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Abstract
Partial differential equation (PDE) models are commonly used to model complex dynamic
systems in applied sciences such as biology and finance. The forms of these PDE models are
usually proposed by experts based on their prior knowledge and understanding of the dynamic
system. Parameters in PDE models often have interesting scientific interpretations, but their values
are often unknown, and need to be estimated from the measurements of the dynamic system in the
present of measurement errors. Most PDEs used in practice have no analytic solutions, and can
only be solved with numerical methods. Currently, methods for estimating PDE parameters
require repeatedly solving PDEs numerically under thousands of candidate parameter values, and
thus the computational load is high. In this article, we propose two methods to estimate parameters
in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the
underlying dynamic process modeled with the PDE model is represented via basis function
expansion. For the parameter cascading method, we develop two nested levels of optimization to
estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the
PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo
(MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian
method and parameter cascading method are comparable, and both outperform other available
methods in terms of estimation accuracy. The two methods are demonstrated by estimating
parameters in a PDE model from LIDAR data.

Some Key Words
Asymptotic theory; Basis function expansion; Bayesian method; Differential equations;
Measurement error; Parameter cascading

1 Introduction
Differential equations are important tools in modeling dynamic processes, and are widely
used in many areas. The forward problem of solving equations or simulating state variables
for given parameters that define the differential equation models has been studied
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extensively by mathematicians. However, the inverse problem of estimating parameters
based on observed error-prone state variables has a relatively sparse statistical literature, and
this is especially the case for partial differential equation (PDE) models. There is growing
interest in developing efficient estimation methods for such problems.

Various statistical methods have been developed to estimate parameters in ordinary
differential equation (ODE) models. There is a series of work in the study of HIV dynamics
in order to understand the pathogenesis of HIV infection. For example, Ho, et al. (1995) and
Wei, et al. (1995) used standard nonlinear least squares regression methods, while Wu, Ding
and DeGruttola (1998) and Wu and Ding (1999) proposed a mixed-effects model approach.
Refer to Wu (2005) for a comprehensive review of these methods. Furthermore, Putter, et al.
(2002), Huang and Wu (2006), and Huang, Liu and Wu (2006) proposed hierarchical
Bayesian approaches for this problem. These methods require repeatedly solving ODE
models numerically, which could be time-consuming. Ramsay (1996) proposed a data
reduction technique in functional data analysis which involved solving for coefficients of
linear differential operators, see Poyton, et al. (2006) for an example of application. Li, et al.
(2002) studied a pharmacokinetic model and proposed a semiparametric approach for
estimating time-varying coefficients in an ODE model. Ramsay, et al. (2007) proposed a
generalized smoothing approach, based on profile likelihood ideas, which they named
parameter cascading, for estimating constant parameters in ODE models. Cao, Wang and Xu
(2011) proposed robust estimation for ODE models when data have outliers. Cao, Huang
and Wu (2012) proposed a parameter cascading method to estimate time-varying parameters
in ODE models. These methods estimate parameters by optimizing certain criteria. In the
optimization procedure, using gradient-based optimization techniques may have the
parameter estimates converge to a local minima, otherwise global optimization is
computationally intensive.

Another strategy to estimate parameters of ODE is the two-stage method, which in the first
stage estimates the function and its derivatives from noisy observations using data
smoothing methods without considering differential equation models, and then in the second
stage estimates of ODE parameters are obtained by least squares. Liang and Wu (2008)
developed a two-stage method for a general first order ODE model, using local polynomial
regression in the first stage, and established asymptotic properties of the estimator.
Similarly, Chen and Wu (2008) developed local estimation for time-varying coefficients.
The two-stage methods are easy to implement, however, they might not be statistically
efficient, due to the fact that derivatives cannot be estimated accurately from noisy data,
especially higher order derivatives.

As for PDEs, there are two main approaches. The first is similar to the two-stage method in
Liang and Wu (2008). For example, Bar, Hegger and Kantz (1999) modeled unknown PDEs
using multivariate polynomials of sufficiently high order, and the best fit was chosen by
minimizing the least squares error of the polynomial approximation. Based on the estimated
functions, the PDE parameters were estimated using least squares (Muller and Timmer
2004). The issues of noise level and data resolution were addressed extensively in this
approach. See also Parlitz and Merkwirth (2000) and Voss, et al. (1999) for more examples.
The second approach uses numerical solutions of PDEs, thus circumventing derivative
estimation. For example, Muller and Timmer (2002) solved the target least-squares type
minimization problem using an extended multiple shooting method. The main idea was to
solve initial value problems in sub-intervals and integrate the segments with additional
continuity constraints. Global minima can be reached in this algorithm, but it requires
careful parameterization of the initial condition, and the computational cost is high.
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In this article, we consider a multidimensional dynamic process, g(x), where x = (x1, …,
xp)T ∈ ℝp is a multi-dimensional argument. Suppose this dynamic process can be modeled
with a PDE model

(1)

where θ = (θ1, …, θm)T is the parameter vector of primary interest, and the left hand side of
(1) has a parametric form in g(x) and its partial derivatives. In practice, we do not observe
g(x) but instead observe its surrogate Y (x). We assume that g(x) is observed over a
meshgrid with measurement errors, so that for i = 1, …, n, we observe data (Yi, xi) satisfying

where εi, i = 1,…, n, are independent and identically distributed measurement errors and are

assumed here to follow a Gaussian distribution with mean zero and variance . Our goal is
to estimate the unknown θ in the PDE model (1) from noisy data, and to quantify the
uncertainty of the estimates.

