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CGRP Inhibits Neurons of the Bed Nucleus of the Stria
Terminalis: Implications for the Regulation of Fear and
Anxiety

Nur Zeynep Gungor and Denis Pare
Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102

The bed nucleus of the stria terminalis (BNST) is thought to generate anxiety-like states via its projections to autonomic and neuroen-
docrine regulatory structures of the brain. However, because most BNST cells are GABAergic, they are expected to inhibit target neurons.
In contrast with this, infusion of calcitonin gene-related peptide (CGRP) into BNST was reported to potentiate anxiety while activating
BNST targets. The present study aimed to shed light on this paradox. The CGRP innervation of BNST originates in the pontine parabra-
chial nucleus and targets its anterolateral sector (BNST-AL). Thus, we investigated the effects of CGRP on BNST-AL neurons using patch
recordings in vitro in male rats. CGRP did not alter the passive properties of BNST-AL cells but increased the amplitude of IPSPs evoked
by stimulation of the stria terminalis (ST). However, IPSP paired-pulse ratios were unchanged by CGRP, and there was no correlation
between IPSP potentiation and variance, suggesting that CGRP acts postsynaptically. Consistent with this, CGRP hyperpolarized the
GABA-A reversal of BNST-AL cells. These results indicate that CGRP increases ST-evoked GABA-A IPSPs and hyperpolarizes their
reversal potential through a postsynaptic change in Cl � homeostasis. Overall, our findings suggest that CGRP potentiates anxiety-like
behaviors and increases neural activity in BNST targets, by inhibiting BNST-AL cells, supporting the conclusion that BNST-AL exerts
anxiolytic effects.

Introduction
The bed nucleus of the stria terminalis (BNST) is a poorly under-
stood brain structure thought to play a critical role in fear and
anxiety. Indeed, electrolytic (Gewirtz et al., 1998; Sullivan et al.,
2004) or neurotoxic (LeDoux et al., 1988; Hammack et al., 2004;
Duvarci et al., 2009) BNST lesions as well as reversible inactiva-
tion of BNST (Walker and Davis, 1997) impair the expression of
classically conditioned fear responses to contexts. In keeping with
this, BNST projects to hypothalamic (Prewitt and Herman, 1998;
Dong et al., 2001; Dong and Swanson, 2006) and brainstem (So-
froniew, 1983; Holstege et al., 1985; Moga et al., 1989; Sun and
Cassell, 1993) structures that generate the neuroendocrine, be-
havioral, and cardiovascular correlates of fear and anxiety.

Currently, it is unclear whether activation or inhibition of
BNST is required to produce anxiety-like behaviors. On the one
hand, the fact that lesion or inactivation of BNST produces anxi-
olytic effects suggests that increased BNST activity generates neg-
ative emotional states. On the other hand, BNST is mainly
comprised of GABAergic neurons (Esclapez et al., 1993; Hur and

Zaborszky, 2005; Poulin et al., 2009) and therefore presumably
exerts inhibitory effects on its targets. In contrast with this, how-
ever, Sink et al. (2011) reported that intra-BNST injections of
calcitonin gene-related peptide (CGRP) augment acoustic startle
while increasing activity in targets of BNST. The present study
was undertaken to address this apparent contradiction.

CGRP is a 37 amino acid peptide involved in autonomic func-
tions and pain processing (for review, see van Rossum et al.,
1997). The sole CGRP input to BNST originates in the pontine
parabrachial nucleus (Shimada et al., 1985), which projects heav-
ily to the anterolateral portion of BNST (BNST-AL) (Gustafson
and Greengard, 1990; Alden et al., 1994; Dobolyi et al., 2005).
Thus, to shed light on how BNST regulates anxiety, we studied
the effect of CGRP on BNST-AL neurons recorded with the patch
method in brain slices in vitro.

