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Abstract
Standard assumptions incorporated into Bayesian model selection procedures result in procedures
that are not competitive with commonly used penalized likelihood methods. We propose
modifications of these methods by imposing nonlocal prior densities on model parameters. We
show that the resulting model selection procedures are consistent in linear model settings when the
number of possible covariates p is bounded by the number of observations n, a property that has
not been extended to other model selection procedures. In addition to consistently identifying the
true model, the proposed procedures provide accurate estimates of the posterior probability that
each identified model is correct. Through simulation studies, we demonstrate that these model
selection procedures perform as well or better than commonly used penalized likelihood methods
in a range of simulation settings. Proofs of the primary theorems are provided in the
Supplementary Material that is available online.
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1. INTRODUCTION
We propose a new class of Bayesian model selection procedures by imposing nonlocal prior
densities (Johnson and Rossell 2010) on model parameters. Nonlocal prior densities are
density functions that are identically zero whenever a model parameter is equal to its null
value, which is typically 0 in model selection settings. Conversely, local prior densities are
positive at null parameter values; most current Bayesian model selection procedures employ
local prior densities. We demonstrate that model selection procedures based on nonlocal
prior densities assign a posterior probability of 1 to the true model as the sample size n

© 2012 American Statistical Association

Article content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer
Institute or the National Institutes of Health.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA

SUPPLEMENTARY MATERIAL
Proof of Theorem 1 and Corollaries
This supplement consists of the proof of the primary theorems and details concerning the simulation studies, including marginal
probabilities of inclusion for nonzero and zero coefficients and the numerical values of points displayed in the figures given in the
main text. The R code that was used to obtain the simulation results in Section 4 is also included.

NIH Public Access
Author Manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2013 December 18.

Published in final edited form as:
J Am Stat Assoc. 2012 ; 107(498): . doi:10.1080/01621459.2012.682536.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increases when the number of possible covariates p is bounded by n and certain regularity
conditions on the design matrix pertain. Under the same conditions, we show that standard
Bayesian approaches based on local prior specifications result in the asymptotic assignment
of a posterior probability of 0 to the true model. Among the Bayesian model selection
procedures that share this deficiency are procedures based on intrinsic Bayes factors (Berger
and Pericchi 1996), fractional Bayes factors (O’Hagan 1995), and g-priors (Liang et al.
2008).

We also compare the proposed selection procedures to related frequentist methods. Previous
research has demonstrated that the smoothly clipped absolute deviation (SCAD) algorithm
(Fan and Li 2001), the adaptive LASSO (Zou 2006), the nonnegative garotte (Breiman
1995), the elastic net algorithm (Zou and Hastie 2005), and the Dantzig selector (Candes and
Tao 2007) consistently identify the correct model when the number of possible covariates is
fixed a priori. Fan and Peng (2004) extended this consistency property to certain penalized-
likelihood-based model selection procedures by showing that they achieve oracle properties
when p < O(n1/3). We show that the proposed classes of Bayesian model selection
procedures have a similar consistency property even when p = O(n). Numerical comparisons
between several model selection procedures and Bayesian procedures based on nonlocal
priors are presented in Section 4. In large sample settings, these comparisons demonstrate
that model selection procedures based on nonlocal prior densities are often better able to
identify the correct model and have smaller prediction errors than competing methods.

In practice, it is usually important to identify not only the most probable model for a given
set of data, but also the probability that the identified model is correct. An important
advantage of the model selection procedures proposed in this article is that they naturally
provide an estimate of the posterior probability that each model is correct. In simulation
studies, we show that these posterior probabilities closely approximate the empirical
probabilities that the selected model is true. In contrast, most common frequentist algorithms
identify only the model that maximizes a penalized version of the likelihood function,
whereas most Bayesian algorithms provide posterior model probabilities that cannot
reasonably be interpreted as posterior probabilities at all. For instance, common Bayesian
procedures assign vanishingly small posterior probabilities to all models in high-
dimensional settings, even when the maximum probability model assigns relatively high
probability to the true model. It is for this reason that articles describing Bayesian model
selection algorithms usually do not report the posterior probability assigned to the most
probable model, often opting instead to report the marginal probabilities that individual
covariates were included in models sampled from the posterior distribution.

