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The development of spatial behaviour
and the hippocampal neural
representation of space
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The role of the hippocampal formation in spatial cognition is thought to be

supported by distinct classes of neurons whose firing is tuned to an organism’s

position and orientation in space. In this article, we review recent research

focused on how and when this neural representation of space emerges

during development: each class of spatially tuned neurons appears at a differ-

ent age, and matures at a different rate, but all the main spatial responses tested

so far are present by three weeks of age in the rat. We also summarize the

development of spatial behaviour in the rat, describing how active exploration

of space emerges during the third week of life, the first evidence of learning in

formal tests of hippocampus-dependent spatial cognition is observed in the

fourth week, whereas fully adult-like spatial cognitive abilities require another

few weeks to be achieved. We argue that the development of spatially tuned

neurons needs to be considered within the context of the development

of spatial behaviour in order to achieve an integrated understanding of the

emergence of hippocampal function and spatial cognition.
1. Introduction
The hippocampal formation plays a fundamental role in spatial cognition and

navigation, across the whole vertebrate group [1–6]. This role is thought to

be supported, at the neural level, by the presence of several different classes

of neurons whose firing is tuned to an animal’s position and orientation in

space. Some of the principal spatial cell responses are place cells, which fire

in a unique position in an environment and encode the animal’s current

location [7]; head direction (HD) cells [8], which encode the heading direction

of the animal; grid cells, which fire in several locations in an environment,

laid out in a hexagonal grid, and may encode distance travelled [9]; boundary

vector/border cells, which respond to boundaries of the environment and may

represent fundamental inputs to place and grid cells [10,11]. Spatially tuned

neurons have been most intensively studied in rodents (laboratory rats and

mice in particular), but similar neuronal activity has been described in a

range of mammalian species, as well as in other vertebrates [12–19].

An intense and long-standing research effort has addressed the function of

this neural representation of space, and how it underpins spatial cognition in

the adult rodent [20,21]. More recently, several groups have also begun to

approach the question of how and when the hippocampal neural representation

of space emerges during development [22–25] (see also [26] for earlier work).

The results of this work show that the different types of spatially tuned neurons

emerge at different times during development, within the first three weeks

of the rat’s life, and follow different developmental programmes thereafter

[22–25]. So far, this research has not only provided insights into the develop-

mental mechanisms responsible for the emergence of the neural map of

space, but, crucially, also into how this might function in the adult.

The purpose of this review is to summarize what is known of the develop-

ment of spatial behaviour in the laboratory rat (Rattus norvegius), encompassing

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2013.0409&domain=pdf&date_stamp=2013-12-23
mailto:t.wills@ucl.ac.uk


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130409

2
both the emergence of spontaneously expressed spatial be-

haviour, as well as formal testing of spatial cognition in

tasks known to be dependent on an intact hippocampus

in the adult. In order to provide a meaningful context

to the emergence of spatial cognition, we will also sum-

marize the most important landmarks in the sensory and

motor development of the rat, focusing on those aspects

that are thought to be necessary to express spatial learning

and behaviour.

We will compare the development of spatial behaviour

with the emergence of spatially tuned responses in the hippo-

campal formation, with the view of addressing two questions.

First, does the relative timing of the emergence of spatial

behaviour and spatial firing allow us to infer the relative

roles of sensory experience and endogenous factors in their

development? The original proposal of the hippocampus as a

cognitive mapping system [1] argued that the neural repre-

sentation of allocentric space supported by the hippocampus

was a Kantian synthetic a priori system, meaning that it did

not require empirical experience for its construction, or for its

validation. Rather, the cognitive map was predicted to be inde-

pendent of prior experience of spatial relations in the world,

and form a scaffold for the coherent organization of those

experiences. In this sense, the cognitive map theory predicted

that the ontogenetic development of spatially tuned neurons

should be independent of experience of space [22].

The second question that will be addressed in this review

relates to the functional link between the hippocampal neural

representation of space and spatial cognition. In the adult

rat, the firing of spatially tuned neurons has been shown to

correlate with the accuracy of behaviour in tests of spatial

cognition [27–30]. Do ontogenetic studies allow us to look

for such functional relationships, that is, does the develop-

mental timeline of spatially modulated firing indicate that it

is a prerequisite for the expression of spatial behaviour?

More generally, establishing the relative developmental

timelines of spatial behaviour and spatially modulated firing

is an important step in understanding the interaction of the

different factors (e.g. molecular cues, intrinsic neural activity

and environmental experience) that are involved in the develop-

ment of neural systems [31–34]. The development of the

hippocampus at the molecular, cellular and physiological level

will not be discussed in this review, but the reader is directed

towards other recent reviews that cover these areas [35–37].
2. The development of sensory-motor systems
in the rat

(a) The development of sensory systems
Like humans, rats are altricial animals, and newborn rat pups

have limited sensory perception. Sensory development in the

rat follows the general mammalian blueprint of sensory onto-

genesis, with the vestibular and olfactory functions being the

first to emerge (around birth) followed by tactile, auditory

and visual function, respectively [38].

