Table 2. Results of the Factor Analysis (FA) and transformations applied.
Parameters | Transformation | Factors | ||||||
1 | 2 | 3 | 4 | 5 | 6 | |||
call duration [s] | log(x) | −0.08 | 0.03 | 0.04 | −0.05 | 0.89 | 0.03 | |
Mean | element duration [s] | 0.13 | 0.64 | −0.26 | 0.25 | 0.24 | −0.41 | |
interval duration [s] | sqrt(x-min(x)) | 0.06 | 0.43 | −0.17 | 0.12 | 0.63 | −0.47 | |
start F0 [Hz] | 0.68 | 0.01 | −0.07 | 0.04 | −0.20 | 0.58 | ||
end F0 [Hz] | 0.88 | −0.12 | 0.08 | 0.11 | −0.17 | 0.17 | ||
mean F0 [Hz] | 0.95 | 0.05 | 0.06 | 0.03 | −0.05 | 0.12 | ||
max F0 [Hz] | 0.93 | 0.11 | −0.06 | −0.02 | 0.07 | 0.09 | ||
location of max F0 [s] | sqrt(x) | 0.16 | 0.19 | −0.20 | 0.77 | 0.03 | −0.38 | |
Maximum | element duration [s] | −0.07 | 0.89 | −0.01 | 0.07 | 0.22 | −0.04 | |
interval duration [s] | log(x) | −0.03 | 0.52 | −0.02 | 0.01 | 0.78 | −0.06 | |
start F0 [Hz] | 0.44 | −0.05 | 0.12 | 0.02 | 0.08 | 0.81 | ||
end F0 [Hz] | sqrt(x-min(x)) | 0.71 | −0.06 | 0.51 | −0.01 | −0.01 | 0.17 | |
mean F0 [Hz] | sqrt(x-min(x)) | 0.69 | −0.01 | 0.54 | 0.06 | 0.01 | 0.13 | |
max F0 [Hz] | 0.69 | −0.09 | 0.40 | −0.08 | 0.23 | 0.13 | ||
location of max F0 [s] | sqrt(x) | −0.01 | 0.04 | 0.03 | 0.95 | 0.08 | 0.10 | |
Variation | element duration [s] | sqrt(x) | −0.03 | 0.94 | −0.01 | 0.07 | −0.02 | 0.06 |
interval duration [s] | log(x) | 0.04 | 0.66 | −0.02 | 0.06 | 0.55 | 0.13 | |
start F0 [Hz] | sqrt(x) | 0.35 | 0.05 | 0.16 | 0.05 | −0.03 | 0.82 | |
end F0 [Hz] | sqrt(x) | 0.41 | 0.15 | 0.69 | −0.11 | −0.10 | 0.13 | |
mean F0 [Hz] | sqrt(x) | 0.06 | −0.02 | 0.88 | 0.07 | −0.12 | 0.07 | |
max F0 [Hz] | sqrt(x) | 0.05 | −0.18 | 0.71 | −0.07 | 0.13 | 0.05 | |
location of max F0 [s] | sqrt(x) | −0.03 | 0.10 | 0.04 | 0.94 | −0.10 | 0.12 | |
Eigenvalues | 6.62 | 4.45 | 2.48 | 1.84 | 1.50 | 1.23 | ||
variance explained [%] | 30.08 | 20.22 | 11.30 | 8.37 | 6.81 | 5.59 |
Indicated are the loadings of the acoustic parameters on the six derived factors (absolute loadings ≥0.5 are highlighted in boldface), Eigenvalues and percent variance explained by the factors. Mean = mean of calls' elements; Maximum = maximum value of calls' elements; Variation = variation of elements within a call.