Materials and Methods
Slice preparation. Procedures were approved by the Institutional Animal
Care and Use Committee of Rutgers University, in compliance with the
Guide for the Care and Use of Laboratory Animals (Department of
Health and Human Services). Male Lewis rats (4 –7 weeks old) were
anesthetized with avertin (300 mg/kg, i.p.), followed by isoflurane. After
abolition of reflexes, they were perfused with an ice-cold solution con-
taining (in mM) as follows: 126 choline chloride, 2.5 KCl, 1 MgCl2, 26
NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 10 glucose. The brains were sliced
with a vibrating microtome (300 �m) while submerged in the same
solution. The slices were then kept in an oxygenated chamber containing
artificial CSF (aCSF; as above except for the substitution of 126 mM NaCl
for choline chloride, pH 7.2, 300 mOsm). The temperature of the cham-
ber was kept at 34°C for 20 min and then returned to room temperature.
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One hour later, slices were then transferred to a recording chamber per-
fused with oxygenated aCSF at 32°C (6 ml/min).

Electrophysiological recordings. Whole-cell recordings of BNST-AL
neurons were obtained under visual guidance using 5– 8 M� pipettes
pulled from borosilicate glass capillaries. The intracellular solution con-
tained (in mM): 130 K-gluconate, 10 HEPES, 10 KCl, 2 MgCl2, 2 ATP-Mg,
and 0.2 GTP-tris(hydroxymethyl)aminomethane, pH 7.2, 280 mOsm.
The liquid junction potential was 10 mV with this solution. However,
membrane potential (Vm) values mentioned below were not corrected
for the junction potential. We used an Axoclamp-2B amplifier (Molec-
ular Devices) and digitized the data at 10 kHz with a Digidata-1200
interface controlled by pClamp-8.1 (Molecular Devices).

To characterize the electroresponsive properties of the cells, we ap-
plied series of current pulses (�10 pA increments; 500 ms; 0.2 Hz) from
�55 and �70 mV; this revealed that all of the neurons recorded in this
study correspond to the previously described Type 1 or Type 2 neurons
(Hammack et al., 2007; Rodríguez-Sierra et al., 2013), with no difference
in CGRP responsiveness between them. A pair of tungsten-stimulating
electrodes (intertip spacing, 200 �m) was placed in the stria terminalis
(ST; see Fig. 1A) and used to deliver brief current pulses (0.1 ms; 0.03
Hz). Cells were kept at �55 mV unless stated otherwise. When testing the
effects of CGRP on ST-evoked EPSP amplitudes, stimulation intensity
(0.1– 0.8 mA) was adjusted to obtain the highest subthreshold response
amplitudes. When testing CGRP effects on IPSPs, the stimulation inten-
sity was adjusted to elicit IPSPs of �5 mV amplitude so that the IPSP
peak would not approach the GABA-A reversal potential. Input resis-
tance (Rin) was calculated as the average voltage response to �10 pA
current injections during the stimulation protocol. A 10 min baseline
recording was obtained before CGRP application. CGRP was then ap-
plied for 10 min. Before versus after peptide comparisons were made
using responses obtained 5–10 min before versus 15–20 min after onset
of CGRP application (separate averages of 10 ST-evoked responses). An-
tagonists were added to the perfusate solution 15 min before CGRP
application and were present throughout the recordings.

Drugs. CGRP (rat), SB-268262 (N-methyl-N-(2-methylphenyl)-3-
nitro-4-(2-thiazolylsulfinyl)-benzamide), picrotoxin, CNQX disodium
salt, and (�)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid
(CPP) were obtained from Sigma. CGRP8 –37 was obtained from Tocris
Bioscience.

Data analysis. Data were analyzed offline using Clampfit version 9.2.
All data are reported as mean � SEM. SEM calculations were modified
for repeated designs as described by Cousineau (2005). For statistical
analyses, we conducted one-way ANOVA with Tukey’s Honestly signif-
icant difference paired post hoc tests as well as paired t tests.