The primary innovation of this article is the manner in which prior densities are defined on
regression coefficients. Although our methodology can be extended to more general model
selection settings, we restrict attention herein to the study of linear models. We also make
the assumption that the true model is an element of the model space. Letting Yn = (y1, …, yn)
′ denote a random vector, Xn an n × p matrix of real numbers, and β a p × 1 regression
vector having ith component βi, we examine linear models of the form

(1)

We consider two classes of nonlocal prior densities. The first class of prior densities for β
consists of product moment (pMOM) densities, which we define as
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(2)

for τ > 0, Ap a p × p nonsingular scale matrix, and r = 1, 2, …. The normalizing constant dp
is independent of σ2 and τ. The parameter r is called the order of the density. Consonni and
La Rocca (2010) proposed a similar class of prior densities for application to graphical
models, though in their proposal the densities corresponding to Equation (2) are not proper.

The second class of prior densities we examine are product inverse moment (piMOM)
densities, which we define to have the general form

(3)

for τ > 0 and r = 1, 2, …. When r = 1, this class of densities possesses Cauchy-like tails.

The parameter τ in both the pMOM and piMOM densities represents a scale parameter that
determines the dispersion of the prior densities on β around 0. In setting the value of this
hyperparameter, it is critical to consider the scale of the corresponding columns of Xn. For
simplicity, we have assumed that the columns of Xn have been standardized so that a single
value of τ is appropriate for each component of β. If this assumption is not valid, then
separate hyperparameters τi should be introduced to reflect the anticipated effect of each
component of β on the expected value of Yn.

The densities in Equations (2) and (3) are nonlocal densities at 0 because they are identically
0 when any component of β is 0. This feature of the densities is illustrated in the univariate
setting in Figure 1. It is this property that permits model selection procedures based on these
nonlocal prior densities to efficiently eliminate regression models that contain unnecessary
explanatory variables. In contrast, Bayesian model selection procedures based on local prior
densities assign positive density values to regression coefficient vectors that contain
components that are equal to 0.

The nonlocal prior densities specified in Equations (2) and (3) differ in a crucial way from
the multivariate MOM and iMOM densities proposed by Johnson and Rossell (2010; JR10)
for hypothesis testing. The multivariate MOM and iMOM densities proposed in JR10 are 0
only when all components of the parameter vector are 0. As a result, those densities may
impose little or no penalty on models that contain many parameters that have estimates that
are close to 0, provided only that one or more of the included model parameters are not 0. In
contrast pMOM and piMOM densities arise as the independent products of the MOM and
iMOM prior densities proposed in JR10, and are 0 if any component of the parameter vector
is 0. This property represents a much stronger penalty on the regression vector when any one
of its components is close to 0. As we demonstrate in Section 2, this stronger penalty is
necessary to achieve consistency of posterior model probabilities when the number of
potential covariates p increases linearly with n.

In the next section, we describe the properties of our proposed model selection procedures
and contrast these properties to those obtained using standard Bayesian methods. In Section
3, we describe simulation algorithms to explore the posterior distribution on the model
space. In Section 4, we report simulation studies that compare the finite sampling
performance of several model selection procedures in situations in which the number of
potential covariates is of the same order of magnitude as the number of observations.
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Section 5 provides several new insights into the connections between commonly used
penalized likelihood procedures and related Bayesian model selection algorithms, paying
particular attention to extensions of penalized likelihood methods that follow from the
Bayesian models proposed in this article.

