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Abstract
Acute kidney injury (AKI) is classically described as a rapid loss of kidney function. AKI affects more than 15% of all hospital 
admissions and is associated with elevated mortality rates. Although many advances have occurred, intermittent or continuous 
renal replacement therapies are still considered the best options for reversing mild and severe AKI syndrome. For this reason, it 
is essential that innovative and effective therapies, without side effects and complications, be developed to treat AKI and the end-
stages of renal disease. Mesenchymal stem cell (MSC) based therapies have numerous advantages in helping to repair inflamed 
and damaged tissues and are being considered as a new alternative for treating kidney injuries. Numerous experimental models 
have shown that MSCs can act via differentiation-independent mechanisms to help renal recovery. Essentially, MSCs can secrete 
a pool of cytokines, growth factors and chemokines, express enzymes, interact via cell-to-cell contacts and release bioagents such 
as microvesicles to orchestrate renal protection. In this review, we propose seven distinct properties of MSCs which explain how 
renoprotection may be conferred: 1) anti-inflammatory; 2) pro-angiogenic; 3) stimulation of endogenous progenitor cells; 4) anti-
apoptotic; 5) anti-fibrotic; 6) anti-oxidant; and 7) promotion of cellular reprogramming. In this context, these mechanisms, either 
individually or synergically, could induce renal protection and functional recovery. This review summarises the most important 
effects and benefits associated with MSC-based therapies in experimental renal disease models and attempts to clarify the 
mechanisms behind the MSC-related renoprotection. MSCs may prove to be an effective, innovative and affordable treatment for 
moderate and severe AKI. However, more studies need to be performed to provide a more comprehensive global understanding 
of MSC-related therapies and to ensure their safety for future clinical applications.

Introduction

Acute Kidney Injury
Acute kidney injury (AKI) is classically described as a 
rapid and progressive loss of renal function, which persists 
for variable periods, resulting in an increase in markers of 
kidney injury.1 It is important to consider that AKI is also 
characterised as a wide-spectrum syndrome, with progressive 
and cumulative damage ranging from mild to severe forms.1,2

AKI affects more than 15% of all hospital admissions and is 
associated with elevated rates of mortality and morbidity. In 
AKI, the mortality rate can range from 15% in patients with 
isolated renal failure up to 50–80% in severe cases in which 

renal replacement therapies are needed.3,4 Even after the 
recovery of kidney function, some patients remain dependent 
on dialysis (≈13%) or have compromised renal function in 
the long term. Indeed, it has been reported that patients who 
recover from acute renal dysfunction have an increased risk 
for developing progressive chronic kidney disease.5-7

Pathophysiology of AKI
AKI is frequently multifactorial and can occur as a result 
of a fall in renal perfusion, direct insults to the renal tubule 
(toxic or obstructive), tubule-interstitial inflammation and 
oedema, or a primary reduction in the glomerular filtration 
rate.8 After an ischaemic injury to the kidney, structural and 
biochemical changes occur which result in vasoconstriction, 
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detachment of tubular cells, luminal tubular obstruction 
and trans-tubular back-leakage of the glomerular filtrate.9 

Additionally, morphologic changes can be observed after 
ischaemic damage, including the loss of cytoskeletal integrity 
and cell polarity (the mislocalisation of Na+/K+ ATPase and 
β-integrins from the basolateral to the apical membrane), loss 
of the brush border, breakdown of the epithelial cell barrier 
and disruption of the tight junctions causing apoptosis/
necrosis of tubular cells.10,11

These insults to the epithelium result in the generation of 
inflammatory mediators, which can promote vasoconstriction 
and further stimulate the inflammatory process. Furthermore, 
infiltrating neutrophils release reactive oxygen species, 
proteases and myeloperoxidase, which lead to tissue damage. 
These substances can act synergically with leukotriene B4 
and platelet-activating factor (PAF) that can further sustain 
the inflammation.12,13

Although injured, the kidney has great regeneration 
capabilities. This organ can potentially recover its parenchyma 
by promoting increases in the number of tubular cells after 
injury. Stem cell or progenitor cell populations inside the 
kidney can drive this process by promoting epithelial cell 
spreading and migration and cell de-differentiation and 
proliferation.9

Prevention and Conventional Treatment of AKI
Many biomarkers can identify the occurrence of AKI, 
including plasma creatinine and urea, urine interleukin 
18 (IL-18), neutrophil gelatinase-associated lipocalin 
(NGAL), kidney injury molecule-1 (KIM-1), N-acetyl-β-
glucosaminidase (NAG), β2-microglobulin (β2M), retinol 
binding protein (RBP) and microalbuminuria. However, each 
of these biomarkers have their own limitations, such as up-
regulation during the early or late stages and influences from 
diet, age or sex, and individually, these markers have not been 
comprehensively evaluated in a large cohort of patients or 
during different clinical stages of AKI.14-21

Few known treatments have the potential to change the 
course of the disease once AKI has developed. Thus, 
alternative treatment strategies have been attempted to avoid 
AKI following the initial insult to the kidney, including 
adequate hydration control, pre-emptive use of antioxidants, 
maintenance of arterial pressure, and caution with exposure 
to nephrotoxic drugs, such as aminoglycosides, amphotericin 
B and radiological contrast agents.22 In addition, other 
pharmacological-based therapies (e.g. diuretics, dopamine, 
natriuretic peptides, N-acetylcysteine) have been evaluated for 
their ability to prevent AKI, although they have shown little 
efficacy to date.23-26 Consequently, intermittent or continuous 

renal replacement therapy (dialysis) is still considered to be 
the best treatment option for mild and severe AKI.27

In summary, although advances have occurred, there is a clear 
need for more effective therapies for the treatment of AKI and 
the use of mesynchymal cells offers an innovative approach 
to that end.