Results
Effect of CGRP on the electroresponsive properties and
synaptic responses of BNST-AL cells
We obtained patch recordings of 184 BNST-AL cells (Fig. 1A)
that had stable resting potentials and generated overshooting ac-
tion potentials upon depolarization. We first tested whether
CGRP (0.5–2 �M) alters the passive properties, firing pattern, or
spike characteristics of BNST-AL cells but found no effect (Table
1). Because it was reported that CGRP increases EPSP amplitudes
in central amygdala neurons at their resting potential (Han et al.,
2005, 2010), we next examined the impact of CGRP on ST-
evoked EPSPs in the presence of picrotoxin (100 �M). Picrotoxin
completely abolished ST-evoked IPSPs in 90% of tested neurons
(36 of 40), allowing us to examine the influence of CGRP (1 �M)
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Figure 1. CGRP potentiates ST-evoked IPSPs. A, Scheme showing stimulating (Stim.) and recording (circles) sites. B, Time course of CGRP effect on IPSPs (solid squares represent CGRP 0.5 �M;
empty squares represent control cells). CGRP steadily increases ST-evoked IPSP amplitudes, and this effect outlasts the period of CGRP application. Insets on left, Examples of ST-evoked responses
in a control cell (top) and one exposed to CGRP (bottom). Inset on top right, Examples of EPSPs isolated with picrotoxin (100 �M) before versus after a 10 min application of CGRP (1 �M). C, Top, Dose
dependency of CGRP effect on IPSPs. After CGRP application (15 min), IPSP amplitudes increased to 260 � 49% for 2 �M (n � 9, p � 0.002), 174 � 22% for 1 �M (n � 4, p � 0.01), and 170 �
15% for 0.5 �M (n � 5, p � 0.0005) of preapplication values. At a concentration of 250 nM CGRP had no significant effect (n � 8, p � 0.41). Eight cells were tested with no CGRP application. C,
Bottom, Two CGRP receptor Type 1 antagonists reduced the effect of CGRP, compared with when CGRP (500 nM, n � 5) was applied alone (SB268262, 50 �M, n � 12, p � 0.001; 500 �M, n � 7,
p � 0.01; CGRP8 –37, 1 �M, n � 4, p � 0.001; 2 �M, n � 5, p � 0.01). AC, Anterior commissure; IC, internal capsule.

Table 1. Effect of CGRP (1 �M) on the electroresponsive properties of BNST-AL
neuronsa

Control CGRP p n

Resting potential (mV) �61.5 � 1.5 �60.9 � 1.4 0.27 26
Input resistance (m�) 715.7 � 74.1 731.2 � 74.6 0.38 26
Time constant (ms) 46.9 � 4.6 50.6 � 4.0 0.25 26
Rheobase (pA) 40.8 � 6.1 42.5 � 5.7 0.44 12
Spike threshold (mV) �48.1 � 2.2 �49.4 � 2.3 0.31 12
Spike latency (ms) 98.2 � 13.3 104.3 � 15.9 0.7 12
Spike amplitude (mV) 87.8 � 3 83.6 � 3.63 0.16 12
Spike duration at half amplitude (ms) 0.48 � 0.03 0.49 � 0.01 0.8 12
Firing rate at rheobase (Hz) 0.75 � 0.21 0.75 � 0.14 1 12
aValues are mean � SEM. We restricted our analysis of passive properties and spike characteristics to cells tested in
the same conditions (before and after CGRP), with no other drugs present. Also, 8 additional cells tested with 250 nM

CGRP were not included because this dose had no effect. Finally, for the spike characteristics, in 14 of the 26 cells
meeting our selection criteria, no responses to positive current pulses were recorded.
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on isolated EPSPs. However, EPSP amplitudes were unaffected
by CGRP (difference of �0.7 � 0.6 mV, n � 12, p � 0.25; Fig. 1B,
top right inset).

In contrast, in the absence of picrotoxin, CGRP significantly
increased the amplitude of ST-evoked IPSPs (Fig. 1B, solid
squares and bottom inset) in a dose-dependent fashion (n � 26;
ANOVA, F(4,29) � 5.48, p � 0.02; Fig. 1C, top). The potentiation
of ST-evoked IPSPs outlasted the CGRP application period by
�20 min (Fig. 1B). Because the increase in IPSP could have re-
sulted from the gradual equilibration of the intracellular Cl�

concentration with that of the pipette solution, we examined
whether the IPSP amplitudes increased spontaneously over time
(n � 8), with no peptide application. However, no significant
time-dependent changes were observed (Fig. 1B, empty squares,
inset; n � 8, p � 0.35). Furthermore, two different CGRP Type 1
receptor antagonists, SB268262 (n � 19) and CGRP8 –37 (n � 9),
reduced or completely abolished the IPSP potentiation produced
by CGRP (Fig. 1C, bottom).

