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ABSTRACT

Motivation: With high-throughput DNA sequencing costs dropping

5$1000 for human genomes, data storage, retrieval and analysis are

the major bottlenecks in biological studies. To address the large-data

challenges, we advocate a clean separation between the evidence

collection and the inference in variant calling. We define and imple-

ment a Genome Query Language (GQL) that allows for the rapid

collection of evidence needed for calling variants.

Results: We provide a number of cases to showcase the use of GQL

for complex evidence collection, such as the evidence for large struc-

tural variations. Specifically, typical GQL queries can be written in 5–10

lines of high-level code and search large datasets (100 GB) in minutes.

We also demonstrate its complementarity with other variant calling

tools. Popular variant calling tools can achieve one order of magnitude

speed-up by using GQL to retrieve evidence. Finally, we show how

GQL can be used to query and compare multiple datasets. By separ-

ating the evidence and inference for variant calling, it frees all variant

detection tools from the data intensive evidence collection and

focuses on statistical inference.

Availability: GQL can be downloaded from http://cseweb.ucsd.edu/

~ckozanit/gql.

Contact: ckozanit@ucsd.edu or vbafna@cs.ucsd.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

As sequencing costs drop, we envision a scenario where every

individual is sequenced, perhaps multiple times in their lifetime.

There is already a vast array of genomic information across

various large-scale sequencing projects including the 1000

genome project (1000 Genomes Project Consortium et al.,

2010) and the cancer genome atlas (TCGA) (Koboldt et al.,
2012). In many of these projects, a re-sequencing strategy is

applied in which whole genomes are sequenced redundantly

with coverage between 4 and 40�. The clone inserts (�500 bp)

and sequenced reads (�150 bp) are typically short and are not de

novo assembled. Instead, they are mapped back to a standard

reference to decipher the genomic variation in the individual

relative to the reference. Even with advances in single-molecule

sequencing and genomic assembly (Clarke et al., 2009), we are

many years away from having finished and error-free assembled

sequences from human donors. At least in the near to mid-term,

we expect that the bulk of sequencing will follow the re-

sequencing/mapping/variant calling approach (e.g. McKenna

et al., 2010).

Mapped reads (represented by BAM files) from a single indi-

vidual sequenced with 40� coverage are relatively inexpensive to

generate, but they are storage intensive (�100GB). As sequen-

cing becomes more accessible, and larger numbers of individuals

are sequenced, the amount of information will increase rapidly;

this will pose a serious challenge to available community

resources. Although raw archiving of large datasets is possible

(Wheeler et al., 2008), the analysis of this huge amount of data

remains a challenge. To facilitate access, some of the large

datasets have been moved to commercially available cloud plat-

forms. For example, the 1000 genome data are available on

Amazon’s EC2 (1000genomescloud, 2012). The genomes on

Amazon can be analyzed remotely using appropriate software

frameworks like Galaxy [that allow for the pipelining/integration

of multiple analysis tools (Goecks et al., 2010)], as well as tools

like Genome Analysis Toolkit (GATK) (McKenna et al., 2010)

and samtools (Li et al., 2009). The promise of this approach is

that much of the analysis can be done remotely, without the need

for extensive infrastructure on the user’s part.
Even with these developments, a significant challenge remains.

Each individual genome is unique, and the inference of variation,

relative to a standard reference remains challenging. In addition

to small indels and substitutions (the so-called single-nucleotide

variations or SNVs), an individual might have large structural

changes, including, but not limited to, insertions, deletions,

inversions (Sharp et al., 2006), translocations of large segments

(102–106 bp in size) (Giglio et al., 2001), incorporation of novel

viral and microbial elements and recombination-mediated

rearrangements (Perry et al., 2006). Further, many of these

rearrangements may overlap leading to more complex structural

variations. The detection of these variations remains challenging

even for the simplest SNVs, and there is little consensus on the

best practices for the discovery of more complex rearrangements.