2. MAIN RESULTS
Let Yn = (y1, …, yn)′ denote a random vector, Xn an n × p matrix of real numbers, and β a p
× 1 regression vector. The goal of the model selection procedures proposed in this article is
to select the nonzero components of β when it is assumed that Yn ~ N (Xnβ, σ2In) and p < n.
Bayesian model selection is based on the comparison of the posterior model probabilities for
each possible model. To fix the terminology, we assume that a component of β is excluded
from the true model if its value is 0, and denote a model by j = {j1, …, jk} (1 ≤ j1 < · · · < jk
≤ p) if and only if βj1≠ 0, …, βjk ≠ 0 and all other elements of β are 0. We write k ⊆ j to
indicate that model j contains all components of β present in model k, with ⊂ denoting a
proper subset. The cardinality of model j is denoted by |j|, or more simply by j when there is
no risk of confusion. We let t denote the true model with t = |t|. The dimension of the true
model is regarded as fixed. The regression coefficient for model j is denoted by βj = (βj1, …,
βj|j|)′, and the set of 2p possible models that can be defined from the p components of β is
denoted by . Ignoring dependence on n, we let Xj denote the design matrix formed from
the columns of Xn corresponding to model j, and we denote the eigenvalues of an arbitrary
positive definite matrix B of rank m by λ1(B) ≥ · · · ≥ λm(B). Finally, we denote the

regression coefficient for the true model by , and we define

 and . Under each model k, the sampling density for the
data is assumed to be

(4)

The sampling properties of posterior probabilities based on nonlocal prior densities in linear
model settings are easiest to study in the known variance case and for pMOM priors.
Therefore, we examine the known variance case first, and then extend these properties to
situations in which the variance is not known a priori, and then to models where piMOM
prior densities are specified on the regression parameters.

From Equations (1) and (2), it follows that the marginal density of the data under a pMOM
prior density on βk can be expressed as

(5)

where

and Ek(·) denotes expectation with respect to a multivariate normal distribution with mean
β̃k and covariance matrix σ2 Ck

−1. It follows that the posterior probability of model t, p(t |
yn), is defined by
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where p(k), k ∈ , denotes the prior probability assigned to model k. Based on these
expressions, the asymptotic sampling properties of p(t | yn) obtained under pMOM priors
imposed on regression coefficients are characterized in the following theorem.

Theorem 1—Suppose there exists ε > 0 such that p(t)/p(k) > ε for all k ∈ . Assume

further that p ≤ n and that there exist M > c > 0 and N such that  and

 for all n > N, and that there exist constants a1 and a2 such that λ1(Ak) < a1
and λk (Ak) > a2 for all k ∈ . If the prior density on the regression vector βk under each
model is specified by Equation (2) and r ≥ 2, then

The proofs of the theorems and the corollaries that follow appear in the online
Supplementary Material. Heuristically, consistency under pMOM priors of order r ≥ 2 can
be understood by examining the form of their marginal densities in Equation (5). When t ⊂

k, each component of βk not in t reduces  by a factor that is Op(n−r), which is
enough to overcome the potential addition of p ≤ n covariates to the model. (Note that this
factor does not arise from the multivariate generalizations of the MOM and iMOM densities
proposed in JR10.) When t ⊄ k and |k| is moderate in size, the factor exp(−Rk/2σ2) drives
the ratio of the marginal density of the data under model k to model t to 0 exponentially fast.
For large |k| and t ⊄ k, a balance of these effects drives the ratio of the marginal densities to
0.

Next, we consider the case in which σ2 is not known. In this setting, a common inverse
gamma density with shape and scale parameters (α, ψ) is assumed for the value of σ2 under
all models k ∈ . Then, the marginal density of the data under model k ∈  is

(6)

where

and  denotes the expectation taken with respect to a multivariate t-density with mean β̃k,

scale matrix , and νk degrees of freedom.
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Corollary 1—Assume that the conditions of Theorem 1 apply, except that the value of σ2

under all models k ∈  is assumed to be drawn from a common inverse gamma density with
shape and scale parameters (α, ψ). If the number of possible covariates p is further restricted
so that p < bn for some b < 1 as n → ∞ and r ≥ 2, then

Analytic expressions are not available for the marginal densities of the data when piMOM
priors are imposed on the regression coefficients. However, we know that the posterior
model probability assigned to the true model possesses the same consistency property as that
under pMOM densities of order r ≥ 2, as indicated in the next corollary.