Mesenchymal Stem Cells and Their Potential in Regenerative 
Medicine
Mesenchymal stem cells (MSCs) were first identified from 
bone marrow by Friedenstein and colleagues in 1970 as non-
haematopoietic progenitor cells that had the capacity to adhere 
to culture flasks and displayed fibroblast colony-forming unit 
activity in vitro.28

Currently, MSCs are considered multipotent mesenchymal 
progenitor cells that have been classically defined by 
their ability to adhere to plastic, self-replicate and exhibit 
multipotent differentiation potential to mesodermal lineages 
such as osteocytes, chondrocytes and adipocytes. There are 
numerous cell surface markers that can be used to define 
MSCs, including positive staining for CD105, CD73 and 
CD90 and the absence of CD45, CD34, CD31, CD14 (or 
CD11b), CD79a (or CD19) and HLA-DR.29

MSCs can be obtained from numerous tissues, including 
bone marrow,30 synovial membrane,31 muscle,32 cord blood,33 
peripheral blood,34 synovial fluid,35 tooth pulp,36 saphenous 
vein,37 periosteum,38 adipose tissue,39 placenta40 and umbilical 
vein,41 making them very attractive for experimental 
investigations. In fact they can be found in most tissues, and 
within these tissues are believed to mainly be found in the 
vascular walls.42,43 The cells that most closely resemble MSCs 
in vivo are pericytes; these cells are characterised by the 
ability to maintain tissue homeostasis, to stabilise blood vessel 
architecture and possibly to generate adipocytes, osteocytes, 
chondrocytes, smooth muscle cells and fibroblasts.44,46,47 In 
addition, it was discovered that in situ vascular pericytes 
express classical MSC markers such as CD44, CD73, CD90 
and CD105.45 A negative correlation between the presence of 
CD146 (a pericyte marker) and fibroblast-specific protein-1 
(FSP-1, a fibroblast marker), suggests that fibroblasts are a 
more specialised MSC/pericyte sub-type.46

Therapeutically, MSCs possess great potential. These cells 
have the ability to ‘home’ to injured tissue and produce a 
number of different trophic factors such as cytokines and 
growth factors. These factors are specifically related to the 
mechanisms of immune regulation, anti-scarring, endogenous 
progenitor cell support, anti-apoptosis, angiogenesis and 
chemoattraction.48,49
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MSCs have been effectively used in several experimental 
and clinical protocols for treating inflammatory diseases 
such as graft-versus-host disease, multiple sclerosis, 
osteogenesis imperfecta and Crohn’s disease. Thus, MSC-
based therapies have the potential to be an innovative and 
affordable treatment to repair inflamed and damaged tissues, 
and may thus be of potential benefit in acute and chronic 
kidney diseases.50 However, while many studies have 
demonstrated that treatment with MSC to be efficacious in 
animal models of kidney injury, there has only been one 
multicentric study of MSC therapy for human renal disease.  

In this unique work it was shown that MSC infusion 
concomitant with low doses of immunosuppressant drugs 
exhibited the same benefits to kidney transplanted patients as 
higher doses of immunosuppressant. This may be considered a 
great advantage, since it is known that the use of higher doses 
of immunosuppressive drugs can cause further complications 
to the kidney after organ transplantation. The MSC treatment 
promoted the recovery of the glomerular filtration rates more 
quickly, although no difference was seen in the final score in 
both groups (high dose vs low dose and MSCs).51

Figure 1. Illustration of proposed mechanisms related with mesenchymal stem cell renoprotection on acute and chronic 
kidney disease. Mesenchymal stem cells (MSCs) may act by a number of differentiation-independent mechanism to exert a 
specific renal recovery. In this present review, we propose seven main functions to explain the molecular and cellular mechanisms 
related to MSC renoprotection. The MSC global therapeutic effects are separated into: 1) anti-inflammatory (IL-10 and TGF-β), 
2) pro-angiogenic (EPO, IGF, FGF-2 and VEGFs), 3) stimulator of progenitors endogenous cells (VEGFs, IGF, LIF, HGF and 
SDF-1), 4) anti-apoptotic (IGF and HGF), 5) anti-fibrotic (HGF, MMPs and TIMPs), 6) anti-oxidant (EPO and HO-1) and 7) 
promotion of cellular reprogramming (MVs). We suggest that all of them, either individually or synergically, could induce renal 
protection and functional recovery. 