For large, remotely located datasets, it is often difficult to create

a fully customized analysis. It is often desirable to download

the evidence (reads) required for the detection of variation to a

local machine, and experiment with a collection of analysis tools

for the actual inference. In that case, we are back again to

the problem of building a large local infrastructure, including

clusters and large disks, at each analysis site in addition to the

resources in the cloud.
As an example, we consider the use of paired-end sequencing

and mapping (PEM) for identifying structural variation. In*To whom correspondence should be addressed.
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PEM, fixed length inserts are selected for sequencing at both
ends, and the sequenced sub-reads are mapped to a reference
genome. Without variation, the distance and orientation of the

mapped reads match the a priori expectation. However, if a
region is deleted in the donor relative to the reference, ends of
the insert spanning the deleted region will map much further

apart than expected. Similarly, the expected orientation of the
read alignments for Illumina sequencing is (þ,�). A (þ,þ) orien-
tation is suggestive of an inversion event.

Using PEM evidence, different callers still use different
inference mechanisms. GASV (Sindi et al., 2009) arranges over-
lapping discordantly mapping pair-end reads on the Cartesian

plane and draws the grid of possible break point locations under
the assumption that the discordancy is a result of a single SV.
Breakdancer (Chen et al., 2009) finds all areas that contain at

least two discordant pair-end reads, and it uses a Poisson model
to evaluate the probability that those areas contain a SV as a
function of the total number of discordant reads of each of those

areas. VariationHunter (Hormozdiari et al., 2009) reports that
regions of SV are the ones that minimize the total number of
clusters that the pair ends can form. Given the complexity of

the data, and the different inference methodologies, all of these
methods have significant type 1 (false-positive), and type 2 (false-
negative) errors. Further, as the authors of VariationHunter

(Hormozdiari et al., 2009) point out, there are a number of con-
founding factors for discovery. For example, repetitive regions,
sequencing errors, could all lead to incorrect mappings. At the

same time, incorrect calls cannot be easily detected because tools
need to be modified to re-examine the source data. In addition,
the run time of the entire pipeline of those tools is not negligible

given that they have to parse the raw data.
A starting point of our work is the observation all tools follow

a two-step procedure, implicitly or explicitly, for discovery of

variation. The first step—the evidence-step—involves the process-
ing of raw data to fetch (say) the discordant pair-end reads; the
second step—the inference-step—involves statistical inference on

the evidence to make a variant call. Moreover, the evidence
gathering step is similar and is typically the data-intensive part
of the procedure.

For example, in SNV discovery, the evidence step is the
alignment (‘pile-up’) of nucleotides to a specific location, whereas
the inference step involves SNV estimation based on alignment

quality and other factors. By contrast, for SVs such as large
deletions, the evidence might be in the form of (a) length-
discordant reads and (b) concordant reads mapping to a

region; the inference might involve an analysis of the clustering
of the length-discordant reads, and looking for copy-number
decline and loss of heterozygosity in concordant reads.

In this article, we propose a Genome Query Language (GQL)
that allows for the efficient querying of genomic fragment data
to uncover evidence for variation in the sampled genomes.

Note that our tool does not replace other variant calling
tools, but it is complementary to existing efforts. It focuses
on the collection of evidence that all inference tools can use to

make custom inference. First, by providing a simple interface
to extract the required evidence from the raw data stored in
the cloud, GQL can free callers from the need to handle large

data efficiently. Second, we show how existing tools can be
sped up and simplified using GQL, with larger speed-ups

possible through a cloud based parallel GQL implementation.

Third, analysts can examine and visualize the evidence for

each variant, independent of the tool used to identify the

variant.
Software layers and interfaces for genomics: We also place

GQL in the context of other genomics software. It is helpful to

think of a layered, hourglass, model for genomic processing. At

the bottom is the wide, instrument layer (customized for each

instrument) for calling reads. This is followed by mapping/

compression layers (the ‘narrow waist’ of the hourglass), and

subsequently, multiple application layers. Some of these layers

have been standardized. Many instruments now produce

sequence data as ‘fastq’ format, which in turn is mapped against

a reference genome using alignment tools, such as BWA (Li and

Durbin, 2010) and MAQ (Li et al., 2008); further, aligned reads

are often represented in the compressed, BAM format (Li et al.,

2009) that also allows random access. Recently, more com-

pressed alignment formats have come into vogue including

SlimGene (Kozanitis et al., 2011) CRAM (Hsi-Yang Fritz

et al., 2011) and others (Asnani et al., 2012; Cox et al., 2012;

