Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Sep;83(18):7064–7068. doi: 10.1073/pnas.83.18.7064

Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm.

M R Prince, T F Deutsch, A H Shapiro, R J Margolis, A R Oseroff, J T Fallon, J A Parrish, R R Anderson
PMCID: PMC386653  PMID: 3462744

Abstract

Ablation of human atheromas with laser pulses that had only a small effect on normal artery tissue was shown in vitro in air and under saline using 1-mu sec pulses at 465 nm from a flashlamp-excited dye laser. At this wavelength, there is preferential absorption in atheromas due to carotenoids. The threshold fluence for ablation was 6.8 +/- 2.0 J/cm2 for atheromas and 15.9 +/- 2.2 J/cm2 for normal aorta tissue. At a fluence of 18 J/cm2 per pulse, the ablated mass per unit of energy ranged from 161 to 370 micrograms/J for atheromas and from 50 to 74 micrograms/J for normal aorta tissue. Ablation products consisted of cholesterol crystals, shredded collagen fibers, and small bits of calcific material. Most debris was less than 100 micron in diameter, but a few pieces were as large as 300 micron. High-speed photography of ablation in air suggested explosive ejection of debris, caused by vapor formation, at speeds on the scale of 300 m/sec. Histological analysis showed minimal thermal damage to residual tissue. These data indicate that selective laser ablation of atheromas is possible in vitro.

Full text

PDF
7064

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abela G. S., Normann S., Cohen D., Feldman R. L., Geiser E. A., Conti C. R. Effects of carbon dioxide, Nd-YAG, and argon laser radiation on coronary atheromatous plaques. Am J Cardiol. 1982 Dec;50(6):1199–1205. doi: 10.1016/0002-9149(82)90448-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. R., Parrish J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983 Apr 29;220(4596):524–527. doi: 10.1126/science.6836297. [DOI] [PubMed] [Google Scholar]
  3. Crea F., Abela G. S., Fenech A., Smith W., Pepine C. J., Conti C. R. Transluminal laser irradiation of coronary arteries in live dogs: an angiographic and morphologic study of acute effects. Am J Cardiol. 1986 Jan 1;57(1):171–174. doi: 10.1016/0002-9149(86)90974-4. [DOI] [PubMed] [Google Scholar]
  4. Deckelbaum L. I., Isner J. M., Donaldson R. F., Laliberte S. M., Clarke R. H., Salem D. N. Use of pulsed energy delivery to minimize tissue injury resulting from carbon dioxide laser irradiation of cardiovascular tissues. J Am Coll Cardiol. 1986 Apr;7(4):898–908. doi: 10.1016/s0735-1097(86)80355-2. [DOI] [PubMed] [Google Scholar]
  5. Gerrity R. G., Loop F. D., Golding L. A., Ehrhart L. A., Argenyi Z. B. Arterial response to laser operation for removal of atherosclerotic plaques. J Thorac Cardiovasc Surg. 1983 Mar;85(3):409–421. [PubMed] [Google Scholar]
  6. Geschwind H. J., Boussignac G., Teisseire B., Benhaiem N., Bittoun R., Laurent D. Conditions for effective Nd-YAG laser angioplasty. Br Heart J. 1984 Nov;52(5):484–489. doi: 10.1136/hrt.52.5.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ginsburg R., Wexler L., Mitchell R. S., Profitt D. Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients. Radiology. 1985 Sep;156(3):619–624. doi: 10.1148/radiology.156.3.3161118. [DOI] [PubMed] [Google Scholar]
  8. Grundfest W. S., Litvack I. F., Goldenberg T., Sherman T., Morgenstern L., Carroll R., Fishbein M., Forrester J., Margitan J., McDermid S. Pulsed ultraviolet lasers and the potential for safe laser angioplasty. Am J Surg. 1985 Aug;150(2):220–226. doi: 10.1016/0002-9610(85)90124-2. [DOI] [PubMed] [Google Scholar]
  9. Lee G., Ikeda R. M., Chan M. C., Lee M. H., Rink J. L., Reis R. L., Theis J. H., Low R., Bommer W. J., Kung A. H. Limitations, risks and complications of laser recanalization: a cautious approach warranted. Am J Cardiol. 1985 Jul 1;56(1):181–185. doi: 10.1016/0002-9149(85)90590-9. [DOI] [PubMed] [Google Scholar]
  10. Macruz R., Martins J. R., Tupinambá A. da S., Lopes E. A., Vargas H., Pena A. F., de Carvalho V. B., Armelin E., Décourt L. V. Possibilidades terapêuticas do raio laser em ateromas. Arq Bras Cardiol. 1980 Jan;34(1):9–12. [PubMed] [Google Scholar]
  11. Murphy-Chutorian D., Kosek J., Mok W., Quay S., Huestis W., Mehigan J., Profitt D., Ginsburg R. Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycline. Am J Cardiol. 1985 May 1;55(11):1293–1297. doi: 10.1016/0002-9149(85)90491-6. [DOI] [PubMed] [Google Scholar]
  12. Prince M. R., Deutsch T. F., Mathews-Roth M. M., Margolis R., Parrish J. A., Oseroff A. R. Preferential light absorption in atheromas in vitro. Implications for laser angioplasty. J Clin Invest. 1986 Jul;78(1):295–302. doi: 10.1172/JCI112564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spears J. R., Marais H. J., Serur J., Pomerantzeff O., Geyer R. P., Sipzener R. S., Weintraub R., Thurer R., Paulin S., Gerstin R. In vivo coronary angioscopy. J Am Coll Cardiol. 1983 May;1(5):1311–1314. doi: 10.1016/s0735-1097(83)80145-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES