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Abstract

The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic
collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling
network which is the information transfer channel underpinning the swarm dynamics of the directed interagent
connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling
network reveals the profound relationship between group size and number of interacting neighbors, which is found to be
in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232].
Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling
network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is
maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which
ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of
the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully
control the swarm dynamics.
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Introduction

In an animal group, if each individual contributes indepen-

dently to a given collective goal or objective, the resulting group

behavior follows some sort of normal distribution pattern. On the

contrary, if animals work collectively with a certain level of local

interaction or communication, the output of their acts is more

than the sum of each individual’s act [1]. The emergent behavior

is thus characterized by some signatures in the structural

properties of the network underpinning their cooperative behavior

[1–6]. Moreover, the global outcome of their local interactions

heavily depends on each individual’s initial conditions [7,8]. For

example the velocity of a flock of birds was found to be a function

of each bird’s initial velocity[9]. The emergence of spatiotemporal

order at the group level has been observed in many biological

systems [10]—insect colonies, fish schooling, bird flocking,

amoebae aggregating, bacteria swarming, in many human

activities [11,12]—pedestrian and automobile traffic, and in the

artificial world with robotic swarm systems [13].

Sumpter [14] argues that the key to understanding collective

behaviors—and more broadly the concept of self-organization—

lies in identifying the principles of the behavioral algorithms

followed by individual animals and how information flows

between the animals. That is what physicists, biologists and

engineers have been trying to achieve through Lagrangian

modeling of animals’ collective behaviors as attested by the

significant body of literature dealing with this specific issue

[1,9,15–21]. Lagrangian swarming models are essentially built

upon rules extended from some or all of the original Reynolds

rules [15]—Cohesion: moving towards the average position of

local flockmates; Alignment: steering towards the average heading

of local flockmates; Separation: avoiding crowding local flock-

mates.

Vicsek et al. [16] introduced a simple discrete-time model of self-

propelled particles with biologically motivated interactions.

Particles in that model move in a plane with constant speed while

aligning, at each time step, their velocity direction with their

neighbors’ average direction of motion. Jadbabaie et al. [17]

provided the mathematical analysis and proof of convergence for

Vicsek’s model. Couzin et al. [18] developed a discrete model

meant to consider leadership and decision-making issues in animal

groups. In Couzin’s model, at each time step, agents outside a

given repulsion zone follow the desired direction of travel by two

acts: first by moving towards the centroid of near neighbors, and

second by getting aligned with the velocity direction of agents in

the local interaction range. Olfati-Saber [9] introduced a flocking

model based on a behavioral algorithm embodying an extended

form of the Reynolds rules. Olfati-Saber’s model is intrinsically

continuous and has the interesting and appealing ability of

representing flock characteristics such as rendezvous in space and

obstacle avoidance. The Cucker–Smale flocking model [20]

assumes birds adjust their velocity through applying a local linear

consensus protocol which adds to the velocity a weighted average

of the differences of its velocity with those of the other birds. The

entire flock can therefore be represented by a complete weighted

undirected graph whose weights are a function of distance between
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every two individual birds or nodes. The Cucker–Smale model

can be either continuous or discrete. An extension of that model

that guarantees the collision avoidance property can be found in

Ref. [21].

Another approach toward the study of collective behavior is

based on an analogy with the emergence of coherent behavior

within a system of coupled oscillators achieving synchronization.

Watts and Strogatz [22] studied the synchronization properties of

real-world networks, while Lago-Fernández et al. [23] proved that

clustering improves synchronization. Small-world systems corre-

sponding to identical oscillators with linear coupling were studied

by Barahona and Percora [24], while Nishikawa et al. [25] revealed

that scale-free networks are more difficult to synchronize

compared to homogeneous networks. A comprehensive applica-

tion of this approach is given by Raley et al. [19] with a particular

focus on how a network of coupled oscillators can be used to

model the collective behavior of animals, with a special emphasis

on fish schooling. This continuous model supposes particles can

change their velocity heading but are unable to speed up or slow

down. More information on problems of synchronization involv-

ing complex networks can be found in Ref. [26].

Despite these numerous efforts in developing continuous and

discrete models, very little insight has been gained into the

structure and dynamics of the information channel, which controls

how information flows throughout the swarm [14]. Indeed, the

vast majority of dynamical models reported in the literature are

primarily focused on devising refined behavioral algorithms. The

importance of deepening our understanding of this purely

decentralized architecture flow among system’s components can

be readily acknowledged by recent discoveries of similar structures

governing the very mechanisms underlying social self-organization

[10].

In this paper, we bring together notions from ecology, network

theory, information theory, control theory, and agent-based

modeling to establish and comprehend the intricate relationship

between the properties of the information transfer channel—

referred to as the swarm signaling network in the sequel—and the

dynamics of emergent collective behaviors based on local

interactions and decentralized control. Particular emphasis is

placed on gaining insight into: (i) what structurally makes

swarming behaviors resilient or robust, and (ii) how controllable

the swarm can be. To this aim, we explicitly define and construct

the signaling network underpinning the group’s interactions that

represents connections between all group members in the physical

space. This signaling network, channeling the flow of information

between agents, has a unique dynamics which is intimately

connected to the dynamics of the group members in the physical

space. More specifically, we show that the group’s dynamic

signaling network is composed of directed links locally defined by a

specific topological neighborhood of interactions for each and

every agent. The study of the connectedness of the swarm

signaling network allows us to uncover the pivotal relationship

between swarm size and number of neighbors in the topological

neighborhood of interactions, which proves to be in very good

agreement with empirical observations obtained from flocks of

birds. Using a dynamical model epitomizing our general

framework, we analyze swarming behaviors by thoroughly

characterizing the dynamics and structure of the signaling

network. A profound connection between swarm dynamics in

the physical space and dynamics in the signaling network space is

uncovered. We find that swarm signaling networks are homoge-

neous and clustered small-world networks—known to be prone to

yielding large-scale synchronization and emergence—even in the

presence of environmental noise. Subsequently, the resilience or

robustness of the collective emergent behavior is tested by adding

exogenous noise in the environment. Depending on the number of

neighbors considered, using the k-nearest neighbor approach, we

show that consensus is achieved and maintained if the swarm

signaling network remains as a single giant strongly connected

component at almost all time. Finally, our analysis of the

controllability of the swarm signaling network enabled us to

establish for the first time the analytical expression of the number

of driver nodes in terms of the swarm size and showing an

exponential decay with the number of nearest neighbors in the

neighborhood of interaction.

Results

Connectedness of the signaling network
Within our modeling framework (Methods section), the

dynamic swarm signaling network (SSN) is explicitly accessible

and one may ponder over the details of the relationship between

connectedness of this network and emergent collective behaviors

through local synchronization. Here, we propose to bridge the gap

between two vastly different representations of the dynamics of our

complex adaptive system. On the one hand, we have the prevalent

canonical representation in the physical space—e.g. kinematic

tracking of group members—and, on the other hand, the SSN

approach in the ‘network space’.