EPO, Erythropoietin; FGF-2, Fibroblast growth factor 2; HGF, Hepatocyte growth factor; HO-1, Heme oxygenase-1; IGF, Insulin-
like growth factor; IL-10, Interleukin 10; LIF, Leukemia inhibitory factor; MMPs, Matrix metalloproteinases; MV, microvesicle; 
SDF-1, Stromal cell-derived factor-1; TGF-β, Transforming growth factor beta; TIMPs, Tissue inhibitors of metalloproteinase; 
VEGF, Vascular endothelial growth factor.
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In this review we summarise the most important effects and 
benefits associated with MSC-based therapies in experimental 
models of renal disease and attempt to clarify the mechanisms 
which may underlie MSC mediated renoprotection. We 
discuss seven aspects which help to explain the molecular 
and cellular mechanisms underlying MSC renoprotection: 
1) anti-inflammatory; 2) pro-angiogenic; 3) stimulation of 
endogenous progenitor cells; 4) anti-apoptotic; 5) anti-fibrotic; 
6) anti-oxidant; and 7) promotion of cellular reprogramming. 
We propose that each of these functions, either individually 
or synergically, can induce renal protection and promote 
functional recovery by modulation of several kinds of 
molecules including cytokines, growth factors, receptors, 
enzymes and matrix components (Figure 1).

Mechanisms Associated with MSC Prevention of Renal 
Dysfunction after AKI
The efficacy of MSCs in promoting renal recovery after an 
acute injury was first demonstrated in 2004 by Mongi et al.52 
The authors showed that MSCs were able to migrate to the 
damaged tissue and restore kidney structure and function.52 
Additional studies have since been performed to evaluate 
the potential of MSC-based therapy in several experimental 
conditions of renal failure. The results of these experiments 
have identified some potential mechanisms that explain the 
MSC renoprotective process. 

MSCs are believed to act through various differentiation-
independent mechanisms to exert specific renal recovery. 

Essentially, MSCs can secrete a pool of cytokines and 
chemokines, interact through cell-to-cell contacts and release 
bioagents such as vesicles to orchestrate renal protection 
(Table 1).

Anti-Inflammatory/Immunomodulatory Properties of MSCs 
in AKI
Inflammatory cells are known to participate in the early stages 
of acute renal failure. Macrophages, neutrophils and T cells can 
actively promote the development of AKI.12,53,54 MSCs have 
powerful immunomodulatory effects on immune cells through 
cell-to-cell contacts (specifically through the interaction of 
PDL-1, HLA-G5 and CTL-A4) and by secretion of molecules 
such as cytokines, chemokines and growth factors (e.g. TSG-
6, LIF, HGF, TGF-β, CCL-2, IL-6, IL-10, PGE-2, IDO, iNOS 
and HLA-G5).48,49,55,56 These potential effects of MSCs can 
down-regulate several types of inflammatory cells, such as 
CD4+, CD8+, NK, and B cells, macrophages, and dendritic 
cells, while up-regulating others such as regulatory T cells to 
further decrease the AKI-associated inflammation and restore 
renal function.49

Several studies have used experimental models of AKI 
to demonstrate this phenomenon. In these studies, MSC 
treatment has been associated with the classical immune 
response shift from Th1 to Th2 in models in which IFN-
gamma-related molecules play a detrimental role. The renal 
protection was confirmed by the substantial recovery of renal 
function and the down-regulation of key pro-inflammatory 

Table 1. The global profile of mesenchymal stem cell (MSC)-derived molecules associated with renoprotection.

EPO, Erythropoietin; FGF-2, Fibroblast growth factor 2; HGF, Hepatocyte growth factor; HO-1, Heme oxygenase-1; IGF, Insulin-like growth factor; IL-
10, Interleukin 10; LIF, Leukemia inhibitory factor; MMPs, Matrix metalloproteinases; MV, microvesicle; PDGFR, Platelet-derived growth factor receptor; 
SDF-1, Stromal cell-derived factor-1; SM22α, 22-kDa smooth muscle cell marker; TGF-β, Transforming growth factor beta; TIMPs, Tissue inhibitors of 
metalloproteinase; VEGF, Vascular endothelial growth factor.
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molecules (TNF-α, IL-1α, IL-1β, IFN-γ and IL-6), adhesion 
molecules (ICAM-1) and chemokines (CXCL-2, MIP-2, 
G-CSF, GM-CSF, KC, MCP-1, MIP-3α, NGF-β and MSP), 
as well as some receptors such as CD68 and CD136. On 
the other hand, molecules associated with the Th2 immune 
response such as IL-10 and IL-4 were all up-regulated after 
MSC infusion.57-63

Furthermore, kidney derived-MSCs have been shown to play 
an important role in the inhibition of specific inflammatory 
cells such as B cells, T cells and dendritic cells.64 When co-
cultivated with dendritic cells, MSCs promoted changes in the 
differentiation and maturation of the dendritic cells, causing a 
significant decrease in expression of class II MHC molecules, 
an increase in CD80 expression and IL-10 production, and 
importantly, the MSCs impaired the ability of dendritic cells to 
stimulate T cell proliferation. In addition, the MSC-modulated 
dendritic cells significantly reduced B cell activation, 
proliferation and antibody production (IgM/IgG) in allogeneic 
co-culture assays.65 These data are relevant given it is well 
known that dendritic cells and B cells play an important role in 
AKI. The cytoprotective action of MSCs on AKI models may 
be partly related to their effects on these immune cells.