Corollary 2—Assume the conditions of Corollary 1 hold, except that the prior density on
the regression vector βk under each model is now specified according to Equation (3). Then,

These results show that Bayesian model selection procedures based on either the
specification of piMOM prior densities or pMOM prior densities of order r ≥ 2 on regression
coefficients result in consistent estimation of the true model as p increases with n. The next
theorem demonstrates that this property may not hold when local prior densities are
specified on regression coefficients. This lack of consistency provides theoretical insight
into the well-known fact that in high-dimensional settings, common Bayesian model
selection procedures assign negligible posterior probability to any given model.

Theorem 2—Define  = {k ∈  : t ⊂ k, |k| − |t| = 1}, that is, models k that contain the
true model plus one additional covariate. For each k ∈ , suppose that the prior density

imposed on βk, say , is a continuous local prior; that is, that there exist constants δ, cL
> 0 such that

(7)

Suppose further that the conditions of Theorem 1 apply, and that the sampling density for
the data is described by Equation (4). If the prior densities assumed for model t and k ∈ 
satisfy p(k)/p(t) > δ > 0, and there exists an N such that p > n1/2+ε for some δ, ε > 0 and all

n > N, then .

Theorem 2 states that the posterior probability of the true model goes to 0 whenever the

following conditions apply: (1) the number of possible covariates is greater than , (2)
local prior densities are imposed on the regression coefficients in each model, and (3) the
relative prior probabilities assigned to all models are bounded away from 0.

Because the conclusion of this theorem differs dramatically from the consistency results
reported by other authors (e.g., Moreno, Giron, and Casella 2010), it is important to
distinguish between our notion of consistency and the pairwise consistency reported
elsewhere. The conclusions of Theorems 1 and 2 concern the asymptotic behavior of the
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posterior probability of the true model t as the sample size increases. Other authors have
focused on what might be called pairwise consistency, which refers to the Bayes factor
between the true model and any single model k ∈  becoming large as n increases. It is
important to note that pairwise consistency is a much weaker property than model
consistency since it is possible to achieve pairwise consistency even when the posterior
probability of the true model approaches 0. Indeed, it is not necessarily the case that
pairwise consistency is enough to guarantee even the convergence to 1 of the probability
that the maximum a posteriori model equals the true model.

Using this weaker notion of pairwise consistency, Moreno, Giron, and Casella (2010)
proved that intrinsic Bayes factors in favor of the true model compared to any other model
become unbounded as n increases when p = O(n), and that a similar result holds for model
selection based on the Bayesian information criterion (BIC; Schwarz 1978) when p = O(nα)
and α < 1. However, it is our view that pairwise consistency is of limited practical
importance. For instance, pairwise consistency provides no advantage for those interested in
Bayesian prediction or inferential procedures that require model averaging. If a modeling
procedure obtains only pairwise consistency, then the number of possible models that must
be averaged for valid Bayesian inference increases rapidly with increasing p. This fact may
preclude the use of such models in ultrahigh-dimensional settings (i.e., p ≫ n.) From a more
philosophical perspective, the assignment of decreasingly small probabilities to the true
model as the sample size increases raises questions regarding the interpretation of posterior
model probabilities.

3. COMPUTATIONAL STRATEGIES
Identifying high posterior probability models is computationally challenging for two
reasons. First, the model space has 2p dimensions, which often makes it impossible to
compute the marginal densities for all possible models. Second, the evaluation of the
marginal density for each model may require the numerical evaluation of a potentially high-
dimensional integral.

We might address the high-dimension problem by adapting one of the search algorithms
proposed for classical model selection (e.g., least angle regression, Efron et al. 2004; local
quadratic approximation, Fan and Li 2001). However, in addition to identifying the most
probable model, we are interested in assessing its probability and perhaps the probability of
other high-probability models. For this reason, we propose a Markov chain Monte Carlo
(MCMC) scheme to obtain posterior samples from the model space.

The computational difficulties associated with evaluating the marginal density of the data
under each model vary according to the choice of nonlocal prior imposed on the regression
coefficients. In the case of pMOM prior densities, exact expressions for the moments
appearing in Equations (5) and (6) are available in the literature, for example, by Kan
(2008). However, the computational effort associated with these expressions increases
exponentially with increasing model size. In addition, if Ak is not an identity matrix, the
prior normalization constant dk can also be difficult to evaluate. For piMOM prior densities,
analytic expressions are not available for the marginal densities. To address these problems,
we propose setting Ak = Ik whenever there is no subjective information regarding the prior
correlation between regression coefficients in model k. We also recommend the use of
Laplace approximations (Tierney and Kadane 1986) to approximate the marginal likelihood
of the data under each model.