In the physical space, the emergent outcome appears before

one’s eyes (Fig. 1 top row). Reaching local synchronization is a key

factor in forming a group and maintaining its emergent behavior,

otherwise the group will split apart unless a consensus is reached

again. Furthermore, consensus decisions bring along enhancement

of decision accuracy compared with lone individuals and

improvement in decision speed [27,28]. For a group to self-

organize, the union of the dynamically-evolving SSNs must have a

spanning tree frequently enough [29]. Empirical evidences

implicitly indicate the existence of a signaling channel between

every two arbitrary agents in the swarm at any point in time. From

the unique observations and findings of the STARFLAG project,

Cavagna et al. [6] came up with this compelling statement: ‘‘The

change in the behavioral state of one animal affects and is affected

by that of all other animals in the group, no matter how large the

group is’’. Formally put, the SSN of the swarm is strongly

connected at all time which is a much stronger condition than the

one presented in Ref. [29].

The very first characterization of the SSN pertains to its

connectedness, which, in a k-nearest graph representing the

topological interactions (see Methods and Fig. 2 for an introduc-

tion to the differences between metric and topological neighbor-

hoods), heavily depends on the value of the outdegree k (Fig. 1

bottom row). The existence of a critical value, kC , for the

outdegree k such that for k§kC the k-nearest graph is connected,

has never been proved. However, Balister et al. [30] proved the

existence of kC in the probabilistic sense. More specifically, they

proved that for

k§kC~c log N, ð1Þ

where N is the number of nodes—i.e. the number of agents in the

group—the probability for any randomly-generated k-nearest

graph to be connected tends to one. In Eq. (1), c is a constant and

the smallest value found so far is 0:9967 [30]. It is important

keeping in mind that those mathematical results were obtained

under the assumption that N is large. When collective motion is

considered, the number of agents considered ranges from dozens

to a few thousands, and rarely more [1]. It is therefore important

Resilience and Controllability of Swarms
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to assess numerically the validity of Eq. (1) for values of N smaller

than 1000. Figure 3 shows that even for small values of N, kC

continues to scale linearly with log N on average. Moreover, the

average value of the coefficient c here is found equal to 1:15—this

value tends to decrease with increasing values of N, which is

consistent with the value 0:9967 found in Ref. [30] for large values

of N.

Balister et al. [31] further expanded this result to the more

conservative notion of s-connectivity. The SSN is said to be s-

connected if it contains at least sz1 agents, and the removal of

any s{1 of its agents does not disconnect it. Obviously, the

concept of s-connectivity is instrumental to study the resilience of

our dynamic SSN. Balister et al. [31] found that for s*log N, the

critical outdegree kC is asymptotically—i.e. for very large

swarms—the same for the s-connectivity as for the regular

connectivity. That is, as the outdegree k is increased, the SSN

becomes s-connected very shortly after it becomes connected and

the removal of a small number of its agent will not harm the

swarm’s connectivity. This property is consistent with a host of

real-life observations on animal groups in nature [1,32].

Structure of the signaling network
Shortest connecting path. Let us first consider the distance

among agents in the swarm, and by distance here we mean the

network distance between nodes representing the agents in the

swarm network, and not the physical distance between agents in

the physical space. Typically this distance is defined by the shortest

connecting path, ‘, between any pair of agents. This metric is

intimately related to the small-world effect, with which it is

possible to go from one agent to any other in the swarm passing

through a very small number of intermediate agents. To be more

precise, the small-world property refers to networks in which the

average shortest connecting path, S‘T, scales logarithmically, or

more slowly, with the number of agents N . Figure 4 illustrates the

average shortest connecting path S‘T versus N for two different

outdegree values kout~k~7 and 10 for our SSN, and for three

vastly different noise levels—noiseless, moderate, and high. We

chose those values for k in order to ensure that the network

remains connected for up to 1000 agents—the connectivity being

necessary to compute the average shortest connecting path. Given

the log scale on the x-axis, our results clearly confirm that the SSN

exhibits the small-world phenomenon for both values of the

Figure 1. At a given instant, in a quasi-steady-state regime, velocity directions hi of N~1000 agents are displayed in the physical
space (top row) and the associated SSN in the network space (bottom row) for three different values of the outdegree. k: Left
column: outdegree k~3; Center column: outdegree k~7; Right column: outdegree k~10. Top row: the actual velocity of an agent is indicated by a
small arrow which color is mapped onto the size of the radius of the topological neighborhood of interactions. The vertical colormap is identical for

all values of k, and the size of radius is expressed with the same spatial units as the square domain ½0,25�2 . Roughly, a blue arrow corresponds to an
agent with a fairly small topological neighborhood of interactions, while, on the contrary, a red arrow indicates a large topological neighborhood of
interactions. Bottom row: instantaneous SSN associated with the physical distribution of agents shown in the top row. The network nodes are exactly
located at the agents’ physical locations. The directed links are colored according to the value of the indegree kin of the source node, also colored,
from which they are originating. A linear colormap ranging from blue to red is used with three different indegree intervals: kin[½0, 8� for kout~3,
kin[½1, 13� for kout~7 and kin[½3, 17� for kout~10. The results correspond to the time step t~3000 nondimensional time units, which according to
the results in Fig. 9, is part of a quasi steady state. The noise level is fixed and set to g0~0:1p rad.
doi:10.1371/journal.pone.0082578.g001
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outdegree considered. Our empirical result is further supported by

a very recent mathematical analysis by Alamgir & von Luxburg

[33]. Not surprisingly, a higher outdegree shortens the shortest

connecting path for all swarm sizes. On the contrary, S‘T is

lengthened when the swarm evolves in increasingly noisy

environmental conditions, but the small-world property is

conserved.

The small-world property can be more thoroughly analyzed by

inspecting the behavior of the quantity M(‘) defined as the

average number of agents within a network distance less than or

equal to ‘ from any given agent [34]. The corresponding hop plot

is shown in Fig. 5 for two values of the outdegree kout~7 and

kout~10. The exponential increase of M with ‘ is yet another

proof of the small-world character of the SSN.

Clustering coefficient. It is very interesting to observe that

our swarm model (Methods section) based on the k-nearest

neighbor topological neighborhood of interactions (TNI: Methods

section and Fig. 2) generates a SSN showcasing the small-world

effect. However, in many social and technological networks, the

small-world effect is accompanied by a relatively high level of

clustering. For instance, random networks also exhibit the small-

world effect but possess an extremely low level of clustering.