As mentioned before, a straightforward two-stage strategy, though easy to implement, has
difficulty in estimating derivatives of the dynamic process accurately, leading to biased
estimates of the PDE parameter. We propose two joint modeling schemes: (a) a parameter
cascading or penalized profile likelihood approach and (b) a fully Bayesian treatment. We
conjecture that joint modeling approaches are more statistically efficient than a two-stage
method, a conjecture that is borne out in our simulations. For the parameter cascading
approach, we make two crucial contributions besides the extension to multivariate splines.
First, we develop an asymptotic theory for the model fit, along with a new approximate
covariance matrix that includes the smoothing parameters. Second, we propose a new
criterion for the smoothing parameter selection, which is shown to outperform available
criteria used in ODE parameter estimation. Because of the nature of the penalization in the
parameter cascading approach, there is no obvious direct ”Bayesianization” of it. Instead, we
develop a new hierarchical model for the PDE. At the first stage of the hierarchy, the
unknown function is related to the data. At the next stage, the PDE induces a prior on the
parameters which is very different from the penalty used in the parameter cascading
algorithm. This PDE restricted prior is new in the Bayesian literature. Further, we allow
multiple smoothing parameters and perform Bayesian model mixing to obtain the whole
uncertainty distribution of the smoothing parameters. Our MCMC based method is of course
also very different than the parameter cascading method where we jointly draw parameters
rather than using conditional optimization.

The main idea of our two methods is to represent the unknown dynamic process via a
nonparametric function while using the PDE model to regularize the fit. In both methods,
the nonparametric function is expressed as a linear combination of B-spline basis functions.
In the parameter cascading method, this nonparametric function is estimated using penalized
least squares, where a penalty term is defined to incorporate the PDE model. This penalizes
the infidelity of the nonparametric function to the PDE model, so that the non-parametric
function is forced to better represent the dynamic process modeled by the PDE. In the
Bayesian method, the PDE model information is coded in the prior distribution. We
recognize that there is no exact solution by substituting the nonparametric function into the
PDE model (1). This PDE modeling error is then modeled as a random process, hence
inducing a constraint on the basis function coefficients. We also introduce in the prior an
explicit penalty on the smoothness of the nonparametric function. Our two methods avoid
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direct estimation of the derivative of the dynamic process, which can be obtained easily as a
linear combination of the derivatives of the basis functions, and also avoids specifying
boundary conditions.

In principle, the proposed methods are applicable to all PDEs, thus having potentially wide
applications. As quick examples of PDEs, the heat equation and wave equation are among
the most famous ones. The heat equation, also known as the diffusion equation, describes
the evolution in time of the heat distribution or chemical concentration in a given region,

and is defined as . The wave equation is a simplified
model for description of waves, such as sound waves, light waves and water waves, and is

defined as . More examples of famous PDE are the
Laplace equation, the transport equation and the beam equation. See Evans (1998) for a
detailed introduction to PDEs.

For illustration, we will do specific calculations based on our empirical example of LIDAR
data described in Section 5 and also used in our simulations in Section 4. There we propose
a PDE model for received signal g(t, z) over time t and range z given as

(2)

The PDE (2) is a linear PDE of parabolic type in one space dimension and is also called a
(one-dimensional) linear reaction-convection-diffusion equation. If g(t, z) were observable,
(2) has a closed form solution, obtained by separation of variables, but the solution is the
sum of an infinite sequence. Such a solution requires a high computational load to evaluate
the solution over a meshgrid of moderate size.

The rest of the article is organized as follows. The parameter cascading method is introduced
in Section 2, and the asymptotic properties of the proposed estimator are established. In
Section 3 we introduce the Bayesian framework and explain how to make posterior
inference using a Markov chain Monte Carlo (MCMC) technique. Simulation studies are
presented in Section 4 to evaluate the finite sample performance of our two methods in
comparison with a two-stage method. In Section 5 we illustrate the methods using a LIDAR
data. Finally, we conclude with some remarks in Section 6.

2 Parameter Cascading Method
2.1 Basis Function Approximation

When solving partial differential equations, it is possible to obtain a unique, explicit formula
for certain specific examples, such as the wave equation. However, most PDEs used in
practice have no explicit solutions, and can only be solved by numeric methods such as
finite difference method (Morton and Mayers, 2005) and finite element method (Brenner
and Scott, 2010). Instead of repeatedly solving PDEs numerically for thousands of candidate
parameters, which is computationally expensive, we represent the dynamic process, g(x),
modeled in (1), by a nonparametric function, which can be expressed as a linear
combination of basis functions