Taken together, these findings suggest numerous possible 
immune regulatory effects by which MSCs may modulate 
kidney inflammation progression and change the outcome of 
AKI (Figure 1, Table 1, Table 2).

Pro-Angiogenic Potential of MSCs on AKI 
An adequate blood supply is fundamental for the recovery 
of renal function, and MSC-derived factors may restore 
renal vasculature and perfusion after kidney injury. The pro-
angiogenic properties of MSCs have been reported to be 
closely associated with the recovery of damaged tissues.66,67 
MSCs can promote angiogenesis in two ways; firstly by 
acting as pericyte-like cells to support the new vasculature 
and secondly by secreting molecules strongly associated 
with the angiogenesis process including vascular endothelial 
growth factor (VEGF), insulin-like growth factor 1 (IGF-
1), hepatocyte growth factor (HGF), placental growth factor 
(PIGF), monocyte chemoattractant protein-1 (MCP-1), 
platelet-derived growth factor (PDGF) and fibroblast growth 
factor 2 (FGF-2).48,68,69 

The abilities of MSCs to support angiogenesis and express 
markers of supportive vascular cells in a renal context was 

Table 2. The global profile of molecules up-/down-regulated by mesenchymal stem cell (MSC) treatments in experimental 
models of acute and chronic kidney injury.

Bad, Bcl-2-associated death promoter; BCL-2, B-cell CLL/lymphoma 2; BCL-XL, B-cell lymphoma-extra large; BCL-XS, B-cell lymphoma-extra small; 
BMP-7, Bone morphogenetic protein 7; CXCL-2, Chemokine (C-X-C motif) ligand 2; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; eNOS, Endothelial nitric oxide 
synthase; EPO, Erythropoietin; FGF-2, Fibroblast growth factor 2; FSP-1, Fibroblast-specific protein-1; G-CSF, Granulocyte colony-stimulating factor; GM-CSF, 
Granulocyte macrophage colony-stimulating factor; GSH-Px, Glutathione peroxidase; GSH-Rx, Glutathione reductase; HGF, Hepatocyte growth factor; HO-1, 
Heme oxygenase-1; ICAM-1, Intercellular adhesion molecule 1; IGF, Insulin-like growth factor; IL-10, Interleukin 10; IL-4, Interleukin 4; IL-6, Interleukin 6; 
IL-1β, Interleukin 1β; IL-1α, Interleukin 1α; IFN-γ, Interferon-gamma; iNOS, Inducible nitric oxide synthase; KC, keratoconus; LIF, Leukemia inhibitory factor; 
MCP-1, Monocyte chemoattractant protein-1; MDA, Malondialdehyde; Met, hepatocyte growth factor receptor; MIP-1, Macrophage inflammatory protein 1; 
MIP-2, Macrophage inflammatory protein 2; MIP-3α, Macrophage inflammatory protein 3α; MMPs, Matrix metalloproteinase; MSP, Macrophage-stimulating 
protein; MV, microvesicle; NCAM, Neural cell adhesion molecule; NGF-β, Nerve growth factor; NQO1, NAD(P)H dehydrogenase quinone 1; Pax-2, Paired box 
gene 2; PDGFR, Platelet-derived growth factor receptor; SDF-1, Stromal cell-derived factor-1; Smad-3, Mothers against decapentaplegic homolog 3; Smad-7, 
Mothers against decapentaplegic homolog 7; α-SMA, Alpha-smooth muscle actin; SM22α, 22-kDa smooth muscle cell marker; SOD, Superoxide dismutase; 
TGF-α, Transforming growth factor α; TGF-β, Transforming growth factor β; TIMP-1, Tissue inhibitor of metalloproteinase 1; TNF-α, Tumor necrosis factor-
alpha; VEGF, Vascular endothelial growth factor.
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first demonstrated in 2006 when MSCs were co-cultivated 
with ureteric bud and kidney epithelial cells. It was observed 
that MSCs were positive for PDGF receptor and SM22α 
(pericyte markers) and their infusion increased the capillary 
density in vivo, as assessed by the quantification of blood 
vessel formation in a matrigel plug system.70 In addition, 
the MSCs preferably migrated to the peritubular capillaries 
when injected into the subcapsular space of ischaemic 
kidneys.70 This study also examined whether a hypoxic 
microenvironment, which is necessary for angiogenesis, 
could enhance pro-angiogenic properties in MSCs. The MSCs 
seeded in hypoxic (2% O2) or anoxic (<1% O2) conditions, 
had an increase in the erythropoietin (EPO) and VEGF levels 
(two powerful pro-angiogenic factors) concomitant with the 
maintained expression of α-SMA and vimentin, characterising 
the acquisition of a pericyte-like phenotype.70 

Furthermore, another study has shown that MSCs exerted 
robust angiogenesis effects when cultivated in matrigel plugs 
together with endothelial cells plus angiogenic factors (VEGF 
and FGF-2). To evaluate their angiogenic abilities in vivo, 
these MSCs were transplanted into mice with acute renal 
ischaemia. The MSCs selectively grafted onto damaged areas 
and supported functional recovery and tubular regeneration, 
induced epithelial proliferation and decreased apoptosis. 
MSC-treated mice also displayed a five-fold increase in 
VEGF expression in the renal tissue, which was associated 
with better preservation of the peritubular capillaries.71 Other 
studies, again in a mouse model of renal injury, showed that 
MSCs genetically modified to express erythropoeitin (EPO) 
and IGF-1, not only rectified the anaemia associated with 
renal failure, but also stimulated angiogenesis.72