The clustering coefficient, CC, characterizes the local cohe-

siveness of networks [22] as well as the propensity to form clusters

of interconnected elements. Given the directed nature of the SSN

and the fact that neighbors are pointed at by outward edges, we

consider the extended definition of the clustering coefficient CCout

given in Ref. [35]. Thus, the average clustering coefficient of our

k-nearest neighbor graph can be calculated as follows [35]:

CCout~
1

k(k{1)N
trace(A2AT), ð2Þ

where k, N, and A are the outdegree, the number of agents, and

the adjacency matrix of the SSN, respectively [36]. Figure 6 shows

the swarm’s clustering coefficient as a function of the number of

agents N in the swarm, for several different values of the outdegree

k, and in the absence of noise. These results highlight the rather

high independence of the clustering coefficient with both the

number of agents and the outdegree. We are therefore led to

conclude that the SSN is intrinsically highly clustered unlike

random networks. Interestingly, those measured levels of clustering

are practically not affected by the presence of environmental

noise—moderate (g~0:1p rad) and high (g~2 rad) noise levels

were tested. We contend that the high level of clustering in the

SSN may find its origins in the existence of clusters of agents in

swarms, as commonly observed in nature [37].

Indegree distribution. We have established that the SSN is

a clustered small-world network. To better understand its subtle

structural organization, we now turn to the study of its statistical

homogeneity. Homogeneous networks are characterized by fast-

decaying degree distributions whereas heterogeneous networks

produce long and heavy tails—such power laws are a well-known

signature of scale-free networks [34].

The indegree, kin, of an agent in the SSN is the number of

directed edges pointing at it; a directed edge representing a

neighboring agent using the information from the state of the

agent that its edge is pointing at. The indegree distribution,

pin(kin), is the fraction of agents in the SSN having an indegree

kin. The average indegree distribution, SpinT, for our SSN is

computed for three distinct values of the outdegree, k~3, 7 and

10. The averaging S:T considered is a mixed conditional averaging

based on a temporal averaging of the network configurations for

800 consecutive timesteps—with Dt~1—repeated 8 times each,

and that for three different values of the total number of agents:

N~50, 300 and 1000. It is important to note that our results show

very little variation in the average indegree distributions for the

three values of N considered. The results are shown in Fig. 7, in

which the errorbars represent the standard deviation to the

average value found. The indegree distributions are peaked at

kin~kout~k for the three values of the outdegree considered.

More precisely, approximately half of the swarm agents have an

indegree such that kout{1ƒkinƒkoutz1. Furthermore, for k~7
and k~10, the indegree distribution is qualitatively symmetric

about their maximum value obtained at kin~kout. Based on the

log-log plot of the indegree distribution in Fig. 7 (Bottom), it can be

said that the indegree distributions clearly are Poissonian like, with

SkinT~kout and with a variance increasing with kout~k. This is

further verified by comparing the results with the actual Poisson

distribution as shown in Fig. 6 (Top) with a relatively good

qualitative agreement. Such Poissonian-like distributions are

reminiscent of random networks and starkly differ from power

laws characteristic of scale-free networks. Similarly to the

clustering coefficient, measured indegree distributions are practi-

cally not affected by the presence of environmental noise—

Figure 2. Schematics of metric (top) vs. topological (bottom)
neighborhood of interactions. R is the radius of the metric
neighborhood and r is the radius of the topological one based on the
rule of k-nearest neighbors with k~7. R is constant as it defines a
metric zone around the agent while r changes in accordance with the
distance between the agent and its k-th (here 7-th) nearest neighbor.
doi:10.1371/journal.pone.0082578.g002
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moderate (g~0:1p rad) and high (g~2 rad) noise levels were

tested.

To further confirm the absence of an intrinsic characteristic

scale for the SSN, we computed the heterogeneity parameter

k~Sk2
inT=SkinT. Homogeneous networks are known to have a k

that scales with the indegree kin [34]. Table 1 shows the values of

the reduced heterogeneity parameter k�~k=kin~Sk2
inT=SkinT2

for 9 SSNs corresponding to three values of the outdegree

kout~3, 7, and 10, and for 3 different sizes of swarms

corresponding to N~50, 300, and 1000 agents. These results

confirm the homogeneity of all our SSNs as k indeed scales with

the indegree kin, irrespective of the outdegree and swarm size.

That allows us to conclude that our SSNs are homogeneous and

clustered small-world networks.

Resilience of the consensus
The effects of noise on the dynamics of collective behaviors in

the physical space is well known and has been thoroughly

investigated in the case of a metric neighborhood [1,16]. However,

very little is known about those effects in the case of a TNI, and

more importantly on the dynamics of the associated SSN. To this

aim, we consider a swarm of N~1000 agents evenly distributed

throughout the physical domain, subjected to periodic boundary

conditions. Initially, all agents are heading North which globally

yields an alignment of unity. Figure 8 shows the impact of noise on

Figure 3. Critical value of the number of topological neighbors, kC , for which the connectedness of the network is guaranteed, as a
function of the swarm size N , with N ranging from 10 to 1000. Grey dots represent the average value of kC obtained from a statistical
analysis comprising 1000 randomly generated k-nearest digraphs. The errorbars represent the associated standard deviations.
doi:10.1371/journal.pone.0082578.g003

Figure 4. Average shortest connecting path vs. number of agents for the SSN. A log scale is used for the number of agents N . Two possible
values of the outdegree are considered: kout~k~7 and 10. Three values of the noise level g are considered: noiseless (g~0), moderate (g~0:1p rad),
high (g~2 rad). The linear fitting in log scale is only shown for the noiseless case using dash-dotted lines.
doi:10.1371/journal.pone.0082578.g004
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the alignment—i.e the consensus—of the swarm. In our frame-

work, the alignment is used as a measure of the resilience of the

ordered phase of the collective behavior to the effects of noise. As

expected, the higher the noise level g, the lower the alignment. For

relatively low noise levels g, the decay of the alignment is faster for

lower values of the outdegree k. For higher values of g, the decay

of A slows down and becomes almost the same for the four values

of the outdegree considered.

The analysis of the SSN allows us to comprehend the above

observations and trends. We now fix the noise level at g0~0:1p,

which falls right into the range where the alignment is significantly

influenced by the outdegree. At the very beginning, prior to any

interaction, the SSN is strongly connected for k~7 and k~10
and it forms a single giant strongly connected component (GSCC)

as is shown in Fig. 9 (top row). On the contrary, for k~3 the SSN

is composed of 114 SCCs of very many different sizes: ranging

from 1 agent to 99 agents (Fig. 9, top row). Another informative

quantity is the average neighborhood radius for the entire

swarm—the neighborhood radius is given by the largest distance

separating a given agent and its k nearest neighbors. The initial

average neighborhood radii are 0:78, 1:22 and 1:49 for k equals to

3, 7 and 10 respectively. We then let this complex system evolve

through local interactions of the agents and after a long-enough

transient, the collection of agents yields vastly different emergent

behaviors in both the physical and network spaces as shown in

Fig. 1.