Popitsch and von Haeseler, 2013; Wan et al., 2012; Yanovsky,

2011) as well as compression tools for unmapped reads (Jones

et al., 2012). At the highest level, standards such as VCF (VCF

Tools, 2011) describe variants (the output of the inference stage

of Fig. 1b).
In this context, we propose additional layering. Specifically,

we advocate the splitting of the processing below the application

layer to support a query into an evidence layer(deterministic,

large data movement, standardized) and an inference layer (prob-

abilistic, comparatively smaller data movement, little agreement

on techniques).
For evidence gathering, the closest tools are samtools (Li et al.,

2009), BAMtools Barnett et al. (2011), BEDtools (Dale et al.,

2011; Quinlan and Hall, 2010), BioHDF (Mason et al., 2010) and

GATK (McKenna et al., 2010). Samtools consists of a toolkit

and an API for handling mapped reads; together, they comprise

the first attempt to hide the implications of raw data handling by

treating datasets uniformly regardless of the instrument source.

Fig. 1. Abstraction and layering for genomics. The bottom (physical)

layer is the instrumentation software for parsing raw data into sequences.

Mapping against a known reference is the first level of abstraction of the

data. Compression is used to reduce the storage requirements. Detection

of variation involves an evidence layer to collect relevant reads, and an

inference layer for statistical analysis. The inference results in variant calls

(typically as VCF files) that can be used by other applications to make

genetic discoveries
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Samtools also provide quick random access to large files and

provide a clean API to programmatically handle alignments.

The tool combines index sorted BAM files with a lightweight

and extremely efficient binning that clusters reads that map in

neighboring locations. Thus, samtools can quickly return a set

of reads that overlap with a particular location or create a pileup

(i.e. all bases seen in reads that map to any reference locus).

BAMtools is a Cþþ API built to support queries in a JSON

format. BEDtools, closely aligned with samtools, allows interval-

related queries through a clean unix and a python interface.

Although powerful, these tools still require programmer-level

expertise to open binary files, assign buffers, read alignments

and manipulate various fields.
The GATK (McKenna et al., 2010) is built on top of samtools

and reduces the programming complexity of data collection.

GATK’s API provides two main iterator categories to an appli-

cation programmer. The first iterator traverses individual reads;

the second iterator walks through all genome loci, either indi-

vidually or in adjacent groups. The toolkit, which is written

based on the Map Reduce framework and thus easily paralleliz-

able, is an excellent resource for developers of applications that

need to determine local realignment, quality score re-calibration

and genotyping (DePristo et al., 2011). The support of many of

these tools for looking at paired-ends, and consequently for

structural variation, is limited, depending (in GATK’s case) on

the existence of the optional fields RNEXT and PNEXT of the

SAM/BAM alignments (gatk-pairend, 2012).
The single biggest difference between our proposed tool, GQL

and others is that GQL has a (SQL-like) declarative syntax in its

own language, as opposed to a procedural syntax, designed

to help programmers rather than the end user. Declarative

languages, such as GQL and SQL, not only raise the level of

abstraction of data access but also allow automatic data opti-

mization without programmer intervention. By asking users to

specify what data they want as opposed to how they want to

retrieve it, we will show that GQL can facilitate automatic

optimizations, such as the use of indices and caching; these

seem harder to support in other tools without explicit program-

mer directives. Further, it is feasible to compile GQL queries to a

distributed, cloud based, back-end.
Finally, GQL queries allow genomes to be browsed for

variations of interest, allowing an interactive exploration of the

data as we show in our results. Although the UCSC browser also

allows genome browsing, it does only by position or string,

which we refer to as syntactic genome browsing. By contrast,

GQL allows browsing for all regions containing reads that satisfy

a specified property (e.g. discrepant reads) and view the results

on the UCSC browser. We refer to this as semantic genome

browsing and give many examples in Section 2. Our performance

results indicate that such browsing can be done interactively in

minutes using a single cheap CPU.