Other work, using a model of acute renal injury induced 
by cisplatin, also demonstrated that the infusion of MSCs 
improved renal functional parameters, increasing the 
endothelial cell density and the capillary lumen volume, with 
no perceptible ultrastructural peritubular changes such as 
cytoplasmic swelling or retraction.73 Finally, when injected 
into mice with renal ischaemia, animals treated with normal 
MSCs showed elevated renal microvessel density scores 
when compared to animals treated with either VEGF-silenced 
MSCs or a vehicle control.74

In all, these encouraging results suggest that MSCs exhibit 
various pro-angiogenic properties to promote the recovery 
of damaged blood vessels, through production of angiogenic 
factors (VEGFs, FGF-2, IGF, EPO) and by acting as pericyte-
like cells (providing structural support), thereby contributing 
to the maintenance of blood perfusion and to the stabilisation 
of the vasculature (Figure 1, Table 1, Table 2).

MSCs as Stimulators of Endogenous Progenitor Cells
The kidney has remarkable regenerative capacities, which 
are principally attributed to a large population of resident 
progenitor cells.75 These special renal cells, which are 
responsible for tissue repair, have been found in the renal 
papilla,76 tubular epithelium,77 and Bowman’s capsule.78 An 
increase in the number of these resident progenitor cells 
(endothelium progenitor cells, hematopoietic progenitor 
cells, and mesodermal-derived progenitor cells) has been 
observed after renal damage; however, after the restoration of 
renal function, these cells tend to decrease back to their basal 
levels.79

MSCs have the ability to secret several growth factors 
associated with the stimulation of progenitor cells (e.g. 
SCF, LIF, angiopoetin-1, M-CSF, HGF, IGF, SDF-1), which 
can then assist in the proliferation and generation of new 
endogenous cells by promoting renal repair.48,80,81 

HGF is known to be a potent mitogen for many cells (e.g. 
hepatocytes, endothelial and epithelial cells). This growth 
factor and its receptor (Met) increase transiently after injury, 
and it has been reported that the HGF/Met binding causes 
autophosphorylation and the activation of tyrosine kinase 
activity (PI3Ks and MAPKs). Thus, it has been suggested that 
HGF and Met may play an important role in promoting the 
regeneration of injured kidneys.82

In 2011, Rampino and colleagues explored the HGF/Met 
(HGFR) axis in AKI and verified de novo the intense expression 
of HGF in the kidneys of rats with anti-Thy1-induced renal 
disease after MSC injection. Likewise, treatment with MSCs 
induced a striking increase in Met expression in kidney 
sections. Curiously, however, MSC injection into healthy rats 
did not result in the up-regulation of HGF.62

To identify the precise molecule responsible for MSC-
induced renal protection by the stimulation of endogenous 
cell proliferation, several studies have utilised techniques that 
inactivate a target via a specific-antibody or inhibitor, silence 
mRNA (small interfering-RNA, siRNA), or overexpress a 
specific molecule. 

Although exposure to nephrotoxic drugs (cisplatin) markedly 
reduced tubular epithelial cell viability, in vitro analyses 
revealed that co-culture with MSCs provided a renoprotective 
effect by decreasing of apoptosis and promoting tubular 
cell proliferation. Conversely, tubular cell proliferation 
was attenuated when IGF-1, which is expressed at elevated 
levels on MSCs, was blocked using an antibody specific for 
this molecule. Knockdown of IGF-1 expression in MSCs 
using siRNA also resulted in an elevated apoptosis index 
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and a prominent reduction in the proliferation rate of tubular 
epithelial cells when co-cultivated with MSCs.80 In a murine 
model of cisplatin-induced AKI, the administration of MSCs 
treated with IGF-1 siRNA also limited their protective effect 
on tubular structure (necrosis index and tubular casts) and 
renal function as assessed by creatinine and urea.

Thus, the expression of keys molecules such as VEGF, HGF, 
IGF, SDF-1 and LIF suggests that MSCs can either directly 
or indirectly induce resident endogenous progenitor cells to 
proliferate and stimulate functional renal repair (Figure 1, 
Table 1, Table 2).

