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Abstract
PET imaging is affected by a number of resolution degrading phenomena, including positron
range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model
some or all of these effects within the image reconstruction task, referred to as resolution
modeling (RM). This approach is commonly observed to yield images of higher resolution and
subsequently contrast, and can be thought of as improving the modulation transfer function
(MTF). Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize
noise propagation models in order to accurately characterize the noise texture of reconstructed
images in the presence of RM. Furthermore we consider the task of lesion or defect detection,
which is highly determined by the noise distribution as quantified using the noise power spectrum
(NPS). Ultimately, we use this framework to demonstrate why conventional trade-off analyses
(e.g. contrast vs. noise, using simplistic noise metrics) do not provide a complete picture of the
impact of RM and that improved performance of RM according to such analyses does not
necessarily translate to the superiority of RM in detection task performance.”

1. Introduction
Positron emission tomography (PET) is a powerful in vivo molecular imaging modality.
Nonetheless, PET imaging is affected by a number of resolution degrading factors, including
positron range, photon non-collinearity and inter-crystal scattering and penetration, which
translate to undesired cross-contamination between adjacent functional regions with distinct
activities, referred to as the partial volume effect (PVE) (Soret et al., 2007)(Rahmim and
Zaidi, 2008).

This issue has been tackled via a number of post-reconstruction partial volume correction
(PVC) methods (Rousset et al., 2007) including (i) region-of-interest (ROI)-based
(Mazziotta et al., 1981; Kessler et al., 1984; Rousset et al., 1998a; Du et al., 2005; Labbe et
al., 1996; Aston et al., 2002) and (ii) voxel-based techniques, the latter including (a)
partition-based (Videen et al., 1988; Muller-Gartner et al., 1992; Rousset et al., 1998b;
Meltzer et al., 1996), (b) multi-resolution (Le Pogam et al., 2011; Shidahara et al., 2009;
Boussion et al., 2006), or (c) iterative deconvolution methods (Teo et al., 2007) (Kirov et
al., 2008)(Boussion et al., 2009). These techniques (with the exception of iterative
deconvolution) commonly require access to well-registered anatomic (e.g. MRI) images. In
addition, they typically involve a number of simplifying assumptions, and/or can lead to
increased noise levels.
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A different approach to PVC (that can also reduce image noise) has been to incorporate
anatomical information within the PET image reconstruction task, as recently reviewed by
Bai et al. (2013). This approach also commonly involves a number of simplifying
assumptions such as uniformity of radiopharmaceutical uptake within anatomic regions (e.g.
(Lipinski et al., 1997; Comtat et al., 2002)). To this end, more sophisticated approaches
(Bowsher et al., 1996; Rangajaran et al., 2000; Nuyts, 2007; Somayajula et al., 2011; Tang
and Rahmim, 2009; Tang et al., 2010) have been investigated, though they are often seen
introduce a number of additional parameters to be further fine-tuned for particular tasks of
interest.

Another possible approach to this problem is so-called resolution modeling (RM), also
referred to as point spread function (PSF) modeling, that aims to model the resolution
degrading phenomena within the reconstruction algorithm, which we have recently reviewed
(Rahmim et al., 2013). These techniques can commonly be divided into (i) image-space
(Reader et al., 2002; Reader et al., 2003)(Rahmim et al., 2003)(Rapisarda et al., 2010)
(Cloquet et al., 2010)(Kotasidis et al., 2011), or (ii) projection-space methods (Lecomte et
al., 1984)(Selivanov et al., 2000; Strul et al., 2003)(Moehrs et al., 2008)(Qi et al., 1998)
(Alessio et al., 2006)(Tohme and Qi, 2009)(Panin et al., 2006)(Alessio et al., 2010)(Frese et
al., 2003)(Lee et al., 2004)(Rahmim et al., 2008b). Theoretical analysis of differences
between these two approaches has also been provided (Cloquet et al., 2010; Rahmim et al.,
2013). Majority of works above focused on tracers and scanners with positron range blurring
relatively negligible compared to contributions of inter-crystal blurring. However, specific
modeling of positron range blurring has also been attempted in the literature: (i) for
radioisotopes with highly energetic positron emissions (Bai et al., 2003)(Bai et al., 2005)
(Ruangma et al., 2006)(Rahmim et al., 2008b)(Rahmim et al., 2008a)(Alessio and
MacDonald, 2008), or (ii) for small animal imaging (Fu and Qi, 2010).

In any case, analysis methodology for the impact of RM varies in the literature, and the
present work attempts to provide insight into how they relate to one another. While clearly
improved resolution and/or contrast recovery is observed in nearly all past works, it is also
the case that the noise distribution is modified, and this issue is often characterized using a
range of simplified noise metrics. In Sec. 2 we briefly discuss the commonly invoked
metrics in the literature, followed by a discussion of the need for more thorough
quantification of the noise distribution. In Sec. 3 we elaborate upon our methodology,
including how noise propagation calculations are implemented in the present work, and how
they are incorporated within analytic models of detectability. Sec. 4 covers the various
results, followed by discussion and summary in sections 5 and 6, respectively.

2. Noise metrics and detectability analysis in the presence of resolution
modeling
2.1 Three noise metrics

In the RM literature, noise is most typically quantified using one of the following metrics:

i. Spatial variance  calculated for an image at a given noise realization with
signal values si at any voxel i within a given ROI consisting of N voxels and having
a mean m:

(1)
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This can be thought of as a measure of image roughness, and in the case of multiple
noise realization measurements, it can be subsequently averaged.

ii. Ensemble variance of ROI mean uptake mr across multiple noise realizations r=1…
R, with the average ROI mean uptake m ̅:

(2)

The above two metrics are the most commonly invoked, but there exists a third
metrics that is sometimes invoked:

iii. Ensemble voxel variance for a given voxel i with values  at each noise realization
(r=1…R) and ensemble mean s̅i:

(3)

The above definition is for a single voxel, thus a variance image can also be
generated, and/or the values can be averaged over an ROI.