1.1 An overview of GQL: language features and

implementation

We chose to use an SQL-like syntax to express GQL because

SQL is an accepted and popular standard for querying data-

bases. Although our syntax is SQL-like, we need some special

operators and relations for genomic queries that do not appear

to fit well with existing off-the-shelf Relational Database

Management Systems (RDBMS). Thus, we developed our own

compiler to process GQL queries and translate them into Cþþ

API calls (Section 4). Our compiler also allowed us the freedom

to heavily optimize our GQL implementation (by several orders

of magnitude), which would be harder to do with existing

RDBMS.
We conceptualize the genomic fragment data as a database

with some key relations. The first is a relation called READS

that describes the collection of mapped fragment reads and all

their properties but does not contain the actual bases or quality

scores. For example, for paired-end sequencing, each entry in the

READS table will contain information about a read, its mapping

location and the location of its paired-end. The reads table is

constructed by pre-processing a BAM file through a set of scripts

that accompanies the source code that split, index and move the

contents of the file to the appropriate directory that GQL can

access; it contains fields such as the mapping location, the strand,

the read length, the location of the pair-ends. In addition, GQL

accepts a freely formatted Text table that can be any table that a

user can define. Text table can, for example, be used to describe

gene annotations.
GQL also accepts interval tables, which have three special

fields (chromosome, and begin and end location within the

chromosome) demarcating the interval. The user has the

option of creating an interval table from any table by marking

two of the attributes as begin and end; the chromosome field

is updated automatically during the iteration through all

chromosomes. The most interesting aspects of GQL semantics

lie in allowing interval manipulation. In programming languages

terminology, intervals are first-class entities in GQL. The

Supplementary Information summarizes all GQL tables and

the respective attributes of the language.

Language constructs. All GQL statements (like SQL) have the

form SELECT hattributesi FROM htablesi WHERE hconditioni.

� The FROM statement specifies the input tables to the

statement.

� The SELECT statement corresponds to the projection operator

in the relational calculus (Codd, 1970). It returns a subset of

the attributes of the input table.

� The WHERE statement selects the subset of records of the

input tables that satisfy the filter expression that follows

the WHERE statement.

� The using intervals() expression optionally follows a table

specifier in the FROM statement. It produces an interval for

each entry of the corresponding table according to the spe-

cified expression. If the input table is of type READS the

user has the ability to add the keyword both_mates as a third

argument to the expression specified by using intervals to

denote that a pair end is treated as a single interval. This

expression does not return any table and can only be used

with the create_intervals or MAPJOIN operations.

� The create_intervals function constructs a table of intervals

from the input table. When the function is called, the table

in the FROM statement is followed by the statement using

intervals(a,b) so that the function knows which fields to

use as intervals.
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� The MAPJOIN statement takes two tables as input and

concatenates any two entries of these tables whose corres-

ponding intervals intersect. The user specifies intervals with

the expression using intervals next to each input table.

� The merge_intervals(interval_count op const) statement is a

function whose input table needs to be of type Intervals.

It creates an output table of intervals from the intervals in

the input table that overlap with at least or at most the

number of intervals specified inside the parenthesis. This

statement uses op to specify at least or at most.

The implementation of GQL consists of a front-end that

parses user input and a back-end that implements the remaining

functionality of the system. The front-end is implemented using

the flex (Flex, 1990) and Bison (Bison, 1988) tools and is based

on the GQL grammar (Supplementary Information). It performs

syntactic and semantic analysis and converts the GQL state-

ments into a series of back-end procedure calls with the proper

arguments. It also converts any user expressions, such as the ones

found in the WHERE and using intervals statements into custom-

izable Cþþ files. These are compiled and run as executables on

the back-end. The back-end implements the basic table types and

all remaining GQL functionality (see Section 4 for details).

2 RESULTS AND DISCUSSION

We demonstrate the flexibility and efficiency of GQL by walking

through some use cases that involve identifying donor regions

with variations, and supplying the read evidence supporting the

variation. We use the Yoruban trio (both parents and a child)

from the Hapmap project (1000 Genomes Project Consortium

et al., 2010) that was sequenced as part of the 1000 Genome

Project. The genomes are labeled NA18507, NA18508 and

NA18506 for the father, mother and the child, respectively.

Each genome was sequenced to �40� coverage (�1B mapped

reads) using 2� 100 bp paired-end reads from 300 bp inserts.

We use the large deletion detection problem for a case study. The

corresponding input BAM file sizes are all in the range 73–100

GB.

Large deletions on NA18506. Paired-end mapping provides an

important source of evidence for identifying large structural vari-

ations (Bashir et al., 2007; Kidd et al., 2008). Length discordant

clones (pairs of reads with uncharacteristically long alignment

distance between the two mapped ends) are indicative of a dele-

tion event. We start by using GQL to identify all genomic regions

(in reference coordinates) that have an ‘abundance’ of length-

discordant clones.