At birth, rats display a rudimentary righting reflex [39],

possibly reflecting the functioning of an immature vestibular

system. Recordings of peripheral or central vestibular neurons

in anaesthetized animals show that weak neural responses to

rotation exist as early as postnatal day 1–2 (P1–2), which

become largely adult-like by P8 [40–42]. The behavioural
development of vestibular responses has not been extensively

tested in rats, but it is known that pups can right in mid-air

during a fall from P17 onwards [39]. In the mouse, the optoki-

netic and vestibulo-ocular reflexes are essentially adult-like at

P21 [43]. The vestibular system is therefore thought to be present

in immature form from the first few days of life and develop

substantially during the first three weeks of the rat’s life.

The other precocious sensory modality in the rat is olfaction:

rats demonstrate a preference for their mother’s odour at 2 days

of age [44]. Rudimentary sniffing behaviour can be observed at

P4, but it is not until P10–11 that the typical adult sniffing be-

haviour (in combination with head pointing) emerges, and by

P15 rat pups systematically sniff at everything in their home

cage [39,45].

Tactile exploration in rats is thought to be principally

mediated by active whisking (high-frequency-directed move-

ments of their facial macrovibrissae) [46]. Movements of the

whiskers are first observed at P4, but adult-like whisking

(repeated cycles of retraction and protraction) does not

emerge until P10–13, after which the frequency and ampli-

tude of whisking movements continue to develop until

around P21 [47–49]. However, even before P4, passive move-

ment of the whiskers can induce activity in rat pups, and

whisker clipping disrupts suckling and huddling behaviours

at P4–5 [50].

The auditory system of infant rats begins to function at

P8–9, at which age cochlear microphonic potentials (reflecting

hair cell stimulation) can be observed. Action potential

responses (reflecting action potentials in the auditory nerve)

first occur at P11–12 [51]. The auditory meati of rat pups

open at P11–13, and it is around that time that rat pups start

showing clear orienting towards an auditory stimulus [45,52].

Vision is the last sensory system to emerge, with the eyes

opening at P13–15 [39,45,52–54]. The optics of the eye are

not clear until P19 [53], and electrophysiological recordings

from primary visual cortex reveal very immature responses

to a series of bars and gratings at P17–19 (reduced acuity,

larger receptive fields and insensitivity to orientation or

movement direction) [53]. However, a more recent study [54]

reported that neuronal preference for the orientation and

spatial frequency of a grating is largely adult-like at P16,

though the contrast threshold is lower than that in adults.

The precocious sensory modalities (vestibular, olfaction,

tactile sensation) are therefore probably generally adult-like

by three weeks of age, in clear contrast to the visual system,

which is functional, but remains largely immature at this age.
(b) The development of motor skills
During the first week of life, relatively simple motor beha-

viours prevail. At P0, pups can invert their posture, either

to right themselves or to feed from their mother, and move

a small distance along the mother’s ventrum to arrive at a

nipple [55]. Altman & Sudarshan [39] performed an extensive

series of tests of the development of motor skills in Wistar rat

pups, testing animals every day between P1 and P21. It is

important to note that these tests were conducted in an

open field, where pups were individually tested while

away from their mother and littermates. The first organized

locomotor behaviour observed under these conditions was

‘pivoting’, turning on the spot that is driven by movement

of the forelimbs, whereas the hindlimbs remain immobile.

Pivoting began at P3, peaked at P7 and diminished thereafter.
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Pups first became capable of translational movement at

around one week of age, although such movements were

inefficient (termed ‘crawling’), with the hindlimbs mostly

dragged along, rather than contributing to movement. Full

quadrupedal walking, including proper, coordinated use of

hindlimbs, emerged from P14 onwards. Rats did not actively

move around in the open field until P9, started to travel short

distances between P10 and P14, and the distance covered

increased abruptly from P15 onwards. By P21, pups were

capable of a large range of complex motor skills, including

rope climbing, traversing a narrow raised walkway and

jumping down a vertical drop.

The results of this study suggest that, similar to the develop-

ment of sensory systems, the development of the species-specific

motor repertoire of the rat takes place across the first three weeks

of postnatal life.
.B
369:20130409
3. The development of spatial behaviour
In this review, we will adopt a definition of spatial behaviour

that encompasses all spontaneously expressed movements

through space (§2a), as well as the ability to solve formal

tasks of spatial learning and navigation, that are dependent

on an intact hippocampus in the adult rat (§2b). The data

from the studies discussed below are also summarized in

figure 1.

(a) The emergence of spontaneous movements through
space

During the first two weeks of life, rats spend most of the

time in their nest, with their mother and littermates (see

below, ‘Activity in the nest’). The emergence of spontaneous

movements outside the nest occurs, in laboratory animals,

sometime within the third week of life.

(i) Homing
One of the earliest expressions of spatial behaviour is the ability

of pups to return to the nest if separated from their mother

and littermates by the experimenter. Altman & Sudarshan

[39] tested when pups could return to the nest group within

3 min when separated by a 20 cm direct line: at P7, none

could achieve this; by P10, the success rate was approximately

50%; by P13, 100% of pups could return to the nest. However,

this task was probably testing the development of crawling

ability, as well as the ability to locate the nest: almost 100% of

pups could correctly orient towards the nest by P8. In a more

formal homing test, Bulut & Altman [56] probed whether

rats could learn to discriminate between two adjacent doors

in order to return to the nest. Training started at P6, but no

pup performed successfully on this task until P13. In summary,

rat pups develop the ability to successfully orient towards

the nest (probably using olfactory and auditory cues) and

locomote towards it during their second week of life.