Anti-Apoptotic Effects of MSCs on AKI 
AKI is characterised by apoptosis of the tubular epithelial 
cells. The anti-apoptotic effect of MSCs could be a very 
useful tool for preventing cell death in scenarios involving 
tissue injury. In addition, MSCs have the ability to secrete 
an abundant number of anti-apoptotic factors such as VEGF, 
HGF, IGF-1, stanniocalcin-1, TGF-β, FGF-2 and GM-CSF.48 

Experimental models of AKI have demonstrated some 
renoprotective effect of MSCs on tissue apoptosis. Animals 
treated with MSCs showed a reduced apoptosis index, as 
evaluated using terminal transferase-mediated dUTP nick-
end labelling (TUNEL) assays. Moreover, these MSC-treated 
mice displayed an increase in anti-apoptotic molecules (BCL-
2 and BCL-XL) and a decrease of pro-apoptotic molecules 
(BCL-XS), as assessed by gene expression analysis.57

Changes in the anti-/pro-apoptotic balance have been observed 
in renal tissues after therapy with MSCs. In a study using 
ischaemia/reperfusion-mediated AKI, our group reported 
that MSC injection enhanced renal recovery (reduction of 
creatinine and intense proliferation) by decreasing apoptosis, 
with a marked up-regulation of the BCL-2/Bad ratio.58

In search of a specific molecule behind the anti-apoptotic 
effect of MSCs, a study reported that IGF-1 may play a 
fundamental role in promoting this protection. In vitro 
analysis demonstrated that the percentage of apoptotic 
cells positive for caspases 3 and 7 (apoptosis markers) and 
the level of incorporation of propidium iodide (necrosis 
marker) significantly increased after cisplatin treatment, but 
the addition of MSCs at the co-cultures notably reduced the 
number of dead cells when compared with control values. To 
investigate the role of MSC-derived IGF-1 in limiting tubular 
apoptosis, IGF-1 was genetically silenced using siRNAs in 
MSCs. The IGF-1 knockdown MSCs were co-cultured with 
tubular cells and after incubation these cells shown to be 
ineffective in protecting against cisplatin-induced apoptosis.80

Subsequently, another study has reported the role of HGF 
and VEGF molecules in the anti-apoptotic effect of MSCs. 
MSCs secreting high levels of HGF/VEGF were transplanted 
in a model of folic acid-induced AKI. MSC infusion 
ameliorated the renal functional parameters (creatinine, 
urea and histopathological score) and provided a reduced 
DNA fragmentation score (TUNEL) in kidney parenchyma, 
suggesting that HGF and VEGF may have participated in 
apoptosis protection.83

These findings show that MSCs exert an anti-apoptotic effect 
possibly via the secretion of IGF, HGF and VEGF, which may 
contribute to the reduced initial apoptosis and allow tissue to 
regenerate and re-establish the renal physiological parameters 
(Figure 1, Table 1, Table 2).

Anti-Fibrotic Mechanisms of MSCs on AKI
Fibrosis is a secondary event following acute kidney injury 
and MSCs can secrete or up/down-regulate numerous 
molecules including FGF-2, HGF and adrenomedullin which 
can influence fibrosis.48

Our group has demonstrated that MSC administration can 
up-regulate key molecules such as HO-1, BMP-7, Smad7, 
and HGF, which have classical anti-fibrotic properties, in 
an experimental model of CKD. The up-regulation of these 
markers was associated with a reduction in the renal fibrosis 
score, as evaluated using the Sirius red matrix marker and 
Masson’s trichrome stain. In addition, MSCs still promoted 
the intense modulation of the fibrosis network molecules, 
including the up-regulation of E-cadherin and the down-
regulation of epithelial-mesenchymal transition markers 
(α-SMA, FSP-1 and Vimentin) beyond of extracellular matrix 
markers (collagen 1-3, fibronectin, Timp-1, Samd-3).84

We also evaluated the anti-fibrotic effect of MSCs in a 
unilateral severe ischaemia model. First we verified, after 
MSC infusion, the presence of reduced renal dysfunction and 
an increase in tubular regeneration 24 hours after injury. As 
predicted for this model, the kidneys of untreated mice shrank 
at six weeks, while the kidneys of MSC-treated animals 
remained at a normal size and displayed less matrix deposition 
and decreased staining for FSP-1 and type I collagen (fibrosis 
markers). In another set of experiments, mice were treated 
at six weeks when fibrosis was already established. It was 
possible to observe that MSC infusion ameliorated the renal 
functional parameters and reduced tissue fibrosis, including 
low expression of fibrosis markers such as type I collagen and 
vimentin mRNAs.85

Other groups using different experimental models of CKD 
have reported similar findings. All of these studies showed 
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that MSC administration decreased fibrotic markers (i.e. 
α-SMA, FSP-1, collagen, and Masson staining) and induced 
the overexpression of renoprotective molecules such as HGF 
and VEGF.83,86 To evaluate the efficacy of different MSC 
delivery routes to revert fibrosis, MSCs were injected into 
the kidney subcapsular space using the 5/6 nephrectomy 
model. In this model after either 15 or 30 days, untreated 
rats displayed continued hypertension, which was partially 
reduced after MSC infusion. Moreover in the same study, 
a significant reduction in the glomerulosclerosis index and 
improvements in renal functions were also observed at 30 
days after MSC injection.87

Interestingly, HGF was predicted to play a pivotal role in the 
anti-fibrotic mechanism of MSCs. To verify this effect, MSCs 
were genetically engineered to overexpress HGF. These MSCs 
expressing HGF were then injected in animals with unilateral 
ureteral obstruction, and the tissue expression of α-SMA was 
found to be significantly reduced compared to animals treated 
with untransfected MSCs.88

Although the precise mechanism remains unclear, 
some evidence suggests that the modulation of the 
matrix metalloproteinase (MMP) and tissue inhibitor of 
metalloproteinases (TIMP) balance may also be essential 
for MSC-induced fibrosis regression.89,90 Thus, MSCs could 
be a powerful tool to revert renal fibrosis by endogenous 
production of HGF and FGF-2. However, more studies are 
required to clarify the role of MSCs in renal fibrosis (Figure 1, 
Table 1), before its use for the treatment of chronic, end-stage 
kidney disease is feasible.