For pMOM densities with unknown variance and Ak = Ik, the normalization constant dk is
given by
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and the Laplace approximation to the marginal likelihood function under model k can be
expressed as

(8)

where  is the diagonal matrix with entry (i, i) given by  and

Equation (8) is obtained by approximating the multivariate t density in Equation (6) by its
limiting normal distribution and using a standard Laplace approximation.

For piMOM densities and unknown variance, the corresponding Laplace approximation to
the marginal density of the data under model k is

(9)

where

(10)

and V (βk, η) is a (k + 1) × (k + 1) matrix with the following blocks:

(11)

The quantity  in Equation (11) denotes the vector with components . These Laplace
approximations have been implemented in the R software package mombf, by Rossell.

Based on these approximations to the marginal likelihoods of the data, we propose the
following MCMC algorithm for exploring the model space.

1. Choose an initial model kcurr
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2. For i = 1, …, p,

a. Define model kcand by excluding or including βi from model kcurr,
according to whether βi is currently included or excluded from kcurr.

b. Compute

(12)

using either Equation (8) or (9).

c. Draw u ~ U (0, 1). If r > u, define kcurr = kcand.

3. Repeat Step 2 until a sufficiently long chain is acquired.

The sequence of sampled models obtained from the chain produced by this algorithm can be
used to identify the maximum a posteriori (MAP) model, as well as to estimate the posterior
probabilities of the MAP and other high-probability models.

To choose an initial model, we recommend starting at the null model (k = 0) and making
several passes (a)–(c), deterministically moving to kcand when r > 0.5 in Equation (12). The
process stops when no movements are made in a complete pass (a)–(c), that is, a local
maximum is found.

4. SIMULATION STUDIES
In this section, we assess the sampling properties of p(t|yn) for local and nonlocal priors in
several simulation experiments, and we compare these properties to the corresponding
properties of two penalized likelihood procedures, SCAD and LASSO. We determined
regularization parameters for SCAD and LASSO using 10-fold cross-validation, as
implemented in the R software packages ncvreg, by Breheny, and parcor, by Kraemer and
Schaefer (available at http://cran.r-project.org/web/packages).

We implemented the Metropolis-Hastings algorithm described in Section 3 to estimate p(t|
yn). Because this algorithm had to be implemented for a large number of simulated datasets
(rather than a single application), we did not attempt to sample extensively from each
posterior distribution. For each simulated dataset, we performed 500 burn-in iterations and
5000 subsequent updates for posterior inference.

The MCMC algorithm was initialized as described in Section 3. The truly nonzero
regression coefficients were the last variables to be considered for inclusion in the initial
model to avoid bias in the initial updates of the chain toward the true model. The MAP
model was typically visited in fewer than 50 updates in all simulation settings. Coupling
diagnostics proposed by Johnson (1996, 1998) were applied to the resulting chains, which
led to the following two findings: (1) iterates in the MCMC algorithms based on the
nonlocal prior densities differed in total variation distance from the stationary distribution by
less than 0.1 within 100 iterations under all simulation settings; and (2) the total variation
distance between two independent draws from the posterior distribution and iterates
separated by more than 100 iterations in a chain also differed by less than 0.1 under all
simulation scenarios.