(ii) Exploration and leaving the nest
The earliest studies of rat development noted the striking

prominence of exploration and curiosity in immature rats

[45,57,58]. In adult rats, exposure to novel environments

prompts a well-defined exploratory response [1,59,60] which

depends upon an intact hippocampus: hippocampal-lesioned

animals are hyperactive, but do not systematically explore
their environment, and show less habituation after repeated

exposures to an environment [1]. Pinpointing the emergence

of spontaneous exploration may therefore inform us about

the development of hippocampal function. It will also help to

define at which age rats experience large-scale space during

the course of normal development: as described below, the

development of locomotor skills, when tested in isolation

[39], does not necessarily map onto the normal emergence of

spontaneous exploratory behaviour.

When isolated pups are placed in an environment, they

will walk from around two weeks of age [39,61]. If isolated

pups are left for longer in the testing arena (25–120 min),

then P20–21 pups will habituate to the environment,

as shown by decreasing activity levels, but P15 pups will con-

tinue to move at similar levels throughout the whole testing

period (reminiscent of hippocampal-lesioned animals [1]),

leading to an overall peak in motor activity at P15 [62,63],

see also [22,23]. This behaviour is dramatically changed,

however, by the presence of a conspecific in the open field.

The heightened activity levels of P15 pups can be inhibited

by the presence of littermates, an anaesthetized lactating

female, or even an anaesthetized male [64], suggesting that

heightened open field activity around P15 may reflect a

response to social isolation, rather than spontaneous explora-

tion of the environment. In keeping with this interpretation,

ultrasonic vocalization (USV) distress calls, which are an

anxiety-based response to social isolation in rat pups, peak

during the second week of life, are still observed at P14,

but are much reduced by P18–19 [65–68].

Nadel et al. [69] also found a dissociation between the

ontogenetic profile of motor activity, as tested in a running

wheel, and that of active exploration, as tested by placing

single rat pups in an open arena containing several objects.

A peak in motor output in the running wheel occurred

around P16–17, contrasting with the emergence of significant

exploration of the arena, which appeared between P17 and

P25 (median P21). Perhaps the most intriguing observation

in this study was that the onset of active exploration was

abrupt within each pup, occurring almost overnight, in an

all-or-none fashion.

Consistent with this latter study, the age at which pups

will spontaneously leave the confines of the nest to explore

the surrounding environment is towards the end of the

third week of life. Pups reared with free access to an eight-

arm maze (while the mother was confined to the nest-box)

did not make any forays into the maze between P13 and

P15, a small amount of activity was seen on P16, and activity

levels rose steeply thereafter [70]. Similarly, pups placed on

an open platform with their littermates (but without their

mother) make only very short forays away from the huddle

between P16 and P18, and the distance of these forays

increases from P19 onwards [71]. Likewise, pups prefer to

explore the novel side of a box only from P19 onwards [72].

Rearing on the hind legs, an important behavioural marker

of novelty-induced exploration [73], first emerges at around

P17, and increases rapidly from P19 onwards [39].

The presence of the mother outside the nest is also an

important stimulus that can increase levels of nest egression.

At P19, pups make more spontaneous forays from a nest-box

into an open field if the mother is present there [74]. Bearing

this in mind, probably the most ethologically valid approach

is to determine the emergence of exploration when both

mother and pups have free access to an open field. When
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this is the case, pups tend to spend a small amount of time

(less than 10%) in the open field between P15 and P17, and

show a sudden increase to approximately 30% of time

spent in the open field at P18 [75]. This study also found

that the developmental emergence of nest egression is modu-

lated by the ambient temperature, presumably reflecting the

temperature regulation function of huddling behaviour (see

§3a(iv)). The results described above refer to pups raised at

218C; pups raised at 308C spend more than 50% of their

time in the open field at P16, whereas at 188C, less than

10% of time is spent in the open field even at P20. For all

temperatures, the amount of time spent in the open field is

approximately zero at P14, setting a well-defined lower

limit to the earliest age of exploration.

Full independence from the mother occurs much later in

development: although weaning is commonly induced in lab-

oratory rats at P21, rats left with their mother will wean at

around P35 [76]. Furthermore, the exploration of an open

field and of objects has been shown to continue to mature

between P30 and P90 [77,78].

In summary, the onset of spontaneous exploration out-

side the confines of the nest happens during a narrow time

window, centred around the end of the third week of life in

the rat. Moreover, there are indications that the transition to

exploratory behaviour is abrupt in each animal, suggesting

that this transition might reflect specific, as yet unidentified,

neural changes in the hippocampal circuitry.

(iii) Egression from the nest and the role of path integration
Path integration describes the ability of an animal to home

back in a straight trajectory to a starting position (e.g. nest)

after an excursion, calculating the distance and direction tra-

versed on the outbound journey on the basis of internally

generated cues (e.g. vestibular cues, motor efference copy or

proprioception) [79,80]. Path integration is thought to be

one of the two principal processes (along with information

acquired from the location of external landmarks) in the

generation of a neural map of space [81,82]; it is generally

accepted that path integrative behaviour is disrupted by

lesions to areas containing spatially tuned neurons [83–85],

but see also [86]. It is therefore of interest to study the onto-

genetic time course of path integration. Loewen et al. [71]

reported that the exploratory behaviour of rat pups was con-

sistent with an ability to path integrate, even at very early

ages (P16 onwards). On a 1.5 m diameter platform, return

trips to the huddle were always shorter than outwards

forays, even in the dark and upon removal of the olfactory

and auditory cues provided by the presence of littermates.