(1) Select inserts where both ends are mapped, and the insert

size is at least 350 bp (i.e. the insert size exceeds the mean

insert size by more than 5� the standard deviation) and at

most 1 Mb (Supplementary Information).

Discordant¼ select * from READS

where location� 0

and mate_loc� 0

and abs(mate_locþ length-location)4350

and abs(mate_locþ length-location)51 000 000)

(2) Create an interval table, with an interval for each discord-

ant read (by specifying the begin and end coordinates).

This changes the output data type from reads to intervals

on the reference.

Disc2Intrvl¼ select create_intervals() from Discordant

using intervals(location, mate_loc, both_mates)

(3) We then merge overlapping intervals and identify maximal

intervals that are overlapped by at least five clones. This

set of intervals points to all regions of the reference with

evidence of a deletion.

Predicted_deletions¼ select merge_intervals (interval_

count44)

from Disc2Intrvl

(4) To output the intervals, and the supporting discordant

reads, we do a final MAPJOIN and print the result. This

changes the output data type back to reads stored in a

BAM file that can be used downstream by other software.

out¼ select * from MAPJOIN Predicted_deletions,

Discordant

using intervals(location, mate_loc, both_mates)

print out

Note that entire query is a few lines of GQL. Further, the

query took 10 min to execute on the entire genome. All the re-

sults we report used a single i7 Intel CPU with 18 GB of random

access memory and 2 TB of disk. Much of the execution time was

spent on printing the large output (12K regions, with 44 MB of

supporting evidence).
These observations suggest that complex GQL queries could

efficiently be performed in the cloud. Given that organizations

can easily obtain 100 Mbps speeds today (Amazon’s Direct

Connect even allows 1 Gbps speeds), the output of 44 MB can

be retrieved interactively to a user desktop in54 s. By contrast,

downloading the original BAM files would take 42h at 100

Mbps. Second, although we measured the query to take 10

min on a single processor, simple parallelism by chromosome

(easily and cheaply feasible in the cloud) should provide a

factor of 20 speed-up, leading to a query time of 30 s.
In addition, given the decreasing cost of random access

memory, an implementation of GQL on a memory only data-

base system, such as SAP HANA, can provide additional speed-

up by eliminating disk accesses. Currently, the output products

of each SELECT statement are stored to disk and are loaded again

by subsequent SELECT statements. A memory only database will

be able to remove this overhead. Further, writing output BAM

files comprises a clear performance bottleneck caused by a large

number of alternating read and write disk accesses, which can

also be eliminated by a memory only database. Despite these

advantages of memory only databases, cloud implementations

are also useful because many current genomic archives are

stored in the cloud, such as the 1000 genomes archive on EC2.

Further, we wrote a program to convert the intervals output

by a GQL query to the BED format, which can then be uploaded

to the UCSC genome browser for further investigation, including
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comparisons with other reference annotations. See Figure 2a and
b for examples showing overlap between output regions, and

known CNVs, and a previously reported Indel in NA18507
(Bentley et al., 2008), the father of NA18506.
Conrad et al. (2006) used array hybridization to identify dele-

tions in a number of genomes, including NA18506. We wrote a
GQL query to compare the two sets of predictions as follows: we

created a table with all of Conrad’s predictions and performed a
MAPJOIN with our predicted intervals. We then output the

common regions that overlap and the corresponding discordant
read evidence. This query ran in 7 min, and the total size of the

produced BAM files was 164 KB. Our results overlap with 15 of
the 23 findings of Conrad et al. (2006). To look at support for
regions identified by Conrad et al. (2006), but not by us, we used

MAPJOIN to identify all discordant and concordant reads that
overlap with Conrad-only predictions using the following GQL

query.

Discordant¼ select * from READS

where location �0 and mate_loc� 0

and abs(mate_locþ length-location)4350

and abs(mate_locþ length-location)51 000000)

out¼ select * from mapjoin conr_only_intrvls, Discordant

using intervals(location, mate_loc, both_mates)

Interestingly, none of the eight Conrad-only predictions were
supported by discordant-reads. Further, six of the eight Conrad-
only regions had concordant read coverage exceeding 30; the

other two had coverage exceeding 10, suggesting heterozygous
deletion, at best. The GQL query to retrieve the entire evidence

took 12 min, and a few lines of code.
To validate regions with discordant read evidence output by

us, but not predicted by Conrad et al., we ran the same deletion-
query in the parents of NA18506 to see whether they are repro-
duced in the parents. Three of the predicted deletions overlapped

with discordant reads in both parents and nine in one parent.
Only three of our predicted deletions do not appear in any of

the parents. In each case, further statistical analysis can be used

on the greatly reduced dataset to help validate the predicted

deletions.
Inversions in the donor genome. To detect putative inversions,

we locate regions that are covered by at least five different pairs

of orientation discordant reads.