The above three noise metrics are studied in Sec. 4.3, and their analytic inter-relations are
discussed in Sec. 5.1. However, as we discuss and demonstrate in this work, these noise
metrics provide a limited picture of the full impact of RM.

2.2 Detection task performance
The above noise metrics are not sufficient to assess detection, e.g. for a defect or lesion, and
more thorough analysis and evaluation is required. To see this, let us consider a system with
stationary noise, and the noise power spectrum (NPS) as the Fourier transform of the noise
covariance. For a task involving detection of a difference signal Δs(r), its Fourier transform
denoted by ΔS(p), where r and p respectively denote the spatial- and frequency-domain
coordinates, the inter-class (lesion absent vs. present) signal-to-noise ratio (SNR) is given by
(e.g. Ref. (Wagner and Brown, 1985)):

(4)

The above expression can be derived for an ideal observer with signal- and background-
known-exactly (SKE/BKE) having (a) Gaussian noise or (b) Poisson noise in the weak-
signal limit, or (c) in the case of the linear Hotelling observer ((Barrett and Myers, 2004),
Eqs. 13.238, 13.239, 13.256, respectively).

If we additionally assume an imaging system with shift-invariant resolution, we can go one
step further. Consider the modulation transfer function (MTF) as the Fourier transform of
the PSF, normalized by the area (volume) A of the PSF. A should ideally be ~1 with proper
calibration, but may not be so especially in the case of non-linear reconstruction algorithms.
For an original non-blurred difference object Δf(r), its Fourier transform given by ΔF(p), we
will then have:

(5)

The ratio MTF2 (p) to NPS(p) is referred to as the noise-equivalent quanta (NEQ) which can
be thought of as a “window” through which the observer “sees”, and thus the NEQ
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quantifies how much of the frequency content is transmitted through the imaging and
reconstruction.

We also note that under assumption of normality of the observer metric, e.g. a linear
observer under Gaussian noise, the area-under-curve (AUC) in ROC analysis is given by
(Barrett and Myers, 2004):

(6)

where erf(z) is the error function.

Overall, it is clear that detection task performance is not determined by simplistic noise
metrics, and more thorough analysis is required.

2.3 Added realism: non-prewhitened matched filtering
RM results in amplified inter-voxel correlations, as studied in this work (Sec. 43), and also
previously (Rahmim et al., 2005; Tong et al., 2010; Sureau et al., 2008). In fact, a number of
experiments were performed in the past to quantify the impact of correlated noise on human
performance (Judy et al., 1981; Guignard, 1982; Burgess, 1984; Myers et al., 1985;
Blackwell, 1998): this was due to an interest in the early 1980s to assess the effect of the
correlated noise induced by tomographic imaging. Overall, it was observed that human
observer task performance was degraded by noise correlations. In fact, prior to these studies,
it had been hypothesized by Wagner (1978) that human observers would be inefficient when
presented with noise-correlated structure, and that a non-prewhitened matched filter
(NPWMF) as an observer for detection might better predict human performance compared
to an observer performing prewhitening, which turned out to be true in later studies. In
particular, Myers et al. (Myers et al., 1985) found that for a class of noise power spectra of
the form pn, n=1,2,3,4 (p is the spatial frequency) modeled such that they yielded the same
SNR for an ideal pre-whitened matched filter (PWMF) observer, human efficiency fell as n
increased, a pattern that was only properly captured when transitioning to a NPWMF
observer.

In the present work, we thus performed assessment of the impact of RM using both PWMF
and NPWMF observers. Let us consider a SKE/BKE ideal observer study of an ROI of size
n with detected signal-absent s1 and signal-present s2 distributions (which are blurred
versions of the original signals f1 and f2), as mathematically put in Sec. 3.1), and with the
addition of noise become g1 and g2, respectively. For a given image vector g of size n, not
knowing whether it is signal-absent or present, the PWMF operator performs the following:

(7)

first applying the inverse of the n by n noise covariance matrix K, followed by the matched
filter Δs = s2 − s1 (for an ideal observer, this difference signal is known exactly; otherwise,
this can be computed by training, performing averaging and subtraction of a set of signal-
present and signal-absent images, arriving at Δg̅). By contrast, NPWMF performs the
operation:

(8)

For a general linear operator of the form λ(g) = wTg, where w has the same dimensions as
the image vector g, the inter-class SNR can be shown to be given by ((Barrett and Myers,
2004), see Eqs. 13.118 and 13.180):
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(9)

It thus follows for the case of PWMF, that since wT = ΔsTK−1 and w = K−1Δs:

(10)

In fact, it can be shown that (9) attains its maximum in this very case ((Barrett and Myers,
2004), Eq. 13.184). By contrast, for the case of NPWMF, where w = Δs, we have:

(11)

In the presence of white noise, where K is proportional to the identity matrix, it can be seen
that (10) and (11) are equivalent, but not in the general case. Furthermore, in the general
case, starting with (10), and moving from the discrete to the continuous limit, and assuming
noise stationarity, expression (4) can be derived for the case of PWMF. Going through the
same derivation for the case of NPWMF starting with (11), one can show that:

(12)

which again is equivalent to (4) in the case of white noise, but not in the general case.

Overall, we attempt to apply the abovementioned general framework to the study of the
impact of RM in PET imaging, aiming to provide further insight into the interplay amongst
enhanced resolution recovery and the resulting complex noise structure. Such an approach
appears especially critical in light of increased investigation and usage of RM in recent
years, including its implementation on clinical systems (e.g. Siemens HD PET (Le Meunier
et al., 2010, 2011) based on the work by Panin et al. (2006), and GE SharpIR closely based
on the work by Alessio et al. (2010) with some modifications), and the variety of metrics
used to evaluate performance. To this end, as we discuss in Sec. 3, we have implemented
models of noise propagation in iterative reconstruction, and performed comparison with
measurements obtained from multiple noise realizations, to better probe the nature of noise
propagation and its impact on detection task performance.