Mechanisms underlying the potentiation of ST-evoked IPSPs
by CGRP
To investigate whether the increase in ST-evoked IPSPs produced
by CGRP is dependent on presynaptic or postsynaptic mecha-
nisms, we conducted three analyses. First, we compared the
paired-pulse ratio (PPR) of ST-evoked IPSCs before versus after
CGRP application (Fig. 2A). In such analyses, two stimuli of
equal intensity are applied in brief succession (50 ms), leading to
an enhancement or reduction of the response elicited by the second
stimulus. Changes in PPR are commonly thought to reflect altera-
tions in transmitter release probability (Creager et al., 1980; Manabe
et al., 1993). PPR tests were performed in the presence of the gluta-
mate receptor antagonists CNQX (10 �M) and CPP (10 �M). In
control conditions, a small average paired-pulse facilitation was ob-
served, but it did not reach significance (p � 0.32). Addition of

CGRP (1 �M) did not alter the PPR of ST-evoked IPSPs (Fig. 2A;
PPR difference of 0.1 � 0.1; n � 6; p � 0.43), suggesting that CGRP
acts postsynaptically to potentiate the IPSPs.

Second, we studied IPSP variability using the data obtained in
the dose–response experiments of Figure 1C. This variability is
known to reflect the probabilistic process underlying transmitter
release and can be estimated by computing the coefficient of
variation (CV, SD/mean). By plotting the ratio of experimental to
control CV 2 against the ratio of experimental to control response
amplitudes, the dependence of presynaptic versus postsynaptic
function can be determined (Bekkers and Stevens, 1990; Manabe
et al., 1993). In these prior studies, a positive correlation between
the two was shown to reflect a presynaptic mechanism, whereas a
horizontal regression is indicative of a purely postsynaptic action.
We found no significant relationship between CV 2 and IPSP am-
plitudes (Fig. 2B; r � �0.06, p � 0.77, n � 14), again pointing to
a postsynaptic locus of CGRP action.

Third, we tested whether CGRP alters the reversal potential
(EGABA-A) of ST-evoked IPSPs in the presence of the glutamate
receptor antagonists CNQX (10 �M) and CPP (10 �M). CGRP (1
�M) caused a significant negative shift of EGABA-A (Fig. 2C; differ-
ence 4.31 � 1.25 mV; control, �72.66 � 1.9 mV; CGRP,
�76.97 � 1.99 mV; p � 0.004, n � 14). Importantly, this effect
was not associated with a change in the Rin drop caused by the
IPSPs (Fig. 2D; �11 � 11 M�; p � 0.33), suggesting that the
CGRP-induced augmentation in IPSP amplitude is largely de-
pendent on an increased Cl� driving force. Indeed, there was a
significant correlation between the CGRP-induced changes in
IPSP amplitudes and EGABA-A (Fig. 2E; n � 14, r � �0.59, p �
0.03). In contrast, in a different sample of control cells without
CGRP application, no time-dependent shift in GABA-A reversal
potential was observed (�0.1 � 0.9 mV, n � 14, p � 0.89).

If CGRP acts postsynaptically to enhance IPSPs by increasing
the Cl� driving force, one would expect manipulations that in-
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Figure 2. CGRP potentiates ST-evoked IPSPs through a postsynaptic mechanism. A1, PPR before and 15 min after CGRP application (n � 6). A2, A3, Average traces from the same cell before (2)
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terfere with the cells’ Cl� homeostasis to disrupt CGRP’s effects.
A major regulator of the intracellular Cl� concentration in neu-
rons (for review, see Kaila, 1994) is the potassium-chloride
cotransporter (KCC), which mediates Cl� extrusion (Misgeld et
al., 1986; Thompson et al., 1988). Consistent with this, VU-
0240551 (40 �M), a selective KCC2 blocker, depolarized EGABA-A

by 4.1 � 1.1 mV (n � 9, p � 0.007) and prevented the effects of
CGRP on IPSP amplitudes (0.5 � 0.5 mV; n � 7, p � 0.31) and
EGABA-A (�0.3 � 0.7 mV; p � 0.72; Fig. 3).