(iv) Activity within the nest
Although egression from the nest marks the first movements in

large-scale space, pups are far from immobile within the nest

environment [55,87–89], and their activity patterns during

this time may well constitute a critical experience of movement

and orientation in space. Before active exploration outside the

nest begins, the predominant environment of the pup is the

‘huddle’, an aggregation of littermates within which each indi-

vidual pup will attempt to move to the centre, and be pushed to

the periphery by littermates attempting to do likewise [87]. The

purpose of such aggregation behaviour is probably thermo-

regulation: increasing the ambient temperature can change

the ‘convective flow’ of pups within the huddle from inwards
(as described above) to outwards [87]. Huddling behaviour

gradually breaks down as pups become more active, sometime

during the third week of life [71].

Another manner in which rat pups sample space within the

nest are movements with respect to their mother [55,88–90].

Rat pups display orienting towards the mother even at P1–3

[55,89], move around the body of the mother [88] and shift

between nipples while suckling from P10 onwards [91].

Cramer et al. [91] reported that restricting nipple shifting

between P5 and P24, by surgical removal of nipples, led to

learning deficits in an eight-arm radial maze (see below) at

P25, and suggested that nipple shifting may constitute experi-

ence of space and sequence learning. The specificity of this

deficit to nipple shifting should probably be treated with cau-

tion, however, as surgical removal of the nipples may have

altered the pup–mother interaction, which could have also

affected the normal course of development in a more general

way. In particular, the hippocampus has an important role in

the stress response in the adult, and stress modulates the effi-

cacy of hippocampal learning and synaptic plasticity [92]. It

has been shown that stress during development, including

variations in maternal care, can alter the hippocampal response

to stress and hippocampal function in spatial cognition, later in

adult life [93,94].
(v) Development in a non-laboratory environment
Comparatively, little is known about the behaviour of Norway

rats in the wild. An ethological perspective is important for

ontogenetic studies, as the developmental programme of

behaviour may be evolutionarily adapted to an environ-

ment dissimilar to laboratory rearing conditions: knowing

the ‘natural’ environment can help understand the interaction

between the individual animal and its environment during

development [95].

Calhoun [96] raised a colony of wild-born Norway rats in

an enclosed outdoor pen approximately 1000 m2 in area. The

development of three litters was described in detail in this

study: in all cases, the first age at which nest egression was

observed was considerably later (P23–P40) than described

in the laboratory studies above (but note the late egression

from the nest in cold conditions found in [75]). Note that

two of these three examples occurred within the first

months of the existence of the colony, and therefore would

not have been affected by the high mortality and low repro-

ductive success that affected the colony towards the end of

the study. It seems that emergence from the nest therefore

occurs at younger ages in a laboratory setting compared

with wild or semi-wild conditions. Thus, the end of the

third week of life might be considered a lower bound when

trying to identify the hippocampal processes that might

underlie the onset of active exploratory behaviour in the rat.

In Calhoun’s study [96], nest chambers were often con-

tained within extensive, topologically complex burrow

systems, though mothers also made nests in ‘harbourage

boxes’ at surface level, provided by the experimenters. In

burrow systems, the modal distance from a nest chamber to

the nearest exit was approximately 0.5 m. Some studies

have found that the burrows of domesticated laboratory

rats are considerably more basic than those of wild Norway

rats [97,98], though Boice [99] found no difference between

the burrows of wild rats and domesticated albino rats

raised in an outdoor pen. In general, a nest chamber,



rstb.

6
connected to the external world by a short tunnel, would

appear to define the geometry of the space into which a

pup would be born, in non-laboratory conditions.
royalsocietypublishing.org
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(b) The development of hippocampus-dependent
spatial learning and memory

In this section, we review the development of spatial learning

and memory, as tested formally by behavioural tasks which

require intact hippocampal function in the adult rat. We will

not discuss the development of other forms of associative learn-

ing (for example, the development of conditioning): for this

work, the reader is directed to the review contained within [35].
ns.R.Soc.B
369:20130409
(i) Water maze
The Morris water maze task, in which rats are required to learn

the location of a platform in a circular swimming pool [100], is

one of the most widely used behavioural paradigms in the

assessment of spatial learning and hippocampal function.

In the ‘place navigation’ version of this task, the platform is

hidden below the water surface, meaning that rats cannot rely

on local cues when finding the platform. In adult rats, lesions

[2] as well as pharmacological inactivation [101] of the hippo-

campus abolish the ability to display such place navigation. If

a salient visual cue is placed near the platform (the ‘cued’ version

of the task), then the ability to find the platform is independent of

hippocampal function [2], and is therefore thought to reflect the

use of a different navigational system by the animal.