Discordant¼ select * from READS using intervals

(location,mate_loc, both_mates)

where location� 0 and mate_loc� 0

and strand¼¼mate_strand

and abs(mate_locþ length-location)4270

and abs(mate_locþ length-location)51 000 000)

The query needs 8 min to run and identifies 366 regions of

possible inversion events and returns 47 324 alignments, which

are stored in BAM files of size 3 MB.
High CNV. The average coverage of reads in the dataset is 40.

To identify high copy number regions (possible duplications), we

locate regions with � 200 coverage.

H1¼ select create_intervals() from READS

where location� 0

out¼ select merge_intervals(interval_coverage4200)

from H1

The query needs 30 min to run, and the evidence data of the

output consist of 9.7M reads stored in BAM files of size 664

MB. We contrast this with the original BAM file of size of 72 GB

that a caller would have parsed had GQL not been used.
Reads mapping to specific intervals. Here, we output all reads

that map to known genic regions. The query uses an external

table that consists of all known genes based on the RefSeq data-

base. The execution time is 288 min, limited by the huge output

size (495M reads).

mapped_reads¼ select * from reads

where location40

out¼ select *

from mapjoin Refseq_genes using intervals(txStart, txEnd),

mapped_reads using intervals (location, locationþ length,

both_mates)

Efficacy of Mapjoin implementation. In most databases, Joins

are typically the most time-expensive operation. Typical GQL

queries use intermediate MapJoin operations extensively. We im-

plement a special Lazy Join procedure to greatly improve the

runtime, explained here with an example as ‘output all reads

that overlap with genes whose transcriptional start is in a CpG

island’. Tables describing CpG islands are available (e.g.

Gardiner-Garden and Frommer, 1987) and can be downloaded

from the UCSC genome browser. A non-expert user might write

the following sub-optimal GQL code that applies the position re-

striction on the (large) output of the MAPJOIN between all reads and

genes.

mapped_reads¼ select * from reads

where location40

reads_genes¼ select * from

Fig. 2. UCSC browser snapshots from areas of NA18506 that are can-

didate deletions. (a) An area that overlaps with a known CNV site. (b) An

area that overlaps with a known deletion of the father NA18507
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mapjoin Refseq_genes using intervals(txStart, txEnd),

mapped_reads using intervals (location, locationþ length)

out¼ select * from mapjoin cpgIsland_hg18 using

intervals(chromStart, chromEnd), reads_genes using inter-

vals(location, locationþ length)

In the absence of lazy evaluation, the execution time of this

snippet would be bounded by the extremely large execution time

(288 min) of the data intensive query of the previous paragraph.

Lazy evaluation, which allows us to join using virtual joins and

bypasses intermediate data generation, provides the same result

within 42 min for the entire genome.
Common deletions in the YRI population. Here, we extend

queries from single donor to multiple donors. Kidd et al.

(2008) validated deletions in eight geographically diverse

individuals using a fosmid sub-cloning strategy, including

NA18507. Of these deletions, the ones that overlap with

genes suggest a phenotypically interesting deletion.

Therefore, we ask how many of such Chr 1 deletions are

prevalent in the entire HapMap YRI sub-population (77

individuals).

(1) Get intervals with at least four length-discordant reads.

Disc¼ select * from Reads

where 350� abs(locationþmate_loc-length)

and abs(locationþmate_loc-length) � 1 000 000

Del¼ select merge_intervals(count44) from Disc

(2) MapJoin with validated intervals.

Del_Overlapping¼ select * from MAPJOIN Del,

Kidd_results

using intervals (begin, end)

(3) Map Join with known genes.