(3)

where b(x) = {b1(x), …, bK(x)}T is the vector of basis functions, and β = (β1, …, βK)T is the
vector of basis coefficients.
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We choose B-splines as basis functions in all simulations and applications in this article,
since B-splines are non-zero only in short subintervals, a feature called the compact support
property (de Boor 2001), which is useful for efficient computation and numerical stability,
compared with other basis (e.g. truncated power series basis). The B-spline basis functions
are defined with their order, the number and locations of knots. Some work has been aimed
at automatic knot placement and selection. Many of the feasible frequentist methods, for
example, Friedman and Silverman (1989) and Stone, et al. (1997), are based on stepwise
regression. A Bayesian framework is also available, see Denison, Mallick and Smith (1997)
for example. Despite good performance, knot selection procedures are highly
computationally intensive. To avoid the complicated knot selection problem, we use a large
enough number of knots to make sure the basis functions are sufficiently flexible to
approximate the dynamic process. To prevent the nonparametric function overfitting the
data, one penalty term will be defined with the PDE model in the next subsection to penalize
the roughness of the nonparametric function.

The PDE model (1) can be expressed using the same set of B-spline basis functions by
substituting (3) into model (1) as follows

In the special case of linear PDEs, the above expression is also linear in β, which can be
expressed as

(4)

where f{b(x), ∂b(x)/∂x1, … ; θ} is a linear function of the basis functions and their
derivatives. In the following, we denote ℱ{x, g(x), …; θ} by the short hand notation ℱ{g(x);
θ}, and f{b(x), ∂b(x)/∂x1, … ; θ} by f (x; θ). For the PDE example (2), the form of f (x; θ) is
given in Appendix A.1.

2.2 Estimating β and θ
Following Section 2.1, the dynamic process, g(x), is expressed as a linear combination of
basis functions. It is natural to estimate the basis function coefficients, β, using penalized
splines (Eilers and Marx, 2010; Ruppert, Wand and Carroll, 2003). If we were simply
interested in estimating g(·) = bT(·)β, then we would use the usual penalty λβTPTPβ, where λ
is a penalty parameter and P is a matrix performing differencing on adjacent elements of β
(Eilers and Marx, 2010). Such a penalty does penalize to achieve smoothness of the
estimated function, however, it is not in fidelity with (1). Instead, for fixed θ, we define the
roughness penalty as ∫ [ℱ{g(x); θ}]2dx. This penalty incorporates the PDE model,
containing derivatives involved in the model. As a result, the penalty is able to regularize the
spline fit. It also shows fidelity to the PDE model, i.e., smaller value indicates more fidelity
of the spline approximation to the PDE. Hence, we propose to estimate the coefficients, β,
for fixed θ by minimizing the penalized least squares

(5)

The integration in (5) can be approximated numerically by numerical integration methods.
Burden and Douglas (2000) suggested that a composite Simpson’s rule provided an
adequate approximation, a suggestion that we use.. See Appendix B.1 in the Supplementary
Material for details.
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The PDE parameter θ is then estimated using a higher level of optimization. Denote the
estimate of the spline coefficients by β̂(θ), which is considered as a function of θ. Define
ĝ(x, θ) = bT(x)β̂ (θ). Because the estimator β̂(θ) is already regularized, we propose to
estimate θ by minimizing the least squares measure of fit

(6)

For a general nonlinear PDE model, the function β̂(θ) might have no closed form, and the
estimate is thus obtained numerically. This lower level of optimization for fixed θ is
embedded inside the optimization of θ. The objective functions J(β|θ) and H(θ) are
minimized iteratively until convergence to a solution. In some cases, the optimization can be
accelerated and made more stable by providing the gradient, whose analytic form, by the
chain rule, is ∂H(θ)/∂θ = {∂β̂(θ)/∂θ}T × ∂H(θ)/∂β̂(θ). Although β̂ (θ) does not have an explicit
expression, the implicit function theorem can be applied to find the analytic form of the
first-order derivative of β̂ (θ) with respect to θ required in the above gradient. Because β̂ is
the minimizer of J(β|θ), we have ∂J(β|θ)/∂β|β̂ = 0. By taking the total derivative with respect
to θ on the left hand side, and assuming ∂2J(β|θ)/∂βT∂β|β̂ is nonsingular, the analytic
expression of the first-order derivative of β̂ is

When the PDE model (1) is linear, β̂ has a close form and the algorithm can be stated as
follows. By substituting in (3) and (4), the lower level criterion (5) becomes

Let B be the n × K basis matrix with ith row bT(xi), and define Y = (Y1, …, Yn)T, and the K ×
K penalty matrix R(θ) = ∫ f (x; θ)fT(x; θ)dx. See Appendix B.1 in the Supplementary
Material for calculation of R(θ) for the PDE example (2). Then the penalized least squares
criterion (5) can be expressed in the matrix notation

(7)

which is a quadratic function of β. By minimizing the above penalized least squares
criterion, the estimate for β, for fixed θ, can be obtained in close form as

(8)

Then by substituting in (8), (6) becomes

(9)

To summarize, when estimating parameters in linear PDE models, we minimize criterion (9)
to obtain an estimate, θ̂, for parameters in linear PDE models. The estimated basis
coefficients, β̂, are obtained by substituting θ̂ into (8).
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2.3 Smoothing Parameter Selection
Our ultimate goal is to obtain an estimate for the PDE parameter θ such that the solution of
the PDE is close to the observed data. For any given value of the smoothing parameter, λ,
we obtain the PDE parameter estimate, θ̂, and the basis coefficient estimate, β̂(θ̂). Both can
be treated as functions of λ, which are denoted as θ̂(λ) and β̂{θ̂(λ), λ}. Define ei(λ) = Yi −
ĝ{xi, θ̂(λ), λ} and ηi(λ) = ℱ{ĝ(xi); θ̂(λ)}, the latter of which is f̂T{xi; θ̂(λ)}β̂{θ̂(λ), λ} for

linear PDE models. Fidelity to the PDE can be measured by , while fidelity to

the data can be measured by . Clearly, minimizing just  leads to λ =
0, and gives far too undersmoothed data fits, while simultaneously not taking the PDE into

account. On the other hand, our experience shows that minimizing  always
results in the largest candidate value for λ.