3. Experimental design and noise propagation calculations
3.1 Simplified analysis

Let us consider a system response H relating the original signals f to the detected signals s
according to s=Hf. It can be seen from (10) and (11) that detection tasks performance
depends on three factors: (i) the original difference signal Δf and (ii) its recovery as
determined by H (both combine to yield Δs = s2 − s1 = H(f2 − f1) = HΔf), as well as (iii) the
covariance matrix K. In the presence of RM, both H and K are modified. Clearly, an
improved response H (i.e. reduced degradation; enhanced MTF) as achieved using RM is
expected to improve task performance. However, to isolate and study the impact of an RM-
modified covariance matrix K, in this part we fixed the system response as constant
regardless of RM. We considered a small object of size n=7, and five different signals of
increasing width Δs = {0 0 0 1 0 0 0}, {0 0 1 1 0 0 0}, {0 0 1 1 1 0 0}, {0 1 1 1 1 0 0} and {0
1 1 1 1 1 0}. We also considered three covariance matrices:
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As elaborately shown and discussed in this work (Sec. 4.3, Sec. 5.1), as well as in past
works (Rahmim et al., 2005; Tong et al., 2010; Sureau et al., 2008), RM brings about (i)
decreased variance, which the transition from K1 to K2 represents, while (ii) RM also leads
to an increase in inter-voxel correlations, as captured by the transition to K3. The detection
performance results for the abovementioned signals and covariance matrices are described in
Sec. 4.1.

3.2 Noise propagation models
Denoting the system matrix by P = (pij)I×J for a J-dimensional image vector and an I-
dimensional projection set, and the sensitivity image by s with its elements given by

, the EM algorithm can be written as:

(13)

where y is the measured dataset and xm denotes the image estimate at update m. We then
write:

(14)

(15)

where x̅m denotes the mean image for noisy realization of the mean data y̅ (and therefore, em

and d are noise vectors for the image and data, respectively). At iteration m, the image

covariance matrix  is given by , where Cd is the covariance matrix for
the data (modeled using independent Poisson statistics; i.e. Cd = diag[y̅]), and Vm is a J-by-I
matrix relating data noise to image noise; i.e. em = Vmd.

Qi (2003) developed a unified noise model applicable to a wide range of iterative image
reconstruction methods. We next summarize the result for the EM scheme. However, we
emphasize that the derivations were based on an assumption of low-noise in the image space
(to enable simplifying Taylor expansions), thus implying limitations when having: (1) poor
statistics (e.g. first/short frames in a dynamic study), (2) too many iterations. On the other
hand, due to the linearity of the gradient of the log-likelihood function with respect to the
data, in the case of Poisson distribution in emission tomography, it was noted by Qi (2003)
that an assumption of low-noise in the detector-space (e.g. when having numerous crystals)
was not needed in addition. For the EM algorithm, it was shown that:

(16)

where
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(17)

(18)

In the original treatment by Barrett et al. (1994), an approximation was introduced setting
the projection of the mean reconstructed image at iteration m as nearly resembling the noise-
free data (i.e. Px̅m ~ y̅, which also effectively implies that x̅m+1 ~ x̅m), from which it follows
that:

(19)

However, as we demonstrate next, this approximation can lead to incorrect computations at
early iterations that in fact carry themselves over to subsequent, later iterations wherein this
approximation is more valid.

3.3 Simulation studies
We have in the past implemented (Rahmim et al., 2008b) RM for the geometry of the
Discovery RX PET/CT scanner (Kemp et al., 2006), including the presence of septa (2D
PET), which we similarly pursue in our analytic simulations in the present work. Due to the
extreme computational and memory requirements of the noise propagation computations,
transaxial image dimensions were set to 80×80, instead of the usual 128×128. This also
resulted in 2D sinograms with dimensions of 117 radial bins and 80 angular bins. The data
were reconstructed for up to 70 iterations (single subset), without and with RM.

Two kinds of objects were simulated:

i. A contrast disc with cold (activity 0.3 of background) and hot (activity 2 times
background) regions. This object was utilized to further compare the analytic
models to compute noise propagation as discussed in Sec. 3.2.

ii. A myocardial perfusion (MP) study, utilizing the NCAT phantom, and including
realistic average counts and noise levels based on clinical studies of five patients
with healthy myocardia at the Johns Hopkins PET Center, as we have previously
also simulated and optimized (Tang et al., 2009). This also included simulations of
a transmural MP defect, spanning 40 degrees over the anterior-lateral region (~1.6
cm in extent). The defect region had an activity that was 10% less than the normal
activity. The simulated MP phantom is shown in Figure 1 though the depicted
defect has been exaggerated to 40%, solely for better visibility.

Both studies included simulation of a 2D slice, with a total slice count of 160K in the
resulting 2D sinogram, consistent with our real clinical MP studies. We performed 100 noise
realizations. To do this, following analytic noise-free simulations, Poisson noise was added
to the sinogram data. The simulations included modeling of inter-crystal scattering and
penetration, photon non-collinearity and Rb-82 positron range, as elaborated in the past
(Rahmim et al., 2008b). Normalization, randoms and scattering were not simulated, but
attenuation was modeled in the MP studies. The defect simulated had a spatial extent nearly
twice the resolution of the simulated scanner.
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3.4 Observer task performance
The MP study was utilized in the proposed context of detection AUC analysis, including
MTF and NPS computations. This analysis was used to shed light on the various resolution
and noise structures introduced in the context of RM, and how this can modify detectability
task performance, as obtained using (4) and (6).

Furthermore, a channelized Hotelling observer (CHO) study was additionally performed, as
motivated and discussed in Sec. 5.3. Four octave-wide rotationally symmetric frequency
channels were applied to the reconstructed images. The start frequency and width of the first
channel were both 1/64 cycles per pixel and the size of the channels was 32×32. This
channel model was previously found to give good prediction of a human observer
performance in myocardial defect detection (Wollenweber et al., 1999; Wollenweber et al.,
1998).