An alternative interpretation for CGRP effects, namely, that it
results from an enhancement of GABA-B IPSPs, appears unlikely
for the following reasons. First, as mentioned just above, inhib-
iting KCC2 blocked the CGRP effect. Second, our IPSP measure-
ments were performed at the peak of the GABA-A IPSPs, �30 ms
from response onset, well before the development of GABA-B
responses in other cell types. Third, most BNST-AL cells lacked
overt GABA-B responses, with picrotoxin abolishing ST-evoked
IPSPs in 36 of 40 cells. Last, in the rare BNST-AL cells with
picrotoxin-resistant IPSP components, addition of CGRP failed
to alter the residual IPSP amplitudes (reduction of 0.4 � 0.04
mV, n � 2).

Discussion
This study aimed to characterize the influence of CGRP on BNST
neurons. Pontine parabrachial neurons constitute the sole source
of CGRP to BNST, and they project to its anterolateral sector
(Alden et al., 1994) where there are no glutamatergic, only
GABAergic/peptidergic, cells (Poulin et al., 2009). In light of
these data, the finding that intra-BNST infusions of CGRP en-

hance startle and neuronal activation in BNST-AL targets (Sink et
al., 2011) suggested that CGRP inhibits BNST-AL neurons. How-
ever, this inference is in apparent contradiction with the generally
accepted view that BNST activity exerts an anxiogenic influence
(Davis et al., 2010). Here, we observed that CGRP inhibits
BNST-AL neurons. Below, we consider the mechanisms and sig-
nificance of CGRP’s inhibitory influence on BNST-AL for the
regulation of fear and anxiety.

CGRP potentiates GABA-A inhibition through a postsynaptic
regulation of Cl � homeostasis
To the best of our knowledge, there are no prior reports of
CGRP’s influence on BNST neurons. However, in other parts of
the nervous system, a variety of cell type-specific effects were
reported. For example, CGRP inhibits high-threshold voltage-
gated Ca 2
 currents in neurons of nucleus tractus solitarius (Ho-
sokawa et al., 2010) but enhances them in DRG cells (Ryu et al.,
1988). It causes a membrane hyperpolarization in some cell types
(Kajekar and Myers, 2008) and the opposite (Gokin et al., 1996)
or no change in others (Meng et al., 2009). In CA1 pyramidal
cells, CGRP inhibits the slow Ca 2
-dependent K
 current (Haug
and Storm, 2000). Consistent with this, in central amygdala neu-
rons, CGRP reduces spike frequency adaptation. In the same cell
type, CGRP also causes a postsynaptically mediated increase in
glutamatergic EPSCs at rest (Han et al., 2005, 2010).

Given the functional kinship and anatomical similarities be-
tween BNST and the central amygdala, one might expect CGRP
to exert similar effects at the two sites. Yet, this is not what we
observed. In BNST-AL cells, firing rate/pattern, passive proper-
ties, spike characteristics, and EPSP amplitudes were unaffected
by CGRP. Instead, CGRP produced a robust potentiation of ST-
evoked IPSPs, and this effect was reduced or blocked by CGRP
Type 1 receptor antagonists.

Several observations indicate that the IPSP potentiation pro-
duced by CGRP is dependent on a postsynaptic mechanism.
First, CGRP did not alter the PPR, and there was no correlation
between the ratios of experimental to control IPSP variance ver-
sus amplitude. Second, the Rin drop associated with the IPSP was
not altered by CGRP. Third, CGRP shifted EGABA-A negatively,
and the amplitude of this shift correlated with the magnitude of
IPSP potentiation. Last, CGRP’s effect on IPSP amplitudes and
reversal potentials was blocked by prior application of a KCC
inhibitor. Although the mechanisms of CGRP action on chloride
homeostasis are currently unclear, given the results obtained in
other cells types (for review, see Kahle et al., 2010), an upregula-
tion of potassium chloride transporters by phosphoregulation is
likely involved.