The first study of the ontogeny of place navigation in the

water maze found that although adult-like learning (includ-

ing multiple crosses through the platform site when the

platform was removed) was not observed until P42, there

was evidence of learning, reflected by reduced latencies to

find the platform, even at P21 [102]. Several studies have

since attempted to determine the first onset of place learning

in the water maze. Rudy et al. [103] showed that rats trained

on days P18 and P19 demonstrated reduced latencies to find

the platform at P19, but no preference to visit the platform

location when it was removed from the pool. Rats trained

on P20 and P21, however, showed latencies which reduced

within the day, on both P20 and P21, and a preference for

the platform location at P21. Brown & Whishaw [104] con-

fined training to 1 day only, and took precautions to ensure

that training in the water did not lead to a drop in body temp-

erature. In this case, evidence of place learning was observed

at P19 and P20, but not at P18. Akers & Hamilton [105] also

confined training to 1 day, finding that the first evidence of

reduced latencies can be observed at P20, but a clear prefer-

ence for the platform quadrant in the no platform probe

appears to develop later, between P20 and P24. Finally, it

should be noted that weanling pups (P20–P28) show

increased learning when the maze is scaled down to an

appropriate size [102,106], and in a 40 cm diameter maze,

rats trained between P17 and P19 showed evidence of place

learning at P19, when compared with naive P19 rats.

In summary, no study has found evidence of place learn-

ing earlier than P19, and most studies agree that this ability is

present by P21. It should be reiterated, however, that fully

adult performance does not emerge until much later [102].

Most studies agree that the visually cued version of the

task can be solved 1–2 days earlier during development

than the hidden platform version [102,103,105], with the
earliest evidence of learning (assessed by reduced escape

latencies) being observed at P17 [103,105,107]. (Though note

that one study failed to find evidence of this, with both

place and visually cued learning emerging in parallel at

P19 [104]). The earlier emergence of learning on the visually

cued water maze has been interpreted as evidence that the

different brain systems involved in place- and landmark-

guided navigation [1,2] are maturing at different times, and

could also be taken as evidence that the limiting factor in

the developmental emergence of place navigation is the

development of hippocampal function, rather than immature

sensory or motor systems (as the visually cued water maze

requires rats to visually locate the platform and swim to it).

However, some caution should be applied when considering

this interpretation: visual acuity is still very immature around

three weeks of age, and experimentally reduced visual acuity

in the adult rat leads to deficits in the place, but not the cued

version of the water maze [108]. The developmental lag

between place- and cued- navigation might simply reflect

the later age at which visual acuity is sufficient for proper

perception of the extra-maze cues. Consistent with this

hypothesis, P19 rats show reduced escape latencies and

increased preference for the platform location when the plat-

form is positioned closer to the distal cues, or the number of

distal cues is increased [109,110]. Using a dry-land variant of

the water maze (requiring an escape though one of a series of

holes in an open arena), Rossier & Schenk [111] showed that

rats gave more emphasis to local olfactory cues than distal

visual cues until after P48. Interestingly, if rats were trained

with both visual and olfactory cues, and then the olfactory

cues were removed, P48 rats could rely on visual cues on

their own, but P24 rats could not, suggesting a late development

of multi-sensory integration in the hippocampus.

To further test the role of extra-maze cues in the water

maze, Hamilton et al. [112] introduced a variant of the task

in which the pool is shifted relative to the laboratory and

distal extra-maze cues. In this situation, adult rats have a

strong tendency to swim towards the platform position as

defined by the pool, rather than that defined by the extra-

maze cues. The authors [112] interpret this as evidence of a

navigation strategy that primarily uses a directional bearing

to the platform (termed ‘directional’ navigation), but an

alternative interpretation is that the boundaries of the pool

play a primary role in defining platform position, and the

extra-maze directional reference frame serves to disambigu-

ate positions within the circularly symmetric pool. Adult

rats can learn to navigate to an absolute position in the

extra-maze reference frame, ignoring the pool boundaries

(termed ‘place’ navigation), if trained on a procedure that

explicitly dissociates the platform position from the pool

boundaries, and if the pool boundary is eliminated as a sen-

sory cue as much as possible (for example, by filling the pool

completely with water) [113]. Akers et al. [114,115] conducted

a series of studies investigating when ‘directional’ and ‘place’

navigation emerged during development, and showed that

‘directional’ navigation emerged at approximately P20,

whereas ‘place’ navigation emerged later, at around P26. One

possible caveat is that this may, again, reflect protracted

visual sensory development: it is possible that using several

distal cues to precisely triangulate a position requires a higher

visual acuity than using these cues only as a directional fix.

Interestingly, animals as young as P17, trained using a visually

cued platform, will show disrupted performance if the cued
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platform moves to a new position relative to the pool bound-

aries [107]. This demonstrates that a ‘directional’ learning

strategy (i.e. the use of the pool boundaries as a spatial cue

and an extra-maze directional fix) is present in animals as

young as P17, and furthermore, that this is not overshadowed

by the presence of a visual landmark during learning.

Brown & Kraemer [116] tested the development of long-

term memory retention in the water maze, and found that a

3- or 7-day delay between learning and testing resulted in

worse performance, compared with no delay, at P20 and

P34, whereas adults performed equally well in all conditions.

Likewise, Spreng et al. [117] found that a spaced training

protocol does not aid long-term retention at P33, unlike in

adults. These studies suggest a protracted development for

the long-term retention of spatial memory in the hippocampus,

although Carman et al. [118] found that early experience in

the water maze can influence learning at a later date: pups

trained at P17–19 performed better than naive pups at P26,

after a limited ‘reinstatement’ training session.