Hence, we propose the following criterion, which considers data fitting and PDE model
fitting simultaneously. To choose an optimal λ, we minimize

The first summation term in G(λ), which measures the fit of the estimated dynamic process
to the data, tends to choose a small value of the smoothing parameter. The second
summation term in G(λ), which measures the fidelity of the estimated dynamic process to
the PDE model, tends to choose a large value of the smoothing parameter. Adding these two
terms together allows a choice of the value for the smoothing parameter that makes the best
trade-off between fitting to data and fidelity to the PDE model. For the sake of
completeness, we tried cross-validation and generalized cross-validation to estimate the
smoothing parameter. The result was to greatly undersmooth the function fit, while leading
to biased and quite variable estimates of the PDE parameters.

2.4 Limit Distribution and Variance Estimation of Parameters
We analyze the limiting distribution of θ̂ following the same line of argument as in Yu and
Ruppert (2002), under Assumptions 1–4 in Appendix A.2. As in their work, we assume that
the spline approximation is exact so that g(x) = bT(x)β0 for a unique β0 = β0(θ0), our

Assumption 2. Let θ0 be the true value of θ, and define λ̃ = λ/n, ,

Gn(θ) = Sn + λ̃R(θ), Rjθ(θ) = ∂R(θ)/∂θj,  and . Define
Λn(θ) to have (j, k)th element

Define , where n(θ0) has (j, k)th element

. Let  be the inverse of the
symmetric square root of Σn,prop.

Following the same basic outline of Yu and Ruppert (2002), and essentially their
assumptions although the technical details are considerably different, we show in Appendix
A.2 that under Assumptions 1–4 stated there, and assuming homoscedasticity,
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(10)

Estimating Σn,prop, is easy by replacing θ0 by θ̂ and β0 by β̂ = β̂ (θ̂), and estimating  by
fitting a standard spline regression and then forming the residual variance. In the case of

heteroscedastic errors, the term  in n,jk(θ0) can be replaced by its consistent estimate

, where p is the number of parameters in the
B-spline. We use this sandwich-type method in our numerical work.

3 Bayesian Estimation and Inference
3.1 Basic Methodology

In this section we introduce a Bayesian approach for estimating parameters in PDE models.
In this Bayesian approach, the dynamic process modeled by the PDE model is represented
by a linear combination of B-spline basis functions, which is estimated with Bayesian P-
splines. The coefficients of the basis functions are regularized through the prior, which
contains the PDE model information. Therefore, data fitting and PDE fitting are
incorporated into a joint model. As described in the paragraph after equation (1), our
approach is not a direct “Bayesianization” of the methodology described in Section 2.

We use the same notation as before. With the basis function representation given in (3), the
basis function model for data fitting is Yi = bT(xi)β+εi, where the εi are independent and
identically distributed measurement errors and are assumed to follow a Gaussian distribution

with mean zero and variance . The basis functions are chosen with the same rule
introduced in the previous section.

In conventional Bayesian P-splines, which will be introduced in Section 3.2, the penalty
term penalizes the smoothness of the estimated function. Rather than using a single optimal
smoothing parameter as in frequentist methods, the Bayesian approach performs model
mixing with respect to this quantity. In other words, many different spline models provide
plausible representations of the data, and the Bayesian approach treats such model
uncertainty through the prior distribution of the smoothing parameter.

In our problem, we know further that the underlying function satisfies a given PDE model.
Naturally, this information should be coded into the prior distribution to regularize the fit.
Because we recognize that there may be no basis function representation that exactly
satisfies the PDE model (1), for the purposes of Bayesian computation, we will treat the
approximation error as random, and the PDE modeling errors are

(11)

where the random modeling errors, ζ(xi), are assumed to be independent and identically

distributed with a prior distribution , where the precision parameter, γ0,
should be large enough so that the approximation error in solving (1) with a basis function
representation is small. Similarly, instead of using a single optimal value for the precision
parameter, γ0, a prior distribution is assigned to γ0. The modeling error distribution
assumption (11) and a roughness penalty constraint together induce a prior distribution on
the basis function coefficients β. The choice of roughness penalty depends on the dimension
of x. For simplicity, we state the Bayesian approach with the specific penalty shown in
Section 3.2. The prior distribution of β is
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(12)

where, as before, K denotes the number of basis functions, γ0 is the precision parameter, ζ(β,
θ) = [ℱ{bT(x1)β; θ}, …, ℱ{bT(xn)β; θ}]T, γ1 and γ2 control the amount of penalty on
smoothness, and the penalty matrices H1, H2, H3 are the same as in the usual Bayesian P-

splines, given in (14). We assume conjugate priors for  and γℓ as , γℓ ~
Gamma(aℓ, bℓ), for ℓ = 0, 1, 2, where IG(a,b) denotes the Inverse-Gamma distribution with

mean (a − 1)−1b. For the PDE parameter, θ, we assign a  prior, with variance
large enough to remain noninformative.