Anti-Oxidant Role of MSCs During AKI Progression
Oxidative stress is a classical mechanism involved in early 
inflammation, and reactive oxygen and nitrogen species have 
been implicated in the pathogenesis of AKI. Superoxide 
anion, nitric oxide and hydrogen peroxide are generated 
during kidney injury, and association between these species 
can generate peroxynitrite, which is considered to be a key 
oxidant species that is directly involved in protein oxidation 
and renal failure.91

A limited number of studies have shown that MSCs can 
secrete elevated levels of heme oxygenase-1 (HO-1) and 
EPO, which are considered to be potent anti-oxidant 
molecules.92,93 Heme oxygenase degrades heme to biliverdin, 
iron, and carbon monoxide; there are numerous forms of the 
enzyme, and HO-1 is an inducible isoform responsive to 
numerous stressors including oxidation. Expression of HO-1 
can regulate inflammatory and immune responses as well 
as oxidative stress, confer anti-apoptotic protection94 and 
MSCs isolated from HO-1 knockout animals showed reduced 

expression and secretion of several important growth and 
pro-angiogenic factors, including SDF-1, VEGF, and HGF, 
compared to MSCs derived from normal mice. Moreover, 
conditioned medium with HO-1 knockout MSCs was unable 
to restore the functional and morphological changes associated 
with kidney injury.95 In addition, molecules associated with 
the release of free radicals, such as the inducible nitric oxide 
synthases (iNOS), endothelial nitric oxide synthases (eNOS) 
and 8-hydroxy-2-deoxyguanosine (8-OHdG), are decreased 
after MSC administration in an ischaemic AKI model.57,96

The ability of MSCs to inhibit oxidative damage was further 
confirmed using an experimental model of cisplatin-induced 
AKI. The nitration of tyrosine residues is considered to be 
a marker of protein oxidation, and the expression level 
of nitrotyrosine was significantly increased in mice with 
cisplatin-induced AKI. Conversely, a marked reduction in 
nitrotyrosine staining was observed when mice were treated 
with MSCs. Furthermore, this protection was correlated with 
an increase pAkt expression in renal tissues, suggesting that 
pAkt signalling pathway could have participation on MSC 
anti-oxidant effect.97

MSC treatment can modulate the level of anti-oxidative 
molecules in the renal parenchyma after kidney injury with 
AKI mice injected with MSCs displaying higher expression 
levels of NAD(P)H quinone oxidoreductase 1 (NQO1), 
glutathione reductase (GSH-Rx) and glutathione peroxidase 
(GSH-Px) when compared with control or untreated groups. 
Futhermore, the authors verified that the global oxidative index 
had decreased after MSC treatment.63 The antioxidant/oxidant 
balance may also be modulated by MSC administration in 
post-ischemic kidneys. MSC infusion significantly improved 
the activity of superoxide dismutase (SOD), a key molecule 
responsible for reducing oxidative stress, and increased  
GSH-Px expression, a potent antioxidant enzyme, in renal 
tissues. Treatment with MSCs also resulted in a significant 
reduction in the levels of malondialdehyde (MDA), which is 
associated with renal injury.98

In summary, MSCs can control the antioxidant/oxidant 
balance after kidney injury, potentially via HO-1 and EPO, 
contributing both to lower oxidative stress and to functional 
renal recovery (Figure 1, Table 1, Table 2).

Role of MSC Microvesicles in Cellular Reprogramming in 
AKI
MSCs also play a prominent role in the regulation of 
endogenous gene expression by promoting cellular 
reprogramming. These cells, via the secretion of small 
organelles or vesicles, may have a direct role in modulating 
gene expression in injured tissues or organs. These secreted 
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microvesicles are loaded with miRNAs (small non-coding 
RNA molecules, about 21–25 nucleotides in length), which 
are potent epigenetic and non-epigenetic regulators. Once 
inside of target cells (such as damaged cells), these miRNAs 
can change the cellular genomic programming by modulating 
gene expression through translational repression of specific 
mRNAs targets or by up/down-regulating the expression of 
other miRNAs.99,100

As previously mentioned, some studies using models of 
renal disease have shown that medium conditioned with 
MSCs contains bioactive molecules such as HGF, IGF and 
VEGF, which could contribute to the growth and survival 
of endothelial and epithelial tubular cells and thus promote 
renal angiogenesis and regeneration.74,101 Indeed, in some 
cases, communication between the damaged renal cells 
and the MSCs can be critically important for the MSCs to 
induce their renoprotective effects. Co-culture of damaged 
renal cells and MSCs yields a conditioned medium which is 
more beneficial in promoting tubular cell proliferation and 
protection than conditioned medium generated by culture of 
MSCs in isolation.102