Gene_overlapping¼ select * from MAPJOIN Del,
RefSeq_genes

using intervals (txStart, txEnd)

The query takes 5 min to find the common regions of chr1
across the entire population and 30 min to print the accompany-
ing reads that support the query. Figure 3 shows the rate accord-

ing to which each validated deletion appears to other Yoruban
individuals and the affected genes. Eight of the deletions are
common in at least 30% of the individuals, two are common

in at least 50% and one deletion is common in 80% of the
YRI population. The information provides a quick first look
at deletion polymorphisms in the Yoruban population. For ex-

ample, 81% of the individuals have a deletion in 1q21.1 contain-
ing the Neuroblastoma Breakpoint gene family (NBPF), so
called because of prevalent translocation event in neuroblastoma

(Vandepoele et al., 2005). Also, 42% of the individuals have a
deletion in 1p36.11, where the deletion removes a large part of
the RHD gene, responsible for Rh group D antigen. Such dele-

tions have previously been reported in other populations
(Wagner and Flegel, 2000). We also find a common deletion
(22%) involving complement factor H-related protein, which

has been associated with age-related macular degeneration
(AMD) (Sivakumaran et al., 2011). Other common deletions
involving multiple genes are shown in Figure 3.

Integration with Variant Callers. In this experiment, we dem-
onstrate the speed-up that the output of GQL can potentially
provide to existing SV detection tools. Here, we use Breakdancer

(Chen et al., 2009), which runs in two steps. The first, quick, step
collects statistical information from the input BAM file, includ-
ing read-coverage and distribution of insert sizes. The second

(so-called Breakdancer_max) step involves the major processing
of the input.

Fig. 3. Frequencies of common deletions across the YRI population that match the results of Kidd et al. (2008) for the chromosome 1 of NA18507.

For each genome, we find candidate deleted areas and we apply a mapjoin operation with the former deletions. The figure shows how many times

each deletion of Kidd et al. (2008) overlaps with some deletion of other genomes, and it also shows the genes that are affected by said deletions
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A normal run of Breakdancer_max with input being the
NA18506 chr1 alignments (a BAM file of size 6 GB) takes 15
min and produces a collection of SVs, including deletion, inver-

sion, insertion and intra-chromosomal translocation events.
We used GQL to filter the original BAM file to retain only

reads (76 MB) that are needed by Breakdancer (Chen et al.,

2009). Next, we ran Breakdancer_max again using the filtered
input. This time the tool needed only 2:30 min, 7� improvement
in speed that can be attributed to the reduced data in the input file.

Note that the results are not identical because of the stochastic
nature of the caller, but overlap strongly. We call an identified
variant from the initial experiment consistent with the second run

if it overlaps by at least 50% of its length with the latter. With
this definition, we found that 947 of 948 of the deletions, all 204
intra-chromosomal translocations, 337 of 340 inversions and 397

of 461 of insertions are consistent.
These results were based on our estimation of the evidence

used by Breakdancer found by reading the article. Even more

accurate results could be obtained if the writers of the caller
wrote the GQL query to gather the evidence they need.

Although this is only one experiment, it supports the vision
that writers of callers can concentrate on the hard problems of
inference and leave the management and filtering of large gen-

omic datasets to GQL.

3 CONCLUSIONS

The central message of this article is that a declarative query lan-
guage such as GQL can allow interactive browsing of genome

data that is hard to do with existing tools. We agree that in
terms of functionality, especially with respect to interval calculus,
there exist other tools with similar functionality, such as samtools,

bedtools and others. However, the choice of a declarative syntax
allows for richer syntax, including multiple join operations and
operations on population data. Moreover, it separates the imple-

mentation from the query and allows for optimizations in the
implementation that are transparent to the naı̈ve user.
The results suggest that a cloud implementation of GQL can

be efficient and fast. In particular, for most selective queries, the
resulting output is small (MB) and can be retrieved in a few
seconds across the network. Further, the query times we report

are in the order of minutes using a cheap single processor for
genome-wide scans. Simple map-reduce style parallel implemen-
tation should reduce this to seconds. However, one of the opti-

mization relates to separating files by chromosomes, which
effectively disallow querying for discordant paired-ends that

map to different chromosomes. These queries will be added in
a future iteration.
We note that we had to implement at least five non-trivial

optimizations to reduce query processing times by at least
three orders of magnitude. These include the use of a materia-
lized view of the metadata inherent in reads, lazy joins, precom-

piled parsing of expressions, stack-based interval merging and
interval trees. Although interval trees are commonly used in gen-
omic processing, the other optimizations may be novel in a gen-

omic context. These low-level optimizations will be described
elsewhere.
Finally, GQL is compatible with existing genomic software.