The reconstructed images were cropped to the channel template size, with the centroid voxel
of the defect region at the center of the cropped image. The pixel values in the cropped
short-axis images were then windowed by scaling the image so the maximum value in the
heart was mapped to 255 and the resulting floating values were rounded to integers. This
scaling and rounding was performed to duplicate what should be done to images used in a
human observer study.

The leave-one-out strategy was applied in training and testing the observer (Metz, 1986).
One-hundred noise realizations were utilized. For each pair of normal/abnormal image noise
realization, the other noise realizations were used in training the CHO. This process was
repeated for all the noise realizations in each testing ensemble. The resulting ratings
acquired from the CHO were used to estimate ROC curves with the LABROC4 program
(Metz et al., 1990; Metz et al., 1991).

3.5 Dual metric trade-off analysis
We compared observer studies employing conventional dual-metric resolution (FWHM) vs.
noise trade-off curves as generated with increasing number of iterations. Simplified noise
metrics utilized included the spatial roughness σspatial, ensemble standard deviation of ROI
mean σensemble, and ensemble voxel standard deviation σ0, as defined in (1), (2) and (3),
respectively.

As for the measure of resolution, we note that imaging of a point source with no background
to extract the PSF is an idealistic measure, which may not fully capture the ‘effective
resolution’ of the scanner when utilizing non-linear reconstruction algorithm such as EM. A
more realistic solution is to consider a known phantom, and to extract the effective
resolution from knowledge of the original object and from the measured blurred image
(Lodge et al., 2009). In the present work, to estimate the effective resolution of the system,
we performed reconstructions of noise-free MP images without and with the defect,
followed by calculation of the difference image (representing the blurred object), then
estimating the FWHM width of a symmetric Gaussian needed to convolve with the known
object to best match the blurred image. Unconstrained nonlinear optimization using the
Nelder-Mean simplex search method (Lagarias et al., 1998) was used to this end to estimate
the effective PSF FWHM.
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4. Results
4.1 Simplified analysis

As elaborated in Sec. 3.1, we considered a simplified analysis involving an object of size
n=7, and five different signals of increasing widths. We fixed the system response to single
out the impact of the RM-modified covariance matrix K and its interaction with the signal
Δs. In particular, we considered three different covariance matrices, as defined in Sec. 3.1,
where a decrease in voxel variances was captured by K2, while an additional increase in
inter-voxel correlations was captured by K3, both effects encountered in RM as we show in
Sec. 4.3.

The resulting SNR2 values are shown in Table 1, as computed using (10) and (11) for the
cases of PWMF and NPWMF, respectively. Increasing SNR2 values indicate increasing
unlikelihood that the measured signal is purely due to noise. In the case of K1, SNR2

continues to grow with increasing signal widths as it becomes more unlikely that the
measured signal is due to noise. A similar pattern is found in the case of K2, while the SNR
values are even larger, since signal variance is modeled to be smaller (as is the case in RM).
However, the growth with increasing widths is slowed down in the case of K3, due to the
interplay between the signal and the covariance matrix. In fact, for the PWMF, while SNR
values increase for narrower signals as one transitions from K1 and K2 to K3, one instead
observes decreased SNR values for the wider signals: this is because increased inter-voxel
correlations within a wide signal can make it relatively more likely that the signal is due to
noise in comparison to the case where such positive correlations are absent. Moreover, for
the NPWMF, further decreases are observed in observer task performance with respect to
the PWMF used as the observer. As discussed in Sec. 2.3, the NPWMF was used to better
capture human task performance in the presence of correlated noise, removing the ability of
the ideal observer to perform noise prewhitening.

Overall, it is observed that while decreased variances, as encountered in RM, can lead to
increased SNR, and thus improved detectability, increased inter-voxel correlations as also
encountered in RM (Sec. 4.3) complicate this picture, and can even result in decreased
detectability especially for extended objects.

4.2 Noise propagation models
We compared the analytical results derived by Qi (2003) and Barrett et al. (1994), as
described in Sec. 3.2 for the contrast phantom including hot, cold and background regions,
as described in Sec. 3.3. Figure 2a plots the mean counts in the three regions as obtained
utilizing noise-free (NF) simulations as well as those computed from reconstructed images
from 100 noisy realizations, for the case of RM. Excellent matches are observed. Similar
results were observed for the case of no RM (not shown).

Figure 2b,c plots counts from variance images as obtained using analytic models of Qi vs.
Barrett et al., as well as computed form noisy realizations, for the cases without and with
RM. Inconsistencies are observed between the two analytic model, while it can be seen that
the computed variance plots depict better match with the model by Qi. To explain this, we
note that the mean values in the three regions, as depicted in Figure 2a, converge in different
directions. In other words, in early iterations, it is the case that x̅m+1/x̅m > 1 for voxels in the
hot region, x̅m+1/x̅m ~ 1 for the background region, and x̅m+1/x̅m < 1 for the cold region.
Subsequently, the term diag [x̅m+1/x̅m] in (18) (dropped in (19)) accounts for underestimated
and overestimated variance values for the hot and cold regions, respectively, when using the
additional approximation leading to (19). Furthermore, we observe that the incorrect noise
calculations at early iterations carry themselves over to subsequent, later iterations.
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The corresponding images to above plots can be seen in Figure 3 as shown for different
iterations in the case of RM. Again, visually, better matches to the computed variance image
can be observed when the analytic model by Qi is utilized. Clearly, also, it is seen that the
variance increases with increasing iterations. Vertical profiles through the images passing
through all three regions (background, hot and cold) are shown in Figure 4, for the case of
RM. Similar observations as above can be made. In addition, one observes edge artifacts,
reminiscent of the Gibbs phenomenon (as elaborately reviewed elsewhere (Rahmim et al.,
2013)), which become more prominent with increasing iterations. This is true in the mean
images (whether from noise-free images or as computed from noisy realizations), and
interestingly, also in the computed variance image. In particular, the analytic model by Qi is
seen to properly capture the presence of edge artifacts in the variance image, while the one
by Barrett et al. does not capture this real effect. This is an interesting and new observation,
to our knowledge, and confirms modified variability for the edges in the case of RM.
However, one ought to remember that voxel variance is overall reduced when switching
from no RM to RM (as seen in Figure 2).