Denote γ = (γ0, γ1, γ2)T and . Based on the above model and prior
specification, the joint posterior distribution of all unknown parameters is

(13)

The posterior distribution (13) is not analytically tractable, hence we use a Markov chain
Monte Carlo (MCMC) based computation method (Gilks, Richardson and Spiegelhalter,
1996) or more precisely Gibbs sampling (Gelfand and Smith, 1990) to simulate the
parameters from the posterior distribution. To implement the Gibbs sampler, we need the
full conditional distributions of all unknown parameters. Due to the choice of conjugate

priors, the full conditional distributions of  and γℓ’s are easily obtained as Inverse-Gamma
and Gamma distributions, respectively. The full conditional distributions of β and θ are not
of standard form, and hence we employ Metropolis-Hastings algorithm to sample them.

In the special case of a linear PDE, simplifications arise. With approximation (4), the PDE
modeling errors are represented as ζ(xi) = fT(xi; θ)β, for i = 1, …, n. Define the matrix F(θ) =
{f (x1; θ), …, f (xn; θ)}T. Then the prior distribution of β given in (12) becomes

where the exponent is quadratic in β. Then the joint posterior distribution of all unknown
parameters given in (13) becomes
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Under linear PDE models, the full conditional of β is easily seen to be a Normal distribution.
This reduces the computational cost significantly compared with sampling under nonlinear
cases, because the length of the vector β increases quickly as dimension increases.
Computational details of both nonlinear and linear PDEs are shown in Appendix A.3.

3.2 Bayesian P-Splines
Here we describe briefly the implementation of Bayesian penalized splines, or P-splines.
Eilers and Marx (2003) and Marx and Eilers (2005) deal specifically with bivariate
penalized B-splines. In the simulation studies and the application of this article, we use the
bivariate B-spline basis, which is formed by the tensor product of one-dimensional B-spline
basis.

Following Marx and Eilers (2005), we use the difference penalty to penalize the interaction
of one-dimensional coefficients as well as each dimension individually. Denote the number
of basis functions in each dimension by kℓ, the one-dimensional basis function matrices by

Bℓ, and the  order difference matrix of size (kℓ − mℓ) × kℓ by Dℓ, for ℓ = 1, 2. The prior
density of the basis function coefficient β of length K = k1k2 is assumed to be [β|γ1, γ2] ∝
(γ1γ2)K/2 exp{−βT(γ1H1 + γ2H2 + γ1γ2H3)β/2}, where γ1 and γ2 are hyper-parameters, and
the matrices are

(14)

When assuming conjugate prior distributions as , [γ1] = Gamma(a1, b1), and
[γ2] = Gamma(a2, b2), the posterior distribution can be derived easily and sampled using the
Gibbs sampler. Though the prior distribution of β is improper, the posterior distribution is
proper (Berry, Carroll and Ruppert, 2002).

4 Simulations
4.1 Background

In this section, the finite sample performances of our methods are investigated via Monte
Carlo simulations, which are also compared with a two-stage method described below.

The two-stage method is constructed for PDE parameter estimation as follows. In the first
stage, g(x) and the partial derivatives of g(x) are estimated by the multidimensional
penalized signal regression (MPSR) method (Marx and Eilers 2005). Marx and Eilers (2005)
showed that their MPSR method was competitive with other popular methods and had
several advantages such as taking full advantage of the natural spatial information of the
signals and being intuitive to understand and use. Let β̂ denote the estimated coefficients of
the basis functions in the first stage. In the second stage, we plug the estimated function and
partial derivatives into the PDE model, ℱ{g(x); θ} = 0, for each observation, i.e., we
calculate ℱ̂{ĝ(xi); θ} for i = 1, …, n. Then, a least-squares type estimator for the PDE

parameter, θ, is obtained by minimizing . For comparison
purposes, the standard errors of two-stage estimates of the PDE parameters are estimated
using a parametric bootstrap, which is implemented as follows. Let θ̂ denote the estimated
PDE parameter using the two-stage method, and S(x|θ̂) denote the numerical solution of
PDE (2) using θ̂ as the parameter value. New simulated data are generated by adding
independent and identically distributed Gaussian noises with the same standard deviation as
the data to the PDE solutions at every 1 time unit and every 1 range unit. The PDE
parameter is then estimated from the simulated data using the two-stage method, and the
PDE parameter estimate is denoted as θ̃(j), where j = 1, …, 100, is the index of replicates in
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the parametric bootstrap procedure. The experimental standard deviation of θ̃(j) is set as the
standard error of two-stage estimates.

