.
Restriction mapping of the overlaps between adjacent clones

Proc. Natl. Acad. Sci. USA 83 (1986)

has so far shown no discordant restriction site, a result that
is consistent with a single Ly-5 gene spanning at least 60
kilobases. The Ly-5 genomic map thus constructed showed
10 EcoRlI sites. Cellular DNA was, therefore, digested with
EcoRI and analyzed by Southern blotting with three cDNA
fragments representing the entire sequence of pLy-5-68 as
probes. The sizes and map positions of the hybridized
fragments were as expected. These data are consistent with
the generation of Ly-5 protein isoforms by differential proc-
essing of the primary transcript.

Further Comment. Thomas et al. (13) pointed out that the
protein sequence of L-CA in the rat resembles no other
known proteins. Thus the close homology of rat L-CA and
Ly-5 sequences emphasizes once again that L-CA is the rat
homologue of mouse Ly-5. As noted (13), despite lack of
sequence homology with the receptor for epidermal growth
factor, L-CA and Ly-5 share with the epidermal growth
factor receptor the exceptional feature of an exceedingly
large cytoplasmic domain, although the L-CA and Ly-5
cytoplasmic domains are even larger and show internal
homology that the cytoplasmic domain of the epidermal
growth factor receptor does not.
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