(ii) T-maze
The T-maze can be run using various protocols, including ‘refer-

ence memory’, in which the goal location is constant, and

‘delayed forced alternation’, in which the rat is first forced into

one goal arm (by blocking access to the other), then subsequently

required to choose the opposite arm from a free choice, possibly

after a variable delay [119]. Green & Stanton [120] investigated

the ontogeny of learning on both the reference memory and

delayed forced alternation protocols. It was found that pups as

young as P15 can learn the reference memory task, but if

forced alternation and a 15 s delay are introduced, then the be-

haviour of P15 pups falls to chance levels. P21 and P25 animals

can learn the delayed forced alternation task after 20–30 trials,

however, even at P33 rats are still more likely to make errors

than adult animals [121]. Freeman & Stanton [122] found that

fornix lesions at P10 prevented rats from learning the delayed

forced alternation T-maze (when tested at P23), but not the

reference memory T-maze, suggesting that the early emergence

of the latter is based on non-hippocampal neural systems.

When presented with a free choice between two maze arms,

adult rats will naturally tend to alternate between them, a be-

haviour that is generally abolished by hippocampal lesions

[1]. Kirkby [123] reported a gradual increase in rates of spon-

taneous alternation between P20 and P80, with P20 animals

performing at chance levels. Douglas et al. [124] investigated

the emergence of this behaviour in more detail, showing that

most animals reach a criterion (75% alternation across 20 con-

secutive trials) between P23 and P33, but a small fraction of

animals reaches this criterion only between P61 and P65.

More remarkably, within individual animals, the transition

between performing at or around chance levels to reaching

the criterion occurs within a very short period (few days), an

effect that is obscured when one only looks at the average

performance across animals. Echoing the slow maturation of

long-term memory in the water maze, Bronstein et al. [125]

reported adult-like performance in P30 rats when testing spon-

taneous alternation across a 15 s delay, but a reduction in

performance to chance levels when using a 1 h delay.

(iii) Radial arm maze
In the simplest version of the radial arm maze, rats need to

collect the reward from all arms of the maze, learning not
to return to previously visited arms [126]: the acquisition of

this task requires an intact hippocampus [127]. Rauch &

Raskin [128] trained one group of animals on this task repeat-

edly from P16 until P25, and found that rats could not complete

the task (defined as visiting all eight arms in 15 min) until P21,

and the success rate at P21 (defined as the number of different

arms entered in the first eight choices) was above chance. A

different group of animals, trained for one developmental

day only (age range P21–P25), could complete the task by

P22, and showed a sharp increase in performance on P23

(when judged by a reduction in the number of repeat arm

entries until all eight pellets were eaten). When animals were

tested on a mixed reference/working memory paradigm (the

same four arms out of the eight always baited) [126], both refer-

ence and working memory scores were above chance from P21

onwards. The ability to solve this version of the radial arm

maze therefore emerges at approximately three weeks of age.

In summary, formal testing of spatial cognition in rats

shows that the first evidence of hippocampus-dependent

navigation emerges around three weeks of age (see figure 1

for summary). However, the full complement of adult abil-

ities unfolds over a longer timescale, achieving maturity

between six and eight weeks of life.
4. The development of the neural map of space
Spatially responsive neurons in the hippocampal formation

are thought to represent the neural underpinnings of cogni-

tive maps, i.e. mental representations of the relative location

of objects and landmarks in space that can be used for navi-

gation [1,129]. In the following sections, we will review the

recent work that has begun to uncover when the spatially

modulated firing of these cells emerges during development

[22–24], and, whenever possible, highlight potential func-

tional links between the emergence of spatial signalling in

the hippocampus and spatial behaviour in immature rats.

(a) Head direction cells
HD cells encode the current heading direction of the animal.

Each HD cell fires whenever an animal points its head in a

specific allocentric direction, as defined by both exteroceptive

(e.g. external sensory landmarks: visual, auditory, olfactory)

and interoceptive (e.g. vestibular, self-motion signals, motor

efference copy, optic flow information) cues [130].

Intriguingly, of those spatially responsive neurons studied

so far (HD, place and grid cells), HD cells are the first to emerge

during development. Adult-like HD responses, which are

stable both within and across two recording sessions, separated

by approximately 15 min, can be recorded from both the

medial entorhinal cortex and the dorsal presubiculum, in rat

pups that are at least 15- to 16-days old [22,23,131,132]

(figure 2). This is an age preceding significant active explora-

tion (see §3a(ii)), suggesting that the HD circuit might be

wired in the absence of active exploratory experience, and

that its wiring might rather rely on endogenous mechanisms.

Consistent with this interpretation, the amount of experience

in the recording environment does not correlate with the qual-

ity of HD firing in these immature pups [22]. The early

maturation of the HD system might, more specifically, reflect

the early maturation of the vestibular system (see §2(a)), with

which the HD circuit is intimately connected [130]. Adult-like

HD responses can be recorded at an age when place responses
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are still mostly immature (see below) and when no stable grid

cell responses can be detected (see below), suggesting that HD

responses might be the ‘primary’ spatial signal, and be inde-

pendent of other spatial neurons for their function or

development. This hypothesis is consistent with observations

that lesions to [133], or temporary inactivation of [134] the hip-

pocampus (where place cells are located) have little impact on

HD cell firing in adults.

(b) Grid cells
Grid cells fire in multiple locations arranged in a hexagonally

symmetrical grid, and may encode for the distance travelled

by the animal [9]. They can be recorded from the whole

of the parahippocampal region (medial entorhinal cortex,

pre- and parasubiculum) [135,136].