For the low outdegree k~3, we observe a large number of

clusters of locally-aligned agents; no large-scale emergent coherent

alignment is achieved. This is clearly noticeable in both the

physical and network spaces (Fig. 1, left column). The average

TNI radius fell sharply from 0:78 to 0:21 which is consistent with

the physical clustering. Furthermore, the dynamics has amplified

the fragmentation of the SSN, which, after the transient, contains

267 SCCs of much smaller sizes: ranging from 1 agent to 22 agents

(Fig. 9, left column). Note that the number of SCCs for k~3 tends

to reach an asymptotic plateau about the value 250 with very

Figure 5. Normalized hop plot: M�~M(‘)=N for the SSN. A log scale is used for the number of agents M and various swarm sizes N are
considered. Two possible values of the outdegree are considered: Left: kout~k~7; Right: kout~k~10. The noise level is fixed and set to g~0.
doi:10.1371/journal.pone.0082578.g005

Figure 6. Clustering coefficient (CCout) versus number of agents for the SSN. A log scale is used for the number of agents N . Different
values of the outdegree are considered: kout~k~3, � � � ,7. The noise level is fixed and set to 0.
doi:10.1371/journal.pone.0082578.g006
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small-amplitude fluctuations after approximately 2000 nondimen-

sional time units. We qualify this regime as quasi steady state. On

the contrary, for both k~7 and k~10, a large-scale coherent

alignment is achieved while the distribution of agents is

nonuniform but not as physically clustered as in the case k~3.

Those observations are corroborated by the fact that the SSN

remains as a single giant strongly connected component—apart

from very few agents splitting away from the ‘‘peloton’’ (Fig. 9,

center and right columns)—with almost unchanged average TNI

radii of 1:16 and 1:44 for k~7 and k~10 respectively.

Furthermore, with a much larger value of the outdegree, k~40,

the swarm exhibits a higher level of resilience to noise with quite

different variations of the alignment with the noise level as

compared to other smaller values of k considered.

Controllability of the signaling network
If one wishes to control the dynamics of collective behaviors—a

goal of tremendous importance for both natural and artificial

swarms, we now know that it is necessary identifying the swarm’s

architecture, in other words the SSN. From the engineering

control viewpoint, such a dynamical system is said to be

controllable if it can be driven from any initial state to any

Figure 7. Indegree distribution pin of agents in the SSN for several simulations of the swarming model with k~kout~3, 7, 10 and
different number of agents. N~50, 300 and 1000; Top: linear scales with the exact values corresponding to the Poisson distributions for k~3,7
and 10 shown using thin dash-dotted lines, and Bottom: logarithmic scales. The average indegrees SkinT are 3,7,10 and their standard deviations skin

are approximately 1:4, 2:2, 2:4, for k~kout~3, 7, 10 respectively. The noise level is fixed and set to 0.
doi:10.1371/journal.pone.0082578.g007
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desired final state in finite time. Owing to the seminal work by Liu

et al. [38], we know that it is first necessary to identify the set of

agents that, if driven by different signals, can offer full control over

the SSN. Liu et al. [38] developed the analytical tools to study the

controllability of an arbitrary directed network allowing one to

identify the set of driver agents. Specifically, they proved that we

can gain full control over a directed network if and only if we

directly control each unmatched node—a node is said to be

matched if a link in the maximum matching points at it; otherwise

it is unmatched— and there are directed paths from the input

signals to all matched nodes.

The connectedness of the swarm signaling network is a sufficient

condition for an agent within the swarm to affect and get affected

by some if not all agents of the group. However, in many

occasions, one or more agents need to be able to drive the swarm

to a certain global state, and usually within finite time. This is

better understood when considering two biological systems such as

a flock of birds or a school of fish. For instance, evasive maneuvers

triggered by predator or collision avoidance collective responses

are induced by one or a few agents perceiving the threat and

responding to it. These few agents effectively are driver agents in

the abovedefined sense: they are able to control the entire swarm

by bringing the other agents to swiftly respond to a threat that they

are not directly detecting. It is worth adding that those driver

agents do not possess any ‘‘super’’ power of any sort but they

simply become drivers as they happened to have discerned the

danger first; any other agent in the swarm could be driving the

group as long as it is subjected to specific external cues which are

not made available globally to the whole swarm. In summary, for a

specific dynamic collective behavior to occur, connectedness and

controllability of the SSN are necessary conditions.

A system’s controllability is to a great extent encoded in the

underlying degree distribution, p(kin,kout). That is, the number of

driver agents is determined mainly by the number of incoming and

outgoing links each node of the SSN has, and is independent of

where those links point at [38]. By construction the outdegree

distribution of the SSN is a Dirac delta distribution, while we

found that its indegree distribution very much resembles the one of

a k-nearest random digraph. To allow for an analytical study of

the controllability of the SSN, we therefore consider the following

degree distributions:

pout(kout)~d(kout{k), ð3Þ

pin(kin)~
kkin

kin!
e{k: ð4Þ

Lemma. The number of unmatched nodes of a graph having N
nodes and a constant outdegree such that pout(kout)~d(kout{k),

and an indegree distribution of Poisson type pin(kin)~
kkin

kin!
e{k is

given by ND&
N

2
e{k, in the large k limit.

Proof. Following the approach developed by Liu et al. [38], the

number of unmatched nodes, i.e. the minimum number of driver

Table 1. Reduced heterogeneity parameter

k�~k=kin~Sk2
inT=SkinT2 for 9 SSNs corresponding to 3

values of the outdegree kout~3, 7, and 10, and for 3 different
sizes of swarms corresponding to N~50, 300, and 1000
agents.

N kout~3 kout~7 kout~10

50 1.21 1.12 1.10

300 1.21 1.10 1.06

1000 1.31 1.09 1.08

doi:10.1371/journal.pone.0082578.t001

Figure 8. Alignment A versus noise level g for a swarm comprised of N~1000 agents. Three values of the outdegree are considered:
k~kout~3, 7, and 10.
doi:10.1371/journal.pone.0082578.g008
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nodes ND necessary to fully control the system, can be obtained

from the following generating functions

G(x)~
X?

kout~0

pout(kout)x
kout~xk ð5Þ

ĜG(x)~
X?

kin~0

pin(kin)xkin~e{k(1{x) ð6Þ

H(x)~
X?

kout~0

Q(koutz1)xkout~xk{1 ð7Þ

ĤH(x)~
X?

kin~0

Q̂Q(kinz1)xkin~e{k(1{x), ð8Þ

where

Q(kout)~
koutpout(kout)

SkoutT
ð9Þ

Q̂Q(kin)~
kinpin(kin)