Finally, we wish to note that as emphasized in the paragraph preceding Eq. (16) Qi’s model
was derived based on an assumption of low-noise in the image space (as a Taylor series
expansion was invoked). As such, poorer-statistic frames may not reveal the very good
agreements with the computed variance from noisy realizations as seen in Fig. 2. This would
be especially the case in cold regions were the image non-negativity constraint implicit in
the EM algorithm can create considerable noise-induced bias in low-statistic studies.
Furthermore, we witnessed that even in our case, when too many iterations were utilized
(>100 iterations), mismatches become very apparent. Nonetheless, the model is clearly very
successful in capturing the overall computed variance especially at earlier iterations. As a
consequence, we have used this more accurate formulation, including expression (18), in the
rest of this work.

4.3 Detectability analysis
Utilizing the MP study elaborated in Sec. 3.3 for the rest of this work, Figure 5 depicts the
difference signal Δs as obtained from reconstructions without and with a perfusion defect (in
the noise-free case). The corresponding Fourier-domain representation ΔS is also shown.
Some enhanced recovery is observed at mid frequencies. This is not entirely obvious,
however, because the signal includes contributions due to the PSF as well as the shape of the
defect. To better separate these effects. Figure 6 plots the measured difference signal due to
a point siurce defect (single voxel of regular size with 10% less activity than normal
myocardial uptake), and the corresponding normalized Fourier transform, i.e. the MTF.
Enhancements in MTF frequency recovery due to RM are more conveniently observed.

Figure 7 shows images of the covariance structure at the MP defect location without and
with RM for two different iterations of 25 and 50. The corresponding Fourier transform. i.e.
the NPS, are shown in the second row. Figure 8 depicts horizontal 1D profiles through the
abovementioned covariance and NPS images, also for two different iterations of 25 and 50.
It cab be seen in both figures that RM results in reduced variance, but increased covariance
with nearby voxels. This is attributed to the less sparse nature of the system matrix in the
presence of RM; e.g. back-projection of counts detected along a particular line-of-response
(LOR) effectively span a wider range of voxels. In the frequency domain, the resulting NPS
in the case of RM is seen to depict values that are amplified in the mid-frequency domain,
while exhibiting smaller values at higher frequencies. In the context of detection task SNR
(e.g. Eq. (4)), which we quantify next, the observed amplified mid-frequency NPS levels are
expected to diminish performance of RM, as would not be purely expected based on an
enhanced MTF for RM.
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Figure 9 shows the resulting SNR calculations, for the cases of PWMF and NPWMF,
according to (4) and (12) respectively (note that utilizing (4) instead of (5) has the advantage
of not requiring assumption of shift-invariant resolution, and the effect of blurring is implicit
in the difference signal ΔS(p)). The resulting AUC calculations according to (6) are also
shown. The figure also demonstrates comparisons using the CHO study as obtained from
100 noise realizations. It is clearly seen that the NPWMF and CHO both results in smaller
AUC values compared to the PWMF observer. Furthermore, their performances at lower
iterations are especially degraded: this is because of noise correlations, which are more
extensive at earlier iterations, and the NPWMF and CHO (which are more consistent with
human observers) are especially challenged by the correlated structure. In any case, in all
these analyses, it is seen that RM does not pose enhanced detectability.

By comparison, different results are obtained when utilizing conventional trade-off curve
analysis. Figure 10 depicts resolution vs. iteration, noise vs. iteration, as well as resolution
vs. noise trade-off curves as generated using increasing iterations. The effective image
resolution (FWHM) was extracted as elaborated at the end of Sec. 3.5. Noise was quantified
(MP defect used as the ROI) using measures of spatial roughness σspatial standard deviation
of ROI mean uptake σensemble, and voxel standard deviation σ0, as defined by (1), (2) and (3)
respectively. The results depict improved performance for RM, though the improvement is
reduced for the case of σensemble. This can be understood because increased inter-voxel
correlations will reduce noise as measured this way, as we discuss elaborately in Sec. 5.1. In
any case, it is clearly seen that all three noise metrics lead to enhanced dual-metric
quantitative performance for RM, whereas in the context of actual observer task
performance in the present work, RM does not outperform its counterpart, underlining the
need not to make any conclusions of detection enhancement for RM based on dual-metric
trade-off analysis.

5. Discussion
5.1 Comparison of simplified noise metrics

The two dominant noise metrics in the literature as defined in (1) and (2), namely spatial
roughness σspatial and ensemble standard deviation of ROI mean σensemble, are affected
differently in the presence of RM. To better understand the differences, we note that for a

uniform region with voxel variance  and inter-voxel covariance covi, j between any two
voxels i and j, the expectations of the above two statistics are given by (Tong et al., 2010):

(20)

(21)

Next, we note that RM can result in (i) diminished voxel variance  and (ii) increased
covariance covi, j for a given iteration number, as we have demonstrated in this work (Sec.
4.3), and as observed in some past studies (Rahmim et al., 2005; Tong et al., 2010; Sureau et
al., 2008). Both these effects are related to reduced sparsity of the system matrix in the
presence of RM, leading to inclusion and thus inter-relation of more voxels in relation to
detected events along a particular LOR. The former effect, i.e. reduced voxel variability as a
result of RM, can explain reductions in SUVmax variability as quantified by Armstrong et
al. (2011). It also follows according to (20) and (21) that the abovementioned two effects
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combine to a reduced measure of spatial noise or image roughness, while they work against
one another for ensemble variance of mean ROI values. As such, noise when measured
spatially can be significantly reduced due to RM for a given iteration number, contrary to
the ensemble measure of noise which could be improved less, as we have shown in our
simulations (Figure 10), or remain nearly unchanged (Tong et al., 2010) or even increase
(Blinder et al., 2012). Note that the size of the ROI (N) clearly modifies the relative
contributions of the first and second terms in (21), and smaller ROIs are expected to amplify
the contribution of the second term.

