Skip to main content
. Author manuscript; available in PMC: 2014 Apr 28.
Published in final edited form as: J Am Stat Assoc. 2013 Apr 28;108(503):10.1080/01621459.2013.794730. doi: 10.1080/01621459.2013.794730

Table 2.

Numerical validation of the proposed sandwich estimator in the parameter cascading method when the data noise has the standard deviation σ = 0.02, 0.05. Under each scenario, the first two rows are means of 1000 sandwich and bootstrap standard error (SE^) estimators obtained from the same 1000 simulated data sets, respectively; the last row is the sample standard deviation of 1000 parameter estimates obtained from the same 1000 simulated data sets.

Parameters θD θS θA
σ = 0.02
SE^
Mean of Sandwich Estimators 0.0246 0.00375 0.000467
Mean of Bootstrap Estimators 0.0257 0.00374 0.000474
Sample Standard Deviation 0.0249 0.00375 0.000465
σ = 0.05
SE^
Mean of Sandwich Estimators 0.0392 0.00599 0.000783
Mean of Bootstrap Estimators 0.0404 0.00597 0.000791
Sample Standard Deviation 0.0405 0.00617 0.000795