SkinT
: ð10Þ

The general expression for the number of driver nodes ND

obtained by Liu et al. [38] is given by

nD~
ND

N
~

1

2
G(ŵw2)zG(1{ŵw1){1½ �z ĜG(w2)zĜG(1{w1){1

h in

zk ŵw1(1{w2)zw1(1{ŵw2)½ �g,
ð11Þ

where, in the SSN framework

w1~H(ŵw2)~ŵwk{1
2 ð12Þ

w2~1{H(1{ŵw1)~1{(1{ŵw1)k{1 ð13Þ

ŵw1~e{k(1{w2) ð14Þ

ŵw2~1{e{kw1 : ð15Þ

When k~0, the agents are totally independent and

G(x)~ĜG(x)~1. Hence, we trivially get nD~1 from Eq. (11),

which simply means that we need to control 100% of the agents to

control the dynamics of the swarm—this conclusion is consistent

with the noninteracting dynamics of the group due to the choice of

a 0-nearest neighborhood of interactions. We now turn to the

other pathological case, k~1, for which w1~1, w2~0, ŵw1~e{1,

ŵw2~1{e{1, such that nD~e{1*0:368. For kw1, it is easy to

check that w1~ŵw2~0 are the smallest roots for w1 and ŵw2 in the

system of Eq. (12) and Eq. (15). Hence, the fraction of driver nodes

simplifies to

nD~
1

2
G(1{ŵw1){1zĜG(w2)zkŵw1(1{w2)
h i

, ð16Þ

or more explicitly

nD~
1

2
1{e{k(1{w2)
� �k

{1ze{k(1{w2)zke{k(1{w2)(1{w2)
h i

,ð17Þ

in which w2 is solution of the self – consistent equation

1{w2~ 1{e{k(1{w2)
� �k{1

: ð18Þ

With those results, nD can easily be calculated and results are

shown in Fig. 10. The asymptotic behavior of nD in the large k

limit can easily be determined as w2 tends to 1. Hence, at the

leading order

Figure 9. Dynamical properties of the GSCCs making the SSN. A dynamic range of 3000 nondimensional time units (n.u.) is considered with
N~1000 agents evenly distributed and all initially aligned with the North direction. The noise level is fixed and set to g0~0:1p rad. Top row: total
number of SCCs. Bottom row: size of the GSCC found in the SSN. Left column: outdegree k~3; Center column: outdegree k~7; Right column:
outdegree k~10.
doi:10.1371/journal.pone.0082578.g009
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nD&
1

2
e{k, ð19Þ

which appears very clearly on the graph in Fig. 10 given the log

scale on the y-axis. This concludes the proof of the above Lemma.

It is important noting that within the structural controllability

framework developed by Liu et al. [38], binary link weights such as

those considered in the SSN (see Methods section and Eq. (23))

cannot be considered per se as they must be free independent

parameters. This issue can readily be resolved by considering the

more realistic case of non-binary weights accounting for the

imperfections of the information transfer channels through which

the agents interact. Alternatively, one may consider the exact

controllability framework very recently developed by Yuan et al.

[39], which offers a more universal tool to evaluate the

controllability of any complex network. As is shown in Fig. 9,

the results from both frameworks—structural controllability and

exact controllability—are fully consistent.

The last question that should be answered regarding the above

result on the number of driver nodes and the overall controllability

of the SSN lies with the dynamic nature of the SSN. Since the SSN

is intrinsically a switching network—at each instant a certain

number of links are broken while the exact same number of edges

are created due to the motion of the agents in the physical space—

one can prove using Eq. (19) that it is controllable at each instant,

assuming of course a high-enough value of k. If that is the case, it is

known from control theory associated with dynamic multi-agent

systems that the overall switching dynamical system is controllable

[40,41].

Discussion

The study of the connectedness of the SSN allowed us to

uncover the existence of a relationship between the swarm size,

given the number N of agents, and the number k of nearest

neighbors influencing any agent’s behavior and dynamics. Indeed,

the general results from graph theory applied to the study of the

SSN connectedness take a particular significance in the context of

dynamic collective behavior where the number of agents N may

not necessarily be very large and the number of nearest neighbors,

k, cannot possibly exceed at most 15 to 20 due to the intrinsic

bandwidth limitations in signaling, sensing and internal informa-

tion processing. To better appreciate these results, we present in

Fig. 11 the dependence of the probability of connectedness of the

SSN as a function of N for different values of k. Despite the

uniform character of the distribution of agents in the swarm

considered to establish Fig. 11, this figure reveals the profound

relationship between connectedness of the swarm and the number

of agents N, for different values of the outdegree k. This result was

already suggested by Eq. (1). For the sake of explanation, let us

consider a swarm comprised of N~1000 agents, which is a

reasonable number for living animals [37]. Figure 10 shows that

this swarm will remain connected at all time if k has at least a

value of approximately 6 or 7. This result is in very good

agreement with the experimental observations of Ballerini et al.

[42] for flocks of starlings with approximately 1000*1200 birds at

maximum. Based on their thorough analysis of the dynamics of

flocks, Ballerini et al. [42] claimed that each starling had a TNI

made up of 6 to 7 other birds. Thus, our model leads to a more

general rule of interaction in swarms: each agent interacts on

average with a fixed number of neighbors irrespective of the

distance, and that number of neighbors k depends on the swarm

size N. By extension, for artificial swarms, which typically have a

much smaller size—with say N being at most 100—our analysis

enables us to conclude that 4 to 5 interacting neighbors are

necessary to ensure the swarm’s connectedness and effectiveness.

Note that, this analysis based on Fig. 11 does not account for the

dynamics of the SSN and more importantly for the ubiquitous

presence of noise in the environment.

Beyond the connectedness of the SSN, we found for the first

time the details of its structural properties revealing that, if

connected, the SSN is a homogeneous and clustered small-world

network even when considering the disruptive effects of noise on

the inter-agent interactions. Hence, the swarm information

transfer channel has a relatively high local cohesiveness and no

intrinsic characteristic scale could be found in the indegree

distribution. The small-world phenomenon could have been

intuited through the mere observation of exceptionally fast

responses of biological swarms to external cues, e.g. fish school

evasive maneuver, collision avoidance, etc. The homogeneous

character of the SSN could also have been intuited. Indeed, the

difference in indegree distribution has vastly significant implica-

tions for the structure of the networks. For instance, the long tail of

power-law distributions of the indegree is a clear signature of the

existence of hubs in scale-free networks. Interestingly, even though

our swarm network is not, per se, a random network—its

dynamics is governed by a set of rules, including the k-nearest

neighbor rule—its indegree distribution is not able to reflect those

differences with real random networks. Note that, this result is not

surprising given that we are dealing with a collection of identical

agents with a very minimal level of state properties; a power-law

signature with the associated hub effect seems unthinkable in our

context. However, we nonetheless observe that some specific

agents do ‘‘attract’’ much more attention than others with

indegrees of 15 and above (Fig. 7). Finally, it is interesting

comparing the structural properties of the SSN based on a TNI

with the ones for a signaling network based on a metric distance.