This can also explain why dual-metric contrast (or resolution) vs. noise trade-off analysis in
the literature can be observed to depict greater improvements when noise is defined as
σspatial ; e.g. (Reader et al., 2003; Rahmim et al., 2008b; Rapisarda et al., 2010; Kotasidis et
al., 2011; Cloquet et al., 2010; Le Meunier et al., 2010), compared to when σensemble is
utilized; e.g. (Alessio et al., 2010; Alessio et al., 2006; Cloquet et al., 2010; Sureau et al.,
2008)). In a retrospective analysis of clinical FDG PET/CT studies by Akamatsu et al.
(Akamatsu et al., 2012), liver SNR assessment was performed, where noise was quantified
as standard deviation of mean values of multiple ROIs in the liver, which can be thought of
an attempt to capture σensemble without having access to multiple noise realizations. Their
analysis revealed significant improvements only when RM was paired with the TOF
capability, but not without it.

In any case, what the present work emphasizes is that inference of detection task
performance for RM vs. no RM based on dual-metric trade-off analyses involving simplistic
noise metrics (which should not be made anyways) may be especially faulty when σspatial is
utilized, and to a lesser extent when using σensemble. We add that σspatial has an additional
issue in that it is sensitive to inherent noise-free non-uniformities, e.g. due to background
structure or PVE blurring of the ROI edges. In fact, expression (20) for σspatial was derived
(Tong et al., 2010) based on an assumption of noise-free uniformity for the ROI. Otherwise,
we can show that:

(22)

where the added last term is the noise-free image roughness, i.e. variance of ensemble
averaged voxel values s̅i around the overall ROI mean m̅. An alternative approach to
removing this issue and yet not requiring numerous noise realizations is to perform only a
single repeat measurement and to calculate the difference image, followed by computation
of σspatial on the difference image (Lodge et al., 2010). The result is mathematically
equivalent to computing σspatial on a single, uniform image (only offset by a factor of 
due to computing the difference) but has the advantage of being applicable to images that
are non-uniform in the noise-free case. This also allows use a very large ROI, well beyond
the correlation lengths, making the second term in (20) negligible compared to the first term,
and thus feasibly allowing computation of the overall σ0. Nonetheless, this approach does
not allow computation of σensemble which is an important metric on its own.

5.2 NPS characterization
By analogy to the Fourier transform of a Gaussian distribution, one may at first expect the
increased inter-voxel correlations due to RM to lead to a narrower NPS. Subsequently, one
could imagine that the enhanced MTF performance at higher frequencies would be
complemented by the narrower NPS, the latter appearing in the denominator of (3) and (4),
enhancing overall performance. However, the above analogy is invalid as the NPS in
tomography resembles a high-pass filter, not a low-pass (e.g. Gaussian) filter (Myers et al.,
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1985). In any case, as demonstrated in Sec. 4.3, RM resulted in increased mid-frequency
components for the NPS, while exhibiting diminished values at highfrequency components.

In fact, the PWMF framework (4) and (5) as utilized in this work was pursued in a
dissertation by Wilson (1994) to investigate detector response compensation in SPECT
imaging. Similar observations were made in that the enhanced MTF performance was
countered by increased NPS values at mid frequencies, resulting in NEQ and SNR metrics
that were not improved upon the inclusion of RM.

5.3 PWMF vs. NPWMF vs. CHO
The ideal observer poses an upper limit on performance for a binary classification task and
is a useful tool for assessing imaging systems (He et al., 2008). This observer and the linear
Hotelling observer (i.e. the PWMF) are identical in the case of Gaussian noise, and require
knowledge/computation of (i) the covariance matrix K and (ii) its inverse (as seen in (7)).
The first issue can be tackled using analytic noise propagation computations or generation of
multiple noise realizations, both of which were pursued in the present work. The second
issue can be prevented upon assumption of noise stationarity, leading to the NPS in the
denominator, as seen in (4), and as also pursued in the present work. However, the
stationarity assumption may not be valid, and thus inversion of a very large covariance
matrix may need special attention (Barrett et al., 2001). By contrast, the NPWMF operation
(8) (which better correlates with human performance, as discussed in Sec. 2.3) does not
require knowledge of the covariance matrix, considerably simplifying this problem, while
analytic computation of the SNR requires knowledge of K only (not its inverse) as seen in
(11). A simplification of this problem, also implemented in this work, is to consider
channelization, namely in the context of the CHO, which significantly reduces the entire
image; e.g. to a 4-dimensional vector when 4 channels are utilized, as discussed in Sec. 3.4.
The CHO model is consistent with a known mechanism of the visual system, and has shown
very good prediction of human observer performance over a broad range of detection tasks,
including in the context of MP defect detection (Wollenweber et al., 1998; Wollenweber et
al., 1999).

5.4 Observer studies of RM
PET imaging—A number of numerical and/or human observer studies of RM in PET
imaging have been performed. Kadrmas et al. (Kadrmas et al., 2009a; Kadrmas et al.,
2009b) performed numeric channelized non-prewhitened (CNPW) (discussed below) as well
as human observer studies of tumour detection using a multi-component whole-body
phantom with realistic FDG uptake and including “shell-less”68Ge silicone gel lesions.
Inclusion of RM led to statistically significant improvements in the context of localization
ROC (LROC) analysis. Similar patterns were observed in ROC/LROC analysis of numeric
(CNPW and CHO) and human observer studies by Schaefferkoetter et al. (2013) involving
addition of separately scanned small spheres to the lung or the liver in clinical patient scans.
However, in the case of TOF absent, RM improvements were limited to lung lesions, and
liver lesions exhibited no improvements. Our own ROC observer analysis in Sec. 4.3 (Rb-82
PET) revealed non-enhanced perfusion defect detectability performance upon inclusion of
RM, whereas recent phantom studies (F-18 PET) by Managa et al. (2013) showed
improvements in defect detection upon inclusion of RM (we discuss below the potentials
impacts of different types of analyses as well as contrast/noise environments on task
performance).