4.2 Data Generating Mechanism
The PDE model (2) is used to simulate data. The PDE model (2) is numerically solved by
setting the true parameter values as θD = 1, θS = 0.1, and θA = 0.1, the boundary condition as
g(t, 0) = 0, and the initial condition as g(0, z) = {1 + 0.1 × (20 − z)2}ℒ1 over a meshgrid in
the time domain t ∈ [1, 20] and the range domain z ∈ [1, 40]. In order to obtain a precise
numerical solution, we take grid of size 0.0005 in the time domain and of size 0.001 in the
range domain. The numerical solution is shown in Figure 1, together with cross sectional
views along time and range axis. Then the observed error-prone data is simulated by adding
independent and identically distributed Gaussian noises with standard deviation σ = 0.02 to
the PDE solutions at every 1 time unit and every 1 range unit. In other words, our data is on
a 20-by-40 meshgrid in the domain [1, 20] × [1, 40]. This value of σ is close to that of our
data example in Section 5. In order to investigate the effect of data noise on the parameter
estimation, we do another simulation study in which the simulated data are generated in the
exact same setting except that the standard deviation of noises is set as σ = 0.05.

4.3 Performance of the Proposed Methods
The parameter cascading method, the Bayesian method, and the two-stage method were
applied to estimate the three parameters in the PDE model (2) from the simulated data. The
simulation is implemented with 1000 replicates. This section summarizes the performance
of these three methods in this simulation study.

The PDE model (2) indicates that the second partial derivative with respect to z is
continuously differentiable, and thus we choose quartic basis functions in the range domain.
Therefore, for representing the dynamic process, g(t, z), we use a tensor product of one-
dimensional quartic B-splines to form the basis functions, with 5 and 17 equally spaced
knots in time domain and range domain, respectively, in all three methods.

In the two-stage method for estimating PDE parameters, the Bayesian P-Spline method is
used to estimate the dynamic process and its derivatives by setting the hyper-parameters
defined in Section 3.1 as aε = bε = a1 = b1 = a2 = b2 = 0.01, and taking the third order
difference matrix to penalize the roughness of the second derivative in each dimension. In
the Bayesian method for estimating PDE parameters, we take the same smoothness penalty
as in the two-stage method, and the hyper-parameters defined in Section 3 are set to be aε =

bε = aℓ = bℓ = 0.01 for ℓ = 0, 1, 2, and . In the MCMC sampling procedure, we collect
every 5th sample after a burn-in stage of length 5000, until 3000 posterior samples are
obtained.

We summarize the simulation results in Table 1, including the biases, standard deviations,
square root of average squared errors, and coverage probabilities of 95% confidence
intervals for each method. We see that the Bayesian method and the parameter cascading
method are comparable, and both have smaller biases, standard deviations and root average
squared errors than the two-stage method. The improvement in θD is substantial, which is
associated with the second partial derivative, ∂2g(t, z)/∂z2. This is consistent with our
conjecture that the two-stage strategy is not statistically efficient because of the inaccurate
estimation of derivatives, especially higher order derivatives.

To validate numerically the proposed sandwich estimator of variance in the parameter
cascading method, we applied a parametric bootstrap of size 200 to each of the same 1,000
simulated data sets, and obtain the bootstrap estimator for standard errors of parameter
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estimates in each of the 1000 data sets. Table 2 displays the means of sandwich and
bootstrap standard error estimators, which are highly consistent to each other. Both are also
close to the sample standard deviations of parameter estimates obtained from the same 1000
simulated data sets.

The modeling error for the PDE (2) is estimated as ℱ̂{ĝ(t, z); θ̂} = ∂ĝ(t, z)/∂t − θ̂D∂2ĝ(t, z)/
∂z2 − θ̂S∂ĝ(t, z)/∂z − θ̂Aĝ(t, z). To assess the accuracy of the estimated dynamic process, ĝ(t,
z), and the estimated PDE modeling errors, ℱ̂{ĝ(t, z); θ̂}, we use the square root of the
average squared errors (RASEs), which are defined as

(15)

(16)

where mtgrid and mzgrid are the number of grid points in each dimension, tj, zk are grid points
for j = 1, …, mtgrid, and k = 1, …, mzgrid. Figure 2 presents the boxplots of RASEs for the
estimated dynamic process, ĝ(t, z), and PDE modeling errors, ℱ̂{ĝ̂(t, z); θ̂}, from the
simulated data sets. The Bayesian method and the parameter cascading method have much
smaller RASEs for the estimated PDE modeling errors, ℱ̂{ĝ(t, z); θ̂}, than the two-stage
method, because the two-stage method produces inaccurate estimation of derivatives,
especially higher order derivatives.

5 Application
5.1 Background and Illustration

We have access to a small subset of long range infrared light detection and ranging (LIDAR)
data described by Warren, et al. (2008, 2009, 2010). A comic describing the LIDAR data is
given in Figure 3. Our data set consists of samples collected for 28 aerosol clouds, 14 of
them biological and the other 14 being non-biological. Briefly, for each sample, there is a
transmitted signal that is sent into the aerosol cloud at 19 laser wavelengths, and for t = 1,
…, T time points. For each wavelength and time point, received LIDAR data were observed
at equally spaced ranges z = 1, .., Z. The experiment also included background data, i.e.,
before the aerosol cloud was released, and the received data were then background
corrected.