We considered σ2 = 1.0, 1.5, and 2.0 and generated the components of the design matrix X
from a multivariate normal distribution. In each simulation, the variance of each column of
X was set to 1, and the correlations between columns were set to either ρ = 0 or 0.25. That
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is, we set X = ZC1/2, where Z was an n × p matrix of independent standard normal deviates
and C was a p × p matrix with diagonal elements 1 and off-diagonal elements ρ. To
determine a practically relevant range for correlations between the columns of X, we relied
on our experience in analyzing microarray data. For example, in the GSE5206 and GSE2109
datasets (available from the Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo),
the mean absolute pairwise correlations between gene expression values are, respectively,
0.16 and 0.18 (75th percentiles = 0.23 and 0.18). Based on these values, we set the mean
correlation between columns in our experiments to be either ρ = 0 or ρ = 0.25. When ρ =
0.25, the maximum sample correlation between any pair of columns of X typically exceeded
0.5 for p = 100 and 0.4 for p = 500. We assumed a vague I G(0.001, 0.001) prior for σ2 in all
procedures based on the nonlocal priors. Posterior model probabilities were insensitive to
the choice of the inverse gamma density parameters provided only that both parameters were
much smaller than the minimum of 1 and the residual sums of squares Rk for all models.

We tested three classes of nonlocal prior models: pMOM densities of the first order (r = 1),
pMOM densities of the second order (r = 2), and piMOM densities. We note that pMOM
densities of the first order are not guaranteed to provide consistent model selection under the
assumptions of Theorem 1. However, these densities are less spiked around their prior
modes than are higher-order pMOM densities, which often leads to better finite sample
properties. We also tested the local, intrinsic prior model proposed by Casella et al. (2009)
and the Bayesian information criterion (BIC; Schwarz 1978), which was suggested by
Moreno, Giron, and Casella (2010) as an asymptotic approximation to the intrinsic prior.

To set the value of the hyperparameter τ for the nonlocal priors, we adopted the default
recommendations proposed in JR10. When all columns of Xn have been standardized, the
default value for the first-order pMOM prior is τ = 0.348; for the second-order pMOM prior,
it is τ = 0.072, and for the pi-MOM prior, the default value is τ = 0.113. At these values of τ,
the nonlocal priors assign 0.99 marginal prior probability to |βi|/≥ 0.2σ, which is an
approximate range of interest in many applications. In actual applications, the choice of τ
should be determined after a subjective evaluation of the magnitude of substantively
important effect sizes. Together with the sample size, the choice of τ implicitly determines
the magnitude of the regression coefficients that will be shrunk to 0; the marginal prior
density for each regression coefficient should thus be carefully considered when setting the
value of τ for application of our method to real datasets. The marginal density assigned to
each component of βk by the default priors is depicted in Figure 1.

For each class of prior densities, we adopted the beta-binomial prior model proposed by
Scott and Berger (2010) on the model space. Letting γ denote a value between 0 and 1, this
prior is obtained by assuming that the prior probability assigned to model k is specified as

(13)

We further assumed that ζ0 = ζ1 = 1. As Scott and Berger noted, this prior imposes a strong
penalty on model size, which is an important feature when it is used in model selection
algorithms that do not otherwise impose such penalties through the priors specified on
model parameters. For sparse models, the effect of this prior is to add a penalty on the
addition of spurious covariates that is approximately O(p−1), which, according to the
heuristic justification of the proof of Theorem 1 in Section 2, is enough to provide
consistency of the pMOM priors of order r = 1. Extending this logic to Theorem 2, the beta-
binomial prior combines with local priors to impose a penalty of order O(n−3/2) for the

addition of spurious covariates, which is  too small to make model selection based on
local priors consistent when p = O(n).
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4.1 Comparison of Bayesian Model Selection Procedures
We first compared the posterior probability assigned to the true model obtained under the
first- and second-order pMOM, piMOM, intrinsic prior densities, and the BIC. We
simulated data from linear models for values of n between 10 and 500, in each case setting p
= n, ρ = 0, and σ2 = 1.0, 1.5, 2.0. We set five components of the regression coefficient to the
values 0.6, 1.2, 1.8, 2.4, and 3; all remaining components were set to 0.

Figure 2 displays, on the logit scale, the average of the posterior model probability p(t|yn) as
a function of n from the pMOM, piMOM, intrinsic prior, and BIC-based selection
procedures. As suggested by theory, the average posterior probability assigned to the true
model increases with n under the nonlocal prior specifications, whereas it decreases to 0
under the intrinsic prior specification and its BIC approximation. For instance, the average
value of p(t|yn) typically exceeds 0.5 when n ≈ 100 under the nonlocal priors. At the same
value of n, the average posterior probability of the true model under the intrinsic prior and
BIC specifications is less than 0.05. When n = 500, the average posterior probability
assigned to the true model is essentially 1 under the nonlocal priors, whereas it is
approximately 0.01 under the local priors.