SPECT imaging—Studies were also performed in the context of SPECT imaging to assess
RM, more commonly referred to as (collimator)-detector response compensation (DRC) in
the literature (Frey and Tsui, 2006). These included MP SPECT simulations using ROC
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analysis involving (i) CHO by Frey et al. (2002) and (ii) human observers by Sankaran et al.
(2002). The CHO studies revealed statistically significant improvements (p=0.001) when
DRC was performed in addition to attenuation compensation only (AC), but the statistical
significance dropped when performed in addition to both attenuation and scatter
compensation (ASC) (p=0.049). The human observer study also revealed some
improvements, but they were not statistically significant (p=0.084 for DRC+AC vs. AC;
p=0.79 for DRC+ASC vs. ASC). (iii) In a clinical MP study by Narayanan et al. (2003)
involving human observer ROC analysis, the three territories: left anterior descending
coronary artery (LAD), left circumflex coronary (LCx) and right coronary artery (RCA)
were individually considered. In addition, the maximum score of any given observer for the
three territories was taken as the overall score representing performance for the overall
detection of coronary artery disease (CAD). Inclusion of DRC in addition to ASC was seen
to improve AUC values for LAD, LCx, and also the overall CAD, but it degraded
performance for the RCA. In any case, statistical comparisons of DRS+ASC were only
performed in comparison to FBP and AC, and did not appear to be significance when
compared with ASC. (iv) In a notable study by Gifford et al. (2000), however, considerable
and statistically significant improvements due to DRS were demonstrated. We discuss
sources of such differences next. Two things were different about this study: (1) it was in a
different context of simulated Ga-67 tumor imaging, and (2) it involved LROC analysis,
thus involving both detection and localization, unlike the other three SPECT studies which
involved ROC analysis only, which takes us to our next observation.

ROC vs. LROC analysis—Review of abovementioned observer studies can suggest
enhanced performance of RM relative to no RM when LROC analysis (as opposed to ROC)
is performed. Technically, one cannot make such a definitive conclusion based on the
abovementioned SPECT studies, because the LROC study was performed in a different
context of tumor imaging, as compared to MP defect detection in the other three studies. It is
in fact entirely plausible that RM can enhance tumor imaging whereas its impact on defect
detection may be limited. In other words, while RM can complicate the noise structure, its
enhancement of lesion contrast may be considerably significant to ultimately enhance tasks
performance, whereas improvements in cold contrast may be relatively limited.

By contrast, LROC vs. ROC analyses were performed within a consistent environment in
the PET studies by Schaefferkoetter et al. (2013): the resulting (AUCROC, AUCLROC) pairs
for the different reconstruction methods were as follows: baseline (0.57 ± 0.01; 0.13 ± 0.03),
RM (0.61 ± 0.02; 0.22 ± 0.04), TOF (0.68 ± 0.02; 0.37 ± 0.05), and TOF+RM (0.78 ± 0.04;
0.55 ± 0.07). Individual analysis of statistical significance were not performed for LROC vs.
ROC analyses; however, clearly enhanced separations are observed in the case of LROC.

Two explanations are possible as to why LROC studies may depict enhanced performance
when RM is introduced: (1) the trade-off provided by RM, namely enhanced contrast and
reduced voxel variance at the cost of more correlated noise structure, may perform more
favorably in the context of LROC than ROC analysis. ROC analysis considers the SKE
scenario where the location of the signal (e.g. tumor) to be detected is known in advance,
and the task is merely that of detection. However, the clinical reality is often more complex,
and the task involves both detection and localization. When image noise is stationary, these
two tasks can be correlated (Swensson et al., 1997), but noise may not be stationary
particularly due to presence of background structure, and localization task performance can
be degraded due to confusion with features within this structure (Seltzer et al., 1991). This
latter issue is important due to the presence of background variability which is not the case
in the BKE assumption (Kupinski et al., 2003).
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(2) LROC analysis, by its very nature, provides a wider dynamic range of values, thus
providing a greater ability to detect statistically significant differences. A way to see this is
that ROC analysis (in studies where presumed signal location is not indicated; e.g. oncologic
studies) can be thought of as performing LROC analysis while additionally suppressing the
localization information, and the resulting loss of information can therefore result in a
degradation of statistical power.

In any case, additional emphasis on LROC analysis, as opposed to ROC analysis, appears
appropriate, and as such, the ROC analysis and findings in the present work should be put in
such a context, suggesting a need for future extension to that domain, and of not making
definitive conclusions about superiority of performance (or lack thereof) for RM when
assessed using ROC analysis only. LROC analysis could be performed using human
observer studies, or numerical observers that have shown good prediction of human
performance. In fact, conventional numeric observer ROC analysis was not found to depict
good correlation with human LROC analysis in assessment of RM (Gifford et al., 1999). By
contrast, good quantitative agreements were observed for the multiclass CNPW observer in
SPECT (Gifford et al., 2005) and PET (Gifford et al., 2007). Multiclass observers are one
way to extend numerical ROC analysis to LROC analysis, involving perception analysis at
every voxel and finding the location with maximum rating. Overall, the CNPW observer (a
handicapped version of CHO) when used in the multiclass context was shown by Gifford et
al. (2005; 2007) to be a reasonable substitute to multiclass CHO for iterative reconstruction
strategies, especially as it involves smaller training requirements in the computationally-
intense context of numeric LROC analysis. Subsequently, this observer was used in the
LROC studies of RM in PET as mentioned in the beginning of this section.