An example of the background-corrected received data for a single sample and a single
wavelength are given in Figure 4. Data such as this are well-described by the PDE (2). This
equation is a linear PDE of parabolic type in one space dimension and is also called a (one-
dimensional) linear reaction-convection-diffusion equation. If we describe this equation as
g(t, z), the parameters θD, θS and θA describe the diffusion rate, the drift rate/shift and the
reaction rate, respectively.

In fitting model (2) to the real data, we take T = 20 time points and Z = 60 range values, so
that the sample size n is 20 × 60 = 1, 200. To illustrate what happens with the data in Figure
4, the parameter cascading method, Bayesian method, and the two-stage method were
applied to estimate the three parameters in the PDE model (2) from the above LIDAR data
set. All three methods use bivariate quartic B-spline basis functions constructed with 5 inner
knots in the time domain and 20 inner knots in the range domain.

Table 3 displays the estimates for the three parameters in the PDE model (2). While the
three methods produce similar estimates for parameters θS and θA, the parameter cascading
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estimate and Bayesian estimate for θD are more consistent with each other than with the
two-stage estimate. This phenomenon is consistent with what was seen in our simulations.
Moreover, in this application, the three methods produce almost identical smooth curves, but
not derivatives. This fact is also found in our simulation studies, where all three methods
lead to similar estimates for the dynamic process, g(t, z), but the two-stage method performs
poorly for estimating its derivatives.

5.2 Differences Among the Types of Samples
To understand if there are differences between the received signals for biological and non-
biological samples, we performed the following simple analysis. For each sample, and for
each wavelength, we fit the PDE model (2) to obtain estimates of (θD, θS, θA), and then
performed t-tests to compare them across aerosol types. Strikingly, there was no evidence
that the diffusion rate θD differed between the aerosol types at any wavelength, with a
minimum p-value being of 0.12 across all wavelengths and both the parameter cascade and
Bayesian methods. For the drift rate/shift θS, all but 1 wavelength had a p-value < 0.05 for
both methods, and multiple wavelengths reached Bonferroni significance. For the reaction
rate θA the results are somewhat intermediate. While for both methods, all but 1 wavelength
had a p-value < 0.05, none reached Bonferroni significance. In summary, the differences
between the two types of aerosol clouds is clearly expressed by the drift rate/shift, with
some evidence of differences in the reaction rate, but no differences in the diffusion rate. In
almost all cases, the drift rate is larger in the non-biological samples, while the reaction rate
is larger in the biological samples.

6 Concluding Remarks
Differential equation models are widely used to model dynamic processes in many fields
such as engineering and biomedical sciences. The forward problem of solving equations or
simulating state variables for given parameters that define the models have been extensively
studied in the past. However, the inverse problem of estimating parameters based on
observed state variables is relatively sparse in the statistical literature, and this is especially
the case for partial differential equation models.

We have proposed a parameter cascading method and a fully Bayesian treatment for this
problem, which are compared with a two-stage method. The parameter cascading method
and Bayesian method are joint estimation procedures which consider the data fitting and
PDE fitting simultaneously. Our simulation studies show that the proposed two methods are
more statistically efficient than a two-stage method, especially for parameters associated
with higher order derivatives. Basis function expansion plays an important role in our new
methods, in the sense that it makes joint modeling possible and links together fidelity to the
PDE model and fidelity to data through the coefficients of basis functions. A potential
extension of this work would be to estimate time-varying parameters in PDE models from
error-prone data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1 Calculation of f (x; θ) and F (θ)
Here we show the form of f (x; θ) and F(θ) for the PDE example (2). The vector f (x; θ) is a
linear combination of basis functions and their derivatives involved in model (2). We have
that f (x; θ) = ∂b(x)/∂t − θD∂2b(x)/∂z2 − θS∂b(x)/∂z − θAb(x). Similar to the basis function
matrix B = {b(x1), …, b(xn)}T, we define the following n × K matrices consisting of
derivatives of the basis functions

Then the matrix F(θ) = {f (x1; θ), …, f (xn; θ)}T = Bt − θDBzz − θSBz − θAB.

Xun et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2014 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A.2 Sketch of the Asymptotic Theory
A.2.1 Assumptions and Notation

Asymptotic theory for our estimators follows in a fashion very similar to that of Yu and
Ruppert (2002). Let λ̃ = λ/n, denote the true value of θ as θ0 and define

The parameter θ is estimated by minimizing

(A.1)

Assumption 1 The sequence λ̃ is fixed and satisfies λ̃ = o(n−1/2).

Assumption 2 The function g(x) = bT(x)β0 for a unique β0, i.e., the spline approximation is

exact, and hence .

Assumption 3 The parameter θ0 is in the interior of a compact set and, for j = 1, …, n, is the

unique solution to .

Assumption 4 Assumptions (1)–(4) of Yu and Ruppert (2002) hold with their m(υ, θ) being
our bT(x)βn(θ).

A.2.2 Characterization of the Solution to (A.1)
Remember the matrix fact that for any nonsingular symmetric matrix A(z) for scalar z,
∂A−1(z)/∂z = −A−1(z){∂A(z)/∂z}A−1(z). This means that for j = 1, …, m,

(A.