Two studies have so far traced the emergence of this spatial

signal and demonstrated that the first stable, adult-like grid

responses can be recorded from the medial entorhinal cortex

not earlier than P20 [22,23] (figure 2). From thereafter, one can

observe a swift improvement in both stability and spatial quality

(as measured by gridness) within the next few days of life. Grid

cell responses thus emerge about a week later than fully mature

HD cells and the earliest place cells (see below). Their emergence

roughly corresponds with the age at which weaning is induced

in laboratory animals (P21) and pups are therefore required
to start an independent life, as well as the age at which

hippocampus-dependent behaviours start to emerge (see §3b).

Some of the distinctive properties of the grid cell network are

already present as soon as these signals can be detected. Adult

grid cells are arranged in functional ‘modules’ [9,137,138]:

within each module, all grid cells share the same wavelength

and orientation, and the relative spatial phases of the grid fields

remains fixed, even though the absolute position of their firing

peaks (phase) can change [139,140]. This coherent network struc-

ture emerges concurrently with the first stable grid cells, from

P20 onwards [25]. Other adult-like characteristics of medial

entorhinal cortex firing, such as the existence of ‘conjunctive’

(combined grid and HD tuning) cells, and speed-modulation of

grid cell firing [135], also emerge at around P20 [25]. These data

suggest that local networks of stable grid cells emerge as coherent

units, relatively abruptly during development.

(c) Place cells
Place cells fire whenever an animal occupies a specific location

in its environment (the ‘place field’ of the cell) and, as such, are

thought to encode the current location of the animal [1,7].

Several studies have tracked the development of this spatial

cell type in the rat [22–24,26]. At the earliest ages sampled

(P16), place cells appeared to be on the whole immature,

with most place fields displaying lower spatial stability than
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those of adult rats, both within and across repeated exposures

to the recording environment [22,23]. The specificity of spatial

tuning (as measured by spatial information) was also signifi-

cantly lower in the youngest pups, compared with adults, in

[22] (though not in [23]). For examples, see figure 2. Interest-

ingly, both these parameters seem to improve monotonically

during the following two weeks of the rat’s life, with one

report suggesting that the place cell network might approach

maturity at around P45 [24]. This gradual improvement in

place cell responses is very much at odds with the relatively

sudden appearance and maturation of grid cell firing, and

these distinct ontogenetic modes may reflect the different

developmental mechanisms underpinning their emergence.

This hypothesis is further strengthened by the observation

that there is a large variability in the quality of place responses

recorded from rat pups at any given age [22–24]. Even at P16

(the earliest age sampled so far), a subset of place cells display

adult-like stability and spatial quality [22,23], suggesting that

the development of place responses is not taking place at a net-

work level, but at the single pyramidal cell level. This variability

might reflect the nature of the inputs each pyramidal cell

receives during development, or factors endogenous to each

cell. This is in marked contrast with HD and grid cell develop-

ment, where there are strong indications that development

takes place at the network level [22,23,25]. It is also important

to note here that as for HD and grid cells, the improvement in

the spatial quality of place cell responses does not correlate

with experience in the recording environment [22].

The emergence of place cells several days earlier during

development than grid cells was an important piece of

evidence against the previously commonly accepted model

that grid cells formed the principal input to place cells [81,82].

One alternative possibility is that the earliest building blocks

of place cell firing might rather be boundary vector cells [11],

consistent with a long-standing theoretical model [141] predict-

ing that place cell firing fields are based on inputs from

boundary-responsive cells. Preliminary evidence from record-

ing in pre-weanling rats indicates that boundary-responsive

cells can be recorded from at least P17 onwards [142,143],

and, furthermore, that boundaries may form an important

functional input to place cells in pre-weanling rats [143].
5. Conclusion and open questions
In reviewing the emergence of spatial behaviour and spatially

modulated neural firing in the hippocampal formation of

the rat, we endeavoured to provide an answer to two funda-

mental questions: (i) what are the relative roles of sensory

experience and endogenous mechanisms in shaping the devel-

opment of hippocampal spatial networks; (ii) how does the

development of spatial responses at the neural level interact

with the development of navigational ability? In this conclud-

ing section, we will attempt to provide tentative answers to

these questions and highlight the gaps of knowledge that

need to be addressed by future research.

(a) The role of experience in the development
of the neural representation of space

One of the most striking findings to emerge from studying

the development of spatially responsive neurons is the preco-

cious development of the HD system [22,23], with adult-like
responses emerging before the onset of active exploration

[70,71,75]. The neural representation of direction in the

hippocampal formation (and other brain regions [130]) may

therefore qualify as a Kantian synthetic a priori system, insofar

as its construction during development may not require experi-

ence of exploring large-scale space. However, while P15–16

is certainly before the emergence of extensive exploration

[69–71,74,75], it is also on the cusp of when initial, tentative

forays outside the nest begin [70,75]. In this regard, it is interest-

ing to note that preliminary evidence pinpoints the emergence

of HD cells to P14 [132], an age before any exploration outside

the nest is observed at all [70,75]. A further possible caveat is

that active exploration of space outside the nest is only one

type of experience that occurs during development, and the

crawling, turning and diving motions that rats experience

within the huddle [87] may be necessary to set up the vesti-

bular and motor inputs into the HD system [130]. On the

other hand, HD cells in adults are noted for their dependence

on distal visual cues for stability [144], and how the network

would function in the confined space of the huddle, in

functionally blind animals [53], is not at all clear.