Impact of the contrast and noise environments on RM—We note that
incorporation of RM may or may not pose an additional benefit in observer task
performance depending on the environment. As outlined previously, in the absence of TOF,
improvements were not observed in the detection of liver lesions as studies by
Schaefferkoetter et al. (2013), in comparison to the detection of lung lesions. What is
additionally interesting is that the picture changed completely in the presence of TOF, i.e.
significant improvements were observed in liver tumor detection when using TOF+RM in
relation to the use of TOF only. Overall performance was seen to improve considerably in
both ROC and LROC analyses, though more so in the latter (the numbers were reported
above). Interestingly, in the LROC study by Kadrmas (2009b), somewhat similar pattern
were also observed for the resulting AUC values: baseline (0.418 ± 0.051), RM (0.516 ±
0.052), TOF (0.673 ± 0.054) and TOF+RM (0.813 ± 0.046).

These observations point to the fact that the contrast as well as noise environments both may
play key roles as to whether, and to what extent, RM can enhance task performance, an issue
that is of importance in general and for different tasks (Karakatsanis et al., 2013a;
Karakatsanis et al., 2013b), and one that needs to be more thoroughly studied and
understood in the specific context of RM. Last but not least, it is worth emphasizing that
statistical significance may not translate to clinical significance, and that most above studies
are designed (e.g. number of lesions, sizes, contrast, etc.) so as to capture the former, and not
necessarily the latter, and as such, careful considerations need to be made to ultimately
assess whether RM enhanced task performance significantly in a clinical sense.

6. Summary
The present work has provided a framework to demonstrate why conventional quantitative
analysis involving dual-metric trade-off curves, e.g. resolution vs. noise (where noise is
defined using metrics such as image roughness or ensemble standard deviation of ROI
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mean) may reveal enhanced quantitative performance for PET image reconstruction
methods invoking RM, while actual observer task performance may not show a similar
pattern. This was attributed to the complex structure of the noise distribution in the presence
of RM, as specially captured by the noise power spectrum, and its interaction with the signal
to be detected; while RM can clearly result in enhanced resolution recovery at mid-
frequencies, it also results in increased NPS values at these frequencies. We have shown that
the extent of the abovementioned differences in performance using conventional dual-metric
analyses vs. observer tasks is reduced when the former utilize the ensemble standard
deviation of ROI mean, as opposed to image roughness, and that in any case, observer
studies are required to carefully assess performance of a given RM technique under
evaluation. Finally we have noted that whether or not RM results in enhanced observer
studies can depend on the imaging environment (e.g. background structure as modified in
different organs; background noise as modified with time-of-flight imaging) as well as
whether ROC vs. LROC analysis is performed.
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Figure 1.
Images of the simulated myocardial perfusion study, (left) without and (right) the perfusion
defect, though the intensity of the defect has been exaggerated (40%) for better visibility.
Intensities were assigned based on clinical MP studies.
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Figure 2.
(a) Mean image counts in the case of RM as obtained from noise-free (NF) calculations and
average reconstructed images computed from 100 noise realizations. Similar curves where
obtained for the case of no RM (not shown). Variance image as obtained using the analytic
models of Qi vs. Barrett et al., and as computed from 100 noise realizations, are also shown
for reconstructions (b) without and (c) with RM.
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Figure 3.
(row 1) Original image; (row 2) Noise-free reconstructions, iterations 10, 15, 20, 25 and 30
from left to right (and similarly for images below); (row 3) Mean images computed from
100 noise realizations; (row 4) Analytic variance image based on the method of Qi; (row 5)
Analytic variance image based on the method of Barrett et al.; (row 6) Variance image
computed from 100 noise realizations. All reconstructed images shown are for the case of
RM.
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Figure 4.
(row 1): (left) Noise-free reconstructions, and (right) mean images computed from noise
realizations; (row 2): Analytic variance image based on the method of (left) Qi and (center)
Barrett et al., as well as (right) the variance image computed from noise realizations (to
obtain these plots with very good quality, 1000 noise realizations were generated). Results
are shown for iterations 10, 30 and 70. All reconstructed images shown are for the case of
RM. The observed edge artifacts were not seen in the case without RM (not shown).
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Figure 5.
1D profiles through (left) the difference signal Δs as obtained by subtraction reconstructions
with and without the MP defect and (right) the resulting Fourier transform ΔS. The results
are shown for the 25th and 50th iterations.

Rahmim and Tang Page 26

Phys Med Biol. Author manuscript; available in PMC 2014 October 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
1D profiles through the reconstructed PSF for an original point source defect instead of the
extended perfusion defect shown in Figure 5, (left) as obtained by subtracting
reconstructions with and without the point defect, and (right) the resulting MTF. The results
are shown for the 25th and 50th iterations.
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Figure 7.
Images of (top) noise covariance (spanning up to 8 voxels in each direction) with respect to
a point source at the center of the defect, and (bottom) the corresponding Fourier transform,
i.e. the NPS (spanning up to 0.5 cycles/pixel in each direction). The results are shown for the
25th and 50th iterations. Intensity scales are matched for images in each row.
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Figure 8.
1D horizontal plots through (left) the noise covariance and (right) the NPS as shown in
Figure 7. The results depicted are for the 25th and 50th iterations.
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Figure 9.
(top) Plots of SNR without and with RM for iterations up to 70, for the cases of PWMF and
NPWMF as computed used (4) and (12) respectively. (Middle) Resulting AUC values for
the cases of PWMF and NPWMF as obtained using (6). (Bottom) AUC values as obtained
using CHO analysis (error bars, now shown, were ~0.03).
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Figure 10.
Plots of (top) FWHM and various noise metrics vs. iterations, as well as (bottom) dual-
metric effective resolution vs. noise trade-off curves as generated with increasing iterations.
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