2)

Minimizing ℒn(θ) is equivalent to solving for j = 1, …, m for the system of equations

where we define Ψij(θ) = {Yi − bT(xi)β̂n(θ)}bT(xi){∂β̂n(θ)∂θj}. From now on, we define the

score for θj as  and define n(θ) = n1(θ), …, nm(θ)}T.

There are some further simplifications of n(θ). Because of (A.2),
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However,

Thus for any θ,

(A.

3)

Hence, θ̂ is the solution to the system of equations .

A.2.3 Further Calculations
Yu and Ruppert show that if λ̃ → 0 as n → ∞, then uniformly in θ, β̂n(θ) = β0 + op(1) and

that if λ̃ = o(n−1/2) as n → ∞, then . Define the
Hessian matrix as ℳn(θ) = ∂ n(θ)/∂θT. Because of these facts and Assumption 3, it follows
that θ̂ = θ0 + op(1), i.e., consistency. It then follows that

where θ* = θ0 + op(1) is between θ̂ and θ0, and hence that

(A.4)

Define Λn(θ) to have (j, k)th element

In what follows, as in Yu and Ruppert (2002), we continue to assume that λ̃ = o(n−1/2).
However, with a slight abuse of notation we will write Gn(θ0) → Ω2(θ0) rather that Gn(θ0)
→ Ω1, because we have found that implementing the covariance matrix estimator for θ̂ is
more accurate if this is retained: a similar calculation is done in Yu and Ruppert’s Section
3.2. Now using Assumption 3, we see that

Define  and . Then we have that
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(A.5)

Now recall that Sn → Ω1 and Gn(θ0) → Ω2(θ0) in probability. Hence we have that

in distribution. So using (A.5) the (j, k)th element of the covariance matrix of n is given by

We now analyze the term n−1/2ℳn(θ*). Because of consistency of θ̂,

(A.6)

The (j, k)th element of ℳn(θ) is

We see that by (A.2),

Now using the fact that β̂n(θ) = βn(θ) + op(1) for any θ, and recalling the definition of Λn(θ),
we have at θ0 that

Similarly for the remaining term of the Hessian matrix we have
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By Assumption 3, and since ε(x) has mean zero, we see that

(A.7)

Hence using (A.4) and (A.6, it follows that

(A.8)

Hence using (A.8) we obtain (10), but with Ω1 and Ω2(θ) replaced by their consistent
estimates Sn and Gn(θ).

A.3 Full Conditional Distributions
To sample from the posterior distribution (13) using Gibbs sampler, we need full conditional

distributions of all the unknowns. Due to conjugacy, parameters  and the γ terms have
close form full conditionals. Define SSE = (Y−Bβ)T(Y−Bβ). If we define ”rest” to mean
conditional on everything else, we have

The parameters β and θ do not have closed form full conditionals, which are instead

To draw samples from these full conditionals, a Metropolis-Hastings (MH) update within
the Gibbs sampler is applied for each component of θi. The proposal distribution for the ith

component is a normal distribution Normal(θi,curr, σi,prop), where the mean θi,curr is the
current value and the standard deviation σi,prop is a constant.

In the special case of a linear PDE, the model error is also linear in β, represented by ζ(β, θ)
= F(θ)β. Then the term ζT(β, θ)ζ(β, θ) is a quadratic function in β. Define H = H(θ) =

γ0FT(θ)F(θ) + γ1H1 + γ2H2 + γ1γ2H3, and . By completing the
square in [β|rest], the full conditional of β under linear PDE models is in the explicit form
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Figure 1.
Snapshots of the numerical solution, g(t, z), for the PDE model (2). Left: 3-D plot of the
surface g(t, z). Middle: plot of g(ti, z) for time values ti over range, with ti = 6, 11, 16, 20.
Right: plot of g(t, zj) for range values zj over time, with zj = 11, 21, 31.
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Figure 2.
Boxplots of the square roots of average squared errors (RASE) for the estimated dynamic
process, ĝ(t, z), and the PDE modeling errors, ℱ̂{ĝ(t, z); θ̂}, using the Bayesian method
(BM), the parameter cascading method (PC), and the two-stage method (TS) from 1000 data
sets in the simulation study. Left: boxplots of RASE(ĝ), defined in (15), by all three
methods. Right: boxplots of RASE(ℱ̂), defined in (16), by all three methods.
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Figure 3.
A comic describing the LIDAR data. A point source laser is transmitted into an aerosol
cloud at multiple wavelengths and over multiple time points. There is scattering of the signal
and reflected back to a receiver over multiple range values. See Figure 4 for an example of
the received data over bursts and time for a single wavelength and a single sample.
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Figure 4.
Snapshots of the empirical data. Left: 3D plot of the received signal. Middle: the received
signal at a few time values, ti = 1, 6, 11, 16, over the range. Right: the received signal at a
few range values, zj = 1, 10, 30, over the time.
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Table 3

Estimated parameters for the PDE model (2) from the LIDAR data set using the Bayesian method (BM), the
parameter cascading method (PC), and the two-stage method (TS).

θD θS θA

Estimates

BM −0.4470 0.2563 −0.0414

PC −0.3771 0.2492 −0.0407

TS −0.1165 0.2404 −0.0436
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