Most network models of HD cells centre around a common

type of architecture, termed a ‘continuous attractor’ network

[145,146]. The only network model of HD cells to directly

address their development [147] proposes that a continuous

attractor network is created by experience-dependent learning,

with input from a stable visual landmark combining with ves-

tibular input to shape the developing network. To date, no

formal neural network model exists explaining how the intri-

cate set of connections necessary for a continuous attractor

could develop independently of sensory experience.

Both grid cells, and a fully mature place cell network

[22–24], emerge at a point in development after extensive

exploration of space; therefore experience of exploration

could be a necessary part of their normal development.

Network models of grid cell development using experience-

dependent learning have been proposed [148–150], though it

may be important that, in all these models, learning depends

on input from pre-existing spatially tuned neurons, leaving

the ontogeny of this ‘teaching’ signal still unexplained. It is

also important to note that Wills et al. [22] found no correlation

between experience of the recording arena and the maturity of

grid or place cells, suggesting that there was no role for learn-

ing to associate spatial firing with specific places, though this

does not rule out a role for the experience of space per se.

It may also be useful to consider the natural environment

in which rats would develop outside of the laboratory. If the

developmental programme of rat pups has been adapted by

natural selection to an environment consisting of restricted

nest chamber linked to a narrow tunnel [96,99], this may

dictate how the neural representation of space develops. In

particular, it may explain why neural representations of

direction [22,23] and boundaries [142,143] (the defining

spatial features of a tunnel system) emerge earlier than

those spatial responses (for example, grid cells) that map

open spaces [22–24], and may also predict differential roles

of experience on the development of these cell types.

(b) The role of the neural representation of space
in the development of spatial behaviour

The appearance and rapid maturation of the grid cell network

seems to mark the age at which there is a transition to a
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hippocampus-dependent navigational system, at around three

weeks of age [22,23,102–105,120,128], possibly underlying the

functional coming ‘online’ of the hippocampal formation. One

problem with this interpretation is that place cells in CA1, gen-

erally thought of as one of the major output structures of the

hippocampal formation [151], remain, on average, rather

immature at three weeks of age, and furthermore show no

abrupt developmental change at this time. If grid cells do rep-

resent the critical missing component necessary for adult-like

hippocampal function, then the spatial information they

convey is either being transmitted via different anatomical

pathways, or is encoded in the activity of CA1 cells in a way

that is, so far, not apparent. It should also be noted that, to

date, no interventional or even correlational studies have been

conducted to assess whether the emergence of grid cells and

hippocampus-dependent behaviours co-occur in a single rat

pup, therefore the functional link between these phenomena

must remain speculative.

It should also be emphasized that although the first evi-

dence of hippocampal function emerges at three weeks,

fully adult-like spatial learning abilities do not emerge until

considerably later [102,111,115,117,118,120,123,124]. Some of

this protracted development could reflect the slow matu-

ration of the visual system [53], and therefore the increasing

ability to use distal visual cues [102,111,115]. However, the

slow maturation of phenomena such as long-term retention

of place memories [117,118], spontaneous alternation across

a 30-s delay [124] or cross-modal redundancy in spatial pro-

cessing [111] suggest that hippocampal function itself is still

developing over this period, and this protracted maturation

may be a reflection of the protracted development of place

cells. The late development of long-term spatial memory

[116,117,125] is particularly relevant to the observation that

place cells in weanling rats have place fields which are rela-

tively unstable over time (unlike those recorded from adult

rats), suggesting that the inability of the hippocampus to

form a stable map might underlie the long-term memory def-

icits observed in weanling and adolescent rats. An additional

open question is whether the spatial memory deficits in

immature rats, either at the behavioural level, or at the level

of place field instability, map onto the phenomenon of
infantile amnesia observed in humans [152] (see also [35]

for work investigating the ontogeny of associative memory

using non-spatial tasks).

Adult-like HD cells emerge very early, before most

spontaneously expressed spatial behaviours [69,70,75]. It is

therefore tempting to speculate that HD cell signalling may

underlie some of the very earliest spatial behaviours observed

in immature rats, such as taking a direct return path to the

nest using path integration [71] or solving a visually cued

water maze [107]. The possible causal link between HD

cell development and homing using path integration is

especially intriguing given recent evidence showing a corre-

lation between HD cell accuracy and performance on a path

integration-based homing task in adults [30]. Accurate HD

cell signalling may therefore be a prerequisite in order for

pups to commence exploration and return successfully to

their nest, at an age when the other spatial signals (place and

grid cells) are still not available to the organism. The finding

that water maze performance in P17 pups was disrupted by

the displacement of the platform relative to the pool [107]

was interpreted by the authors as evidence for the adoption

of directional strategy by the pups. This interpretation would

be in keeping with the early emergence of HD cells. However,

we would also emphasize the role of the pool boundaries in

defining the location of the platform (see above) and note

that preliminary evidence suggests that boundary responsive

cells are present by P17 [142,143]. The ability of P17 pups to

solve this ‘directional’ version of the water maze may therefore

rely on the precocious development of a spatial system based

on both direction and the boundaries of the environment.

As previously noted, all such functional links must

remain speculative at this stage, in the absence of studies

which directly test these hypotheses (though see [122]). We

hope that the work outlined in this review will stimulate

further research aimed at understanding the ontogeny of

spatial behaviour and spatial function.
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