Both interaction distances lead to similar levels of clustering and

Figure 10. Density of driver agents, nD~ND=N , giving the
proportion of agents necessary to control and drive a swarm of
N agents as a function of k, for a swarm dynamics with a
topological neighborhood of interactions based on the k
nearest neighbors. The exact controllability framework is the one
by Yuan et al. [39], while the structural controllability framework was
developed by Liu et al. [38]. Results using the exact controllability
framework were obtained for 20 SSNs associated with a swarm of
N~3000 agents for each data point; beyond k~7, nD drops to zero
and the values are hence not shown. The average density of driver
nodes was calculated and the associated standard deviations are shown
using the errorbars.
doi:10.1371/journal.pone.0082578.g010
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similar average shortest connecting paths. The central difference

between the two groups of SSNs lies with the fact the topological

SSN is a directed network while the metric SSN is undirected. As a

direct consequence of that, the outdegree distributions of both

types of SSNs are fundamentally different: the outdegree of the

topological SSN is constant and equal to k, while the outdegree of

the metric SSN is identical to the indegree distribution, which we

found to be Poissonian-like.

A central point to always keep in mind is the fact that the SSN

has a dynamics that is evolving hand in hand with the dynamics of

the agents themselves. Hence, the connectedness and the

structural properties of the SSN are in general not constant.

Our analysis reveals this profound connection between, on the one

hand, the dynamics of the collection of agents in the physical space

and the structural properties of the SSN as well as its own

dynamics, on the other hand. This comment is very elegantly

epitomized by Fig. 1 which stresses the parallel between the

structure of the swarm in the physical space and the associated

SSNs for the three different values of the indegree considered,

namely k~3, 7, and 10. The instantaneous SSNs associated with

the physical distribution of agents are shown in Fig. 1, bottom row.

The network nodes are exactly located at the agents’ physical

locations, and the directed links are colored according to the value

of the indegree, kin, of the source node from which they are

originating. For instance, we are able to visually correlate high

values of the indegree kin to small radii of the TNI. A better

understanding of this observation would of course require a more

thorough analysis which is beyond the scope of the present study.

Another point has to be made about the connection between SSN

structure and swarm dynamics in terms of consensus speed.

Intuitively, one can easily imagine that a larger number of

topological numbers k leads to faster consensus since the

connectivity of the network underpinning the dynamics of the

interacting swarming agents affects profoundly the consensus

capability—in general, higher degree of connectivity yields higher

rate of convergence to consensus [43–46]. This fact has very

recently been proved exactly by Shang & Bouffanais [47].

However it is important to note that adding more edges by

increasing the number of topological agents with whom one is

interacting is feasible but only up to a certain extent as there is

always a cost associated with information exchange and also due to

inherent limits in terms of signaling mechanisms, sensory and

cognitive capabilities—for instance, see Ref. [48] for such

biological considerations with pigeons and Ref. [49] for SPPs

having a limited view angle.

In our framework we considered the simplest topological model

of all consisting in having the same number of nearest neighbors k

for all agents. Obviously, this framework can be extended in many

ways but one particular extension is worth mentioning: the case

where k varies from agent to agent depending on some local

parameters, e.g. the neighbors density of neighbors, the size of

TNI radius, etc. Such a local adaptation of the value of the

outdegree k clearly enforces a very specific outdegree distribution.

Some very recent works on the controllability of complex networks

[50,51] allow to conclude that this would have a direct impact on

the swarm controllability. Hence, this leads to the following

intricate inverse problem of finding one or more distributions of k

generating an optimal controllability of the swarm.

From the practical standpoint of designing artificial swarms, our

knowledge of the properties and dynamics of the SSN, and their

influence on the swarm dynamics is necessary but not sufficient.

Gaining a better understanding of its controllability is paramount.

Through Eq. (17) and Eq. (19), we have analytically established

that the number of driver nodes decreases exponentially as the

number of nearest neighbors increases. Note that for a metric-

based SSN, the density of driver nodes is easily obtained as

Figure 11. Probability of connectedness for the SSN vs. number of agents N for different values of the number of nearest
neighbors k. The SSN corresponds to a specific configuration of the swarm in which N nodes are placed in a unit square independently through a
uniform distribution. Then each node is connected to its k nearest neighbors to form the k-nearest graph. For each value of the outdegree k, the
maximum size of the swarm population NC —given by k~kC~c log NC with c~0:9967 [30]— ensuring the connectedness of the SSN is represented
by a colored dot with the associated vertical dashed line.
doi:10.1371/journal.pone.0082578.g011
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nD&e{SkT=2 [38]. In addition, the value r of the radius defining

the metric neighborhood conditions the value of the mean degree

SkT. If one chooses a topological neighborhood such that

kT~SkMT—where the superscript ‘‘T’’ refers to topological and

‘‘M’’ to metric—then the topological SSN can be said to be more

controllable as nD decreases faster with k as compared to the

metric case. Note that in the case of hierarchical group dynamics

such as those reported by Nagy et al. [52], the signaling network

has a well-defined tree structure. The controllability of such

networks has been analytically established in Refs. [53,54].

We can say that if the number of nearest neighbors reaches a

value of 6 or 7—for instance considering a flock of birds like those

studied in the field by Ballerini et al. [42]—every agent not only

affects and is affected by all other agents within the group, but

more importantly, is capable of full control over all other agents.

More generally, when a large swarm is considered its effectiveness

and resilience entail the connectedness of the SSN. From Eq. (1),

we can consider that the number of interacting neighbors is at

minimum kC~c log N, hence leading to nD*1=Nc%1 using Eq.

(19). This result proves that ensuring the connectedness of large

swarms automatically ensures its full controllability. However, it is

possible that this interesting result ceases to be true for very small

swarms. In summary, this ability to control the swarm is

instrumental in situations where an agent—or even a few number

of them—needs to play a leadership role in guiding the swarm

either toward a certain destination or away from a potential

danger. Note that this leadership role can be temporary or

permanent.

Methods

General features of the model
Here, swarming refers to a circumstance in which multiple

adaptive agents—be them living creatures or artificial ones—

create a certain level of spatiotemporal order characterized by one

or more macro-level properties. For the sake of clarity, we consider

a collective of N locally-interacting adaptive and identical

individuals. Each individual agent i, at any given instant t, is

assumed to be fully characterized by the state variable yi(t). Such

a generic state variable may represent widely different character-

istics depending on the nature of the group considered: e.g.

employed or unemployed forager state for honey bees, kinematic

variables for fish in a school, birds in a flock or robots in an

artificial swarm, space available for a pedestrian on a congested

sidewalk, etc.

The nonlinear dynamics of each agent i takes the general form

dyi(t)

dt
~f (yj(t),yjz1(t), . . . ,yjzk{1(t),yi(t)), ð20Þ

that stresses the local nature of the interactions between agents

since the subset Yi(t)~fymgm~j,���,jzk{1 only includes a fraction

k of the N agents affecting the behavior of agent i. Note that the

formalism of Eq. (20) does not capture the fact that the value of the

k indices—from j to jzk{1 above—are actually i-dependent

since they are defined by the belonging, or not, of an agent to the

neighborhood of interaction of agent i. Moreover, these k indices

may change over time due to the dynamical nature of the

neighborhood of interactions, itself imposed by the dynamics of

agent i. That means that in general, the makeup of Yi varies from

individual to individual and changes with time. Specifically, it is

entirely dependent on how the neighborhood of interactions—

formally represented by Yi—is constructed which further defines

the communication links between agents. The neighborhood of

interactions is the cornerstone of the global SSN, and its intricate

structural properties and dynamics have been studied below.