In 2009, Bruno and co-workers provided the first evidence that 
MSCs release microvesicles loaded with small RNAs, which 
might exert a renoprotective effect. First, the authors showed 
that MSC-derived microvesicles expressed MSC markers and 
had both proliferative and anti-apoptotic effects on tubular 
cells in vitro. After, these microvesicles were injected in 
glycerol-mediated AKI animals and promoted the recovery 
of renal function, as indicated by elevated indices of tissue 
proliferation index. Moreover, the renoprotective effects of 
MSC-derived microvesicles were abrogated both in vitro and 
in vivo when the vesicles were pre-treated with RNases.103 To 
test the occurrence of the horizontal transfer of small RNAs 
between MSCs and damaged renal cells, microvesicles were 
isolated from human MSCs that contain the specific human 
reporter genes POLR2E and SUMO-1. These genes, which 
are normally present only in human cells, were also found in 
murine cultures of epithelial cells and renal parenchyma of 
the treated mice, possibly by a microvesicle-mediated transfer 
mechanism.103 

Additionally, another study reported that both IGF and its 
receptor (IGFR) are expressed in MSCs, but only IGFR 
was found in MSC-derived microvesicles. The co-culture of 
renal cells with MSC-derived microvesicles promoted IGFR 
up-regulation in tubular cells concomitant with elevated 
proliferation rates. Subsequently, it was verified that specifically 
inhibiting IGFR mRNA blocked this proliferative effect.104 
Other studies demonstrated that microvesicle treatment 
improved renal functional parameters and fibrosis.105,106 

Multiple infusions of microvesicles seemed to be more effective 
at conferring renal protection than one isolated intervention.105 

In this context is important to know if MSC-derived 
microvesicles possess similar protective properties to MSCs. 
One study has demonstrated the additional pro-angiogenic 
effects of MSC-derived microvesicles. These microvesicles 
were internalised into endothelial cells and promoted their 
proliferation in a dose-dependent manner. Further, the in vitro 
administration of microvesicles enhanced the ability of the 
endothelial cells to form a capillary-like network, which is 
critical to promote angiogenesis. In addition, treatment with 
MSC-derived microvesicles in rat with hindlimb ischaemia 
also induced significant improvement in the blood flow 
recovery index compared to the vehicle control group.107 

Finally, these preliminary studies support the evidence that 
MSC-derived microvesicles can have similar effects to MSCs 
by promoting proliferation and angiogenesis and inducing anti-
apoptotic and anti-fibrotic effects, which may act synergically 
to confer renal protection. Although the precise mechanisms 
involved in microvesicle-mediated renoprotection remain 
unknown, small regulatory molecules such as growth factors, 
transcription factors and miRNAs appear to be intimately 
involved (Figure 1, Table 1). We believe that further studies 
will clarify and provide more information about these 
concepts and we hope that microvesicle therapy can be widely 
exploited in several kinds of situations and inflammatory 
diseases including AKI.

Conclusion 
Over the past few years, MSC-based therapies have been 
extensively studied as a potential treatment for several 
inflammatory diseases. However, our understanding of the 
regulatory effects and mechanisms of action of MSCs or 
MSC-derived bioagents remain to be fully elucidated, and 
this current lack of understanding is a limiting factor to the 
utilization of this therapy in clinical practice.

Although promising results have been obtained using MSC 
therapies in experimental kidney diseases, these studies 
were all performed in small animals such as mice and rats, 
and autologous studies conducted with large-animal models 
have not exhibited the same reparative properties.108 In the 
first human clinical trial using MSCs as part of a cocktail 
of suppressive agents during kidney transplantation, adding 
MSCs was not more effective than treating the control 
group with standard doses of immunosuppressive agents. 
Although the combination of MSCs with a low dose of 
immunosuppressive drugs had some advantages (as a faster, 
but not better, improvement in glomerular filtration rates), 
this treatment has not yet yielded significant enough results to 
justify it replacing classical intervention.51
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In addition, while MSCs have the ability to target and 
migrate to damaged tissues, a property that is relevant to 
their therapeutic use, evidence indicates that long-term MSC 
engraftment after systemic or local administration rarely 
occurs. Thus, a better understanding of the mechanisms 
behind tissue-specific homing is fundamental to establish 
how MSCs act dynamically in vivo. It is also important to 
understand how the numerous trophic factors secreted by 
MSCs interact in vivo to promote protection without causing 
side effects such as uncontrolled angiogenesis. In addition, 
the question of how and why many MSC features are niche- 
and species-specific (e.g. derived from fat, kidney, umbilical 
cord or bone marrow or obtained from rat, mice, or human) 
cannot be left unanswered.

Lastly, the viability, safety and efficacy of fresh and 
cryopreserved MSCs must be established prior to their routine 
use in clinical practice. Encouragingly, one experimental 
study on kidney disease found no difference in the therapeutic 
potential between fresh and cryopreserved MSCs.60

In summary, despite the remaining challenges, MSC-based 
therapies have great potential for clinical applications due to 
the potentially large repertoire of regulatory agents that they 
can secrete beyond their cell-to-cell contact interactions. Taken 
together, these properties of MSCs may provide an effective, 
innovative and affordable therapy for the treatment of acute 
and chronic renal diseases. Nevertheless, more studies need to 
be performed to provide a more comprehensive understanding 
of MSC-related therapies in order to ensure their safety for 
future clinical applications.
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