Existing callers can be re-factored to retrieve evidence from cloud

repositories using GQL, thereby relegating large data handling to

GQL with consequent speed-ups as we demonstrated for

Breakdancer. GQL is also compatible with SNP calling because

GQL produces smaller BAM files that can be input to SNP

callers. We have chosen to focus on the use of GQL for structural

variation analysis because SNP calling is well studied in the lit-

erature, and there are a number of tools already to provide the

evidence needed for SNP calling. Further, the results of GQL

queries can be viewed using the UCSC browser. In principle, we

can also support ‘semantic browsing’ by properties of genomic

regions in addition to browsing by position (syntactic browsing).

4 MATERIALS AND METHODS

The GQL pipeline starts with the parsing of a user’s GQL code

(Supplementary Information) by the front-end. We developed a syntax

checker and a parser to interpret GQL queries. We used the open source

tool flex (Flex, 1990) to identify the keywords of GQL (Supplementary

Information). Syntax checking code was created using the open source

tool Bison (Bison, 1988) and checks the current syntax of GQL described

by a context free grammar.

Next, we perform a semantic analysis of the code to understand the

basic primitives. Appropriate keywords (Select, From and so forth) are

recognized, checked in a specific order and used to make calls to back-end

routines. The front-end also passes the algebraic part of the user state-

ments (such as expressions) to the back-end by creating customized Cþþ

files. This ‘precompiled parsing’ speeds up the back-end almost 100�,

which would otherwise have to interpret each expression when applied to

each read in the input BAM file. The end of processing leads to a custom

Cþþ queries that is automatically compiled and used to run GQL

queries.

READS table. The Reads table is the abstraction by which GQL pro-

vides to a user with access to BAM files and its implementation considers

that these files are so large that they do not necessarily fit into main

memory. Without care, the disk traffic can slow down query processing

that involves genome-wide scans. GQL chooses to speed-up most

common structural variation queries by extracting as metadata a subset

of fields (namely, the read length, a pointer to the pair-end and the

mapping location and strand) from each read which is small enough to

fit into main memory at least for a per-chromosome execution. Thus, a

query that only uses a combination of the metadata fields does not have

to access the raw BAM file at all.

This extraction needs to occur only once per genome during pre-pro-

cessing, and it is highly efficient given that a BAM file follows our rec-

ommended formatting. We require that the input BAM files are sorted

according to their alignment location, and all alignment locations are

chromosome isolated: in other words, for every genome there should

be a single file containing reads for each chromosome. Under these as-

sumptions, a dataset of �90M reads of size 6.5 GB from NA18507 that

map to chr1 takes �6 min to extract the metadata.

Text tables. This type of table includes all tab-separated text files that a

user uploads. As no assumptions can be made about the nature or the size

of the contents of those tables, the main functions of the tables are simple.

The evaluation of an expression on an entry of a text table fetches the

appropriate fields and converts them from ASCII strings to the proper

type according to the specification that the user supplies to the compiler.

The selection on a file of a text table prints to the output the entries for

which the evaluation of the provided boolean expression is True.

Interval Tables: creation and projection (merging). Recall the query

for CNVs:

H1¼ select create_intervals(. . .) from READS where location� 0

out¼ select merge_intervals(interval_coverage4200) from H1
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We allow the user to create interval tables from any table, simply by

identifying specific fields as begin and end. The function iterates over the

entries of interest of the source table. It evaluates the user-provided inter-

val expressions for begin and end on each entry. We discard entries of

intervals whose end field is no less than begin.

The ‘merge-interval’ command operates by virtually projecting all

intervals (using an efficient data-structure) to a reference and maintaining

a count-vector.

Computing MAPJOIN. The MAPJOIN operation takes two interval tables

as input, and outputs pairs of records where the intervals intersect. We

allow for the joins to be applied to multiple tables, including user-defined

ones. This significantly increases functionality, but it requires the use

of ‘lazy-joins’ and interval trees for efficient implementation.

In evaluating a SELECT operation on a MAPJOIN table, we simply evalu-

ate the provided boolean expression on all tuples of the table and outputs

those tuples that satisfy the expression.
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