Moreover, the values of each ym within Yi are made available to

the internal control processing mechanism through the various

sensory modalities defining multiple communication channels

between group members—e.g. mechanical signaling through

lateral line sensing and visual signaling are both involved in fish

schooling [37]. The function f in Eq. (20) embodies the specifics of

each individual’s internal control processing mechanism. It is

worth highlighting at this stage that complex collective dynamics

can be achieved with simple f given the possibly nontrivial

dynamics of Yi depending on the very nature of the neighborhood

of interactions.

At this point, we make another general assumption consisting in

imposing that any decision made by a group member is based on

relative state values and not on absolute ones. If the state variable

yi is a quantity that is frame dependent, such as the agent’s

velocity, the agent is solely able to appreciate an interacting

neighbor’s state with respect to its own. This argument may even

hold for non-frame dependent state variables—e.g. pheromone

levels in ant trails—and is easily reconcilable with the multiple

gradient-based taxes observed in many biological systems [55].

Formally, this relative-state assumption reads

dyi(t)

dt
~g(yj(t){yi(t), . . . ,yjzk{1(t){yi(t)): ð21Þ

The function g is referred to as a consensus protocol—intrinsically

local by the nature of its inputs ~YYi(t)~fym{yigm~j,���,jzk{1—if

a steady-state can be reached and once it is reached, if the

following relations hold: there exists a function h such that

yi(t)~ � � �~yN (t)~h(yi(0), � � � ,yN (0)), ð22Þ

where yi(0), . . . ,yN (0) are agents’ initial state conditions, e.g.

agents’ initial velocity directions in Ref. [43]. In simple words, the

local synchronization protocol defines for each individual agent

what Sumpter [14] calls the behavioral algorithm, also known as

the internal information processing mechanism responsible for the

behavioral’s response to the sensed external information that is

flowing in a decentralized way throughout the swarm.

Topological neighborhood of interactions
We now aim at formalizing the key concept of neighborhood of

interactions. From our introduction above, it appears clearly that
~YYi fundamentally depends on a series of factors which include:

signaling mechanisms, sensory and cognitive capabilities. The

signaling mechanisms are the different vehicles for the information

to flow through the swarm’s surrounding environment. The

sensory capabilities are responsible for information acquisition

from the surrounding environment to the internal agent domain.

Within that domain, the internal information processing is taken

care of by the cognitive capabilities. Even though the information

chain has been clearly identified, we believe that accurately

modeling each and every component is nonessential. Indeed, one

and only one of those components will be the limiting factor and

depending on the environmental conditions, that limiting factor

may change; e.g. fish schooling from crystal-clear waters to murky

ones [56]. Therefore, we consider a topological neighborhood of

interactions (TNI) [57] whose physical relevance was discussed in

Ref. [58].

The vast majority of models of collective animal behaviors

found in the literature are based upon a metric neighborhood of
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interactions. In that specific class of models, the only thing that

matters for an agent is the physical distance to neighboring agents.

A typical example of an agent’s metric neighborhood is the open

ball interaction zone with radius R centered about the agent. The

simplicity of the metric-based neighborhood approach is evident

and that translates into a relative ease of computational

implementation. However, it suffers from many limitations; for

instance it cannot account for the cognitive limitations of agents

evolving in very dense crowds [37].

European project named Starlings in Flight or STARFLAG has

been one of the most recent and largest experiments in the human

history carried out to analyze the collective behavior of birds [42].

By reconstructing the three-dimensional positions of individual

birds in airborne flocks of a few thousand members, Ballerini et al.

show that the interaction does not depend on the metric distance,

as most current models and theories assume, but rather on the

topological distance. They discovered that each bird interacts on

average with a fixed number of neighbors (six to seven), rather

than with all neighbors within a fixed metric distance. To the best

of our knowledge, an explanation for this surprising empirical

observation has yet to be given. Ballerini et al. [42] claim that

interactions based on metric distance is unable to reproduce the

density changes, typical of bird aggregations, because one would

expect cohesion to be lost when mutual distances become too large

compared with the interaction range. In addition, with social

networks, the relevance of the topological distance between

neighbors becomes apparent and it is believed that it could

determine how populations move in, split up and form separate

groups [59,60]. For instance, guppies preferentially shoal with

individuals of a similar size [61], and faster individuals are more

likely to be found at the front of groups [62].

With a TNI, one has to be watchful for the possibility of the

topological distance becoming too large so that the interaction or

information exchange could not take place. In practice, that can

potentially happen with very low density swarms or when some

individual agents become widely separated from the swarm. In our

numerical framework, the existence of periodic boundary condi-

tions combined with a relatively high density of agents prevent

such extreme case from happening. Still with a TNI, an agent is

not just concerned about the physical distance to its neighbors.

Many other diverse and subtle aspects can be factored in, such as

the maximum number of neighbors set by some cognitive

limitations, familiarity and other social relationships, etc. The rule

of k–nearest neighbors [63] epitomizes the topological paradigm.

Figure 2 illustrates and highlights graphically some of the

fundamental differences between a metric- and a topological-

based neighborhood of interactions—the rule of k–nearest

neighbors is considered. The metric neighborhood or interaction

zone is an open ball with a constant radius, R, centered about the

agent while r, the radius of the TNI, has an adaptive behavior to

include the k-th (here 7-th) nearest neighbor. It is apparent that r is

not just a function of the physical distance.

Swarm signaling network
Let us consider members of a swarm, say a few hundreds,

heading towards a certain destination. An individual agent lagging

behind the large swarm, isolated from those moving together,

decides to join the mainstream. Some information from the agents

in the bulk of the swarm will flow towards the lonely agent and will

almost surely affect its migratory behavior. Whereas agents within

the swarm will most probably receive no information from the

loner and will therefore experience no change in their behaviors.

This phenomenon simply reflects the directed nature of the

interactions among agents. Apart from this revealing case,

empirical evidences support the idea of directed interactions in

pigeon flocks [52].

We now precisely define and construct the SSN which, as

already mentioned, is the information transfer channel underpin-

ning the dynamics of the interacting swarming agents. Constituent

links of the SSN of a group whose agents have directed

interactions are unidirectional by opposition to bidirectional

interactions in a group of agents with undirected interaction

edges. The TNI based on the k-nearest neighbor rule allows one to

locally identify the links between agents. The topological character

of the neighborhood of interactions has a tremendous impact on

the properties of interagent connectivity, in particular with the

induced asymmetry in the relationship whereby if agent j is in the

neighborhood of agent i, then i is not necessarily in the

neighborhood of j, i.e. the interaction is directed. On the contrary,

with a metric neighborhood the interagent connectivity is

fundamentally symmetric with the presence of undirected inter-

actions.