Significance for the role of BNST in fear and anxiety
Although its name implies otherwise, BNST is in fact comprised
of a collection of nuclei that form contrasting connections with
fear effector neurons (Bota et al., 2012). As reviewed above, early
lesion and inactivation studies targeting BNST as a whole sup-
ported the view that BNST promotes the genesis of long-lasting
anxiety-like states (Walker and Davis, 1997). However, more re-
cent reports using techniques that allow selective manipulations
of different BNST regions (Kim et al., 2013) or of different cell
types within these regions (Jennings et al., 2013) revealed that
BNST is functionally heterogeneous. Consistent with this,
neurons in BNST-AL and the anteromedial part of BNST
(BNST-AM) show opposite behaviors in relation to classically
conditioned fear (Haufler et al., 2013): BNST-AL neurons fire at
lower rates during high than low fear states, whereas BNST-AM
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cells do the opposite. The reduced activity of BNST-AL cells dur-
ing fear is consistent with our observations that CGRP inhibits
BNST-AL neurons and the fact that intra-BNST CGRP infusions
potentiate acoustic startle while increasing neuronal activity in
BNST-AL targets (Sink et al., 2011). Together, these findings sug-
gest that BNST-AM and BNST-AL exert opposite influences on
fear output networks, with BNST-AM neurons promoting and
BNST-AL cells inhibiting fear and anxiety. Moreover, because
BNST-AL contributes inhibitory projections to BNST-AM (Tur-
esson et al., 2013), it is likely that antagonistic interactions take
place between the two regions.

In contrast to the above, a different interpretation was recently
offered for CGRP’s anxiogenic effects. Indeed, Sink et al. (2013)
reported that virally mediated knockdown of CRF expression as
well as systemic or intra-BNST infusions of CRF1 antagonists
interfered with the startle potentiation produced by intra-BNST
CGRP infusions. Based on these results, the authors suggested
that CGRP acts by increasing the activity of CRF-positive BNST
neurons. Given that these cells constitute a small subset of
BNST-AL cells and that the CGRP effects described here were
seen in the vast majority of tested cells, it remains unclear what
the relative importance of the CRF and GABA effects is in medi-
ating CRGP’s anxiogenic influence.

References
Alden M, Besson JM, Bernard JF (1994) Organization of the efferent projec-

tions from the pontine parabrachial area to the bed nucleus of the stria
terminalis and neighboring regions: a PHA-L study in the rat. J Comp
Neurol 341:289 –314. CrossRef Medline

Bekkers JM, Stevens CF (1990) Presynaptic mechanism for long-term po-
tentiation in the hippocampus. Nature 346:724 –729. CrossRef Medline

Bota M, Sporns O, Swanson LW (2012) Neuroinformatics analysis of mo-
lecular expression patterns and neuron populations in gray matter re-
gions: the rat BST as a rich exemplar. Brain Res 1450:174 –193. CrossRef
Medline

Cousineau D (2005) Confidence intervals in within subject designs: a sim-
pler solution to Loftus and Masson’s method. Tutorials Quant Methods
Psychol 1:42– 45.

Creager R, Dunwiddie T, Lynch G (1980) Paired-pulse and frequency facil-
itation in the CA1 region of the in vitro rat hippocampus. J Physiol 299:
409 – 424. Medline

Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in
rats and humans: role of the extended amygdala in fear vs anxiety. Neu-
ropsychopharmacology 35:105–135. CrossRef Medline

Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M (2005) Calcitonin
gene related peptide containing pathways in the rat forebrain. J Comp
Neurol 489:92–119. CrossRef Medline

Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria
terminalis, anteromedial area: cerebral hemisphere integration of neu-
roendocrine, autonomic, and behavioral aspects of energy balance.
J Comp Neurol 494:142–178. CrossRef Medline

Dong HW, Petrovich GD, Watts AG, Swanson LW (2001) Basic organiza-
tion of projections from the oval and fusiform nuclei of the bed nuclei of
the stria terminalis in adult rat brain. J Comp Neurol 436:430 – 455.
CrossRef Medline
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