Through a bottom-up assembly of the interagent links, the

complete global graph characterizing the connectivity can be

constructed. Given the dynamics of the TNI and the directed

nature of the links, the SSN is a switching strongly connected k–

nearest neighbor digraph [30,64,65]. It is worth noting that the

random graph theory [66–69] is not appropriate, nor relevant to

the study of the dynamics of the connectivity in swarms since links

are introduced irrespective of any distance between nodes—be

that in the physical space or in the signaling network space.

Dynamic swarming model
Above, we emphasized the generality of the concepts at the core

of our modeling framework. Thus, details such as the nature of the

state variables or the type of interactions between agents were

intentionally left out. We believe that those specific details do not

have an impact on the key features at the heart of emergence in

collective behaviors; this approach can be regarded as a ‘‘crude

look at the whole’’ as advocated by the Physics Nobel Laureate

Murray Gell-Mann [70].

To exemplify our general framework for collective behaviors,

we consider self-propelling agents moving about a two-dimen-

sional plane with constant speed, v0, similarly to Vicsek’s model

[16]. However, our neighborhood of interactions is not metric but

instead is topological. For simplicity, we assume that each agent i is

fully characterized by one unique state variable yi, its velocity

vi~v0 cos hi x̂xzv0 sin hi ŷy, or equivalently its velocity direction hi,

the speed v0 being constant. The local synchronization protocol,

based on relative states and generically stated as in Eq. (21), is

strictly equivalent to a local alignment rule which mathematically

can be stated as:

_hhi(t)~
1

N i(t)j j
X

j[N i (t)

wij(hj(t){hi(t)), ð23Þ

where N i(t) is the time-dependent set of outdegree neighbors in

the TNI of agent i, with cardinal number N i(t)j j, and wij is the

binary weight of the i{j communication link. Note that in some

models, wij can take a more complicated form than our binary

choice [20,71,72]. Using the k-nearest neighbor rule for the TNI,

we have N i(t)j j~k and the following dynamical equation for each

individual agent in the swarm:

_hhi~
1

k
(hj{hi)z � � �z(hjzk{1{hi)
� �

, ð24Þ
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where hj , � � � ,hjzk{1 are its k-nearest neighbors’ velocity direc-

tions. The dynamics of the agents in the two-dimensional physical

space are intricately coupled to the dynamics of the SSN. This

network is, by construction, a switching k-nearest neighbor

digraph, for which the specific value of k has a direct impact on

its strongly connected character.

Up to this point, our modeling framework is based on a

continuous-time approach. From a practical standpoint, it is

necessary switching to a discrete-time approach; the associated

sampling time, Dt, being intimately connected to some of the

characteristic physical times of our complex dynamical system: e.g.

agent’s speed, speed of interagent information exchange, speed of

internal information processing within one agent, etc. Once a

sampling time Dt has been selected or is imposed by the natural or

artificial characteristics of the system, the set of equations

governing the discrete-time dynamics of the agents’ property reads

hi(tzDt)~hi(t)z

Dt

k
(hj(t){hi(t))
�

z� � �z(hjzk{1(t){hi(t))
�
:

ð25Þ

It is worth highlighting here that the very fact that relative states

are considered, prevents any singularity—such as those reported

with the original Vicsek’s model [73]—from occuring. As already

mentioned, the formalism of Eq. (25) does not capture the fact that

the value of the k indices—from j to jzk{1 above—are actually

i-dependent since they are defined by the belonging, or not, of an

agent to the TNI of agent i. Moreover, these k indices may change

over time due to the dynamical nature of the TNI, itself imposed

by the dynamics of agent i.
The model devised here would not be realistic without

accounting for the ubiquitous presence of noise which may have

disruptive behavioral effects. This so-called behavioral noise can

be divided into two broad categories: the stimulus noise and the

response noise [55]. The stimulus noise, a.k.a. intensity noise, may

have different origins like channel noise, environmental or

background noise, and receptor noise. In the present framework,

the channel, environmental and receptor noises are indistinguish-

able. In order to account for the global effects of stimulus noise

together with external perturbing factors, a fixed level of

background noise is considered throughout the agents’ surround-

ings. In addition, the response noise may have different origins like

motor noise and developmental noise which cannot be appropri-

ately included within the present idealized modeling framework.

In what follows, the response noise is therefore discarded and the

stimulus noise may simply be referred to as noise without any

possible confusion.

Noise can generally be assumed to be random fluctuations with

a normal distribution [55]. In the sequel, the background noise is

considered to have a normal distribution fully characterized by its

noise level, g. Specifically, the presence of noise modifies the

equation governing the dynamics of agent i which now reads

hi(tzDt)~hi(t)z

Dt

k
(hj(t){hi(t))z � � �z(hjzk{1(t){hi(t))
� �

zDh,
ð26Þ

where Dh is a random number chosen with a uniform probability

from the interval ½{g=2, g=2�.

Simulation parameters
In all simulations, agents are distributed across a 25–by–25

square with periodic boundary conditions to avoid any boundary

effect, while the time unit Dt~1 was the time interval between two

updates of the directions hi(t) and the positions xi(t) of each agent

i~1, � � � ,N. The synchronous position update is simply achieved

through

xi(tzDt)~xi(t)zvi(t)Dt, ð27Þ

where the velocity vi(t) is calculated in its complex form

v0 exp(ihi(t)) with the constant speed v0 taken equal to 0.05.

Similarly to Vicsek et al. [16], the value 0.05 for v0 was chosen such

that agents always interact with their neighbors and move fast

enough to change the configuration after a few updates of the

directions. According to our simulations, in a wide range of the

speed (0:001vv0v9), the actual value of v0 does not affect the

results. In most of our simulations, for the initial conditions, agents

are initially uniformly distributed in the two-dimensional spatial

domain, with randomly distributed directions. Efficient ways of

implementing such a swarm simulation code are discussed in Ref.

[74–76].

The collaborative interactions of agents governs the dynamics of

the self-organization of the swarm, ultimately leading (or not) to

the emergence of consensus in the physical space. In the

framework of our model, a good metric for the consensus in the

physical space is given by the average alignment

SqT~
1

N

XN

i~1

vi(t)

v0
~

1

N

XN

i~1

exp ihi(t)ð Þ, ð28Þ

over the N agents of the swarm; vi(t) being the complex velocity of

agent i in the plane at instant t. The alignment, A, is defined by

the absolute value of the steady-state average alignment:

A~DSqT(ts)D, where ts is the time required to reach a stationary

state. This measure of the alignment approaches the unity if all

agents in the swarm move more or less in the same direction, and

is exactly equal to the unity if they are perfectly aligned. On the

contrary, if the agents fail to reach consensus, the alignment will

tend to zero, with the value A~0 representing utter mess.
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