4.2 Comparison to Penalized Likelihood Selection Procedures
In practice, most model selection procedures are tackled using penalized likelihood methods.
In the following simulation study, we compare Bayesian model selection procedures based
on nonlocal priors to two common frequentist procedures, SCAD and LASSO.

We considered the six simulation scenarios described in Section 4.1. In each scenario, we
obtained 10,000 simulations for SCAD and LASSO. Due to the computationally intensive
nature of our MCMC algorithm, in the Bayesian approaches we simulated 1000 datasets for
the nonlocal priors and BIC, and 500 datasets for the intrinsic priors. (For n = 500, it took
approximately 7 min to obtain the results for one dataset on a cluster machine with 12-core
CPUs and 32 GB RAM for each of the Bayesian methods.)

We denote by t̂ the model selected by a procedure for a simulated dataset. For Bayesian
methods, t̂ is defined as the posterior mode, whereas for SCAD and LASSO it is defined
from coefficients that are estimated to be nonzero. Figure 3 shows, on the logit scale, the
average of P(t̂ = t) obtained under each of the scenarios for each of the model selection
procedures. From these plots, it is clear that model selection procedures based on the
nonlocal priors provided substantially higher empirical probabilities of identifying the true
model for sample sizes of 200 or greater.

Out-of-sample prediction root mean square errors (RMSE) are displayed in Figure 4. To
make the comparison of the prediction errors commensurate, the values displayed in Figure
4 were based on the MAP estimates of the regression parameters obtained under the MAP
model for the nonlocal priors, and were based on the maximum penalized likelihood
estimates for SCAD and LASSO. Prediction errors are not presented for the BIC and
intrinsic prior procedures owing to the formal lack of a prior density for the BIC and the
difficulty in obtaining the MAP estimate for the intrinsic prior. As the panels in Figure 4
indicate, the piMOM procedure’s prediction errors were typically slightly smaller than those
obtained under SCAD; SCAD had slightly smaller prediction errors than the pMOM
procedures when r = 1 and n < 200; and the pMOM procedure with r = 1 usually
outperformed SCAD for n ≥ 200. The pMOM procedure with r = 2 was generally not
competitive with any procedure except the LASSO for sample sizes smaller than 300.

The results in Figure 4 can be explained by noting that the true model provides the most
accurate out-of-sample predictions. Thus, model selection algorithms that identify the “true”
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predictors are also likely to provide the best predictions, provided that the biases of the
associated regression coefficients are small. For Bayesian procedures that employ proper
priors, these biases are known to be of order O(1/n), so in large samples it follows that
Bayesian procedures that provide the highest probability of selecting the true model are
likely to also provide optimal, or nearly optimal, out-of-sample prediction errors. For this
reason, the default piMOM prior (which has the heaviest tails and so the smallest biases)
tends to provide the smallest prediction error.

The performance of the selection procedure based on the second-order pMOM prior
densities was less impressive. We attribute its poor performance in both identifying the
correct model and in out-of-sample prediction to the choice of τ and the lighter tails of the
pMOM density at larger values of β. This problem is illustrated in Figure 1, which shows
that this density assigns little weight to values of regression coefficients greater than about
1.2.

The similarities of the curves in Figures 2 and 3 warrant additional emphasis. From these
figures, we see that the Bayesian procedures based on nonlocal priors provide estimates of
p(t|yn) that correlate well with P(t̂ = t). That is, the posterior probability assigned to the
maximum a posteriori model provides a bona fide estimate of the probability (in the
frequentist sense) that the chosen model is correct. This is an important feature of our model
selection procedures that is not shared by other methods. For example, this property does not
hold for model selection based on the intrinsic priors. Even though the maximum a
posteriori model obtained under the intrinsic prior specification is generally around 70% for
large values of n, it assigns to the true model an average posterior probability that is always
close to 0.

Further details concerning the simulation studies, including marginal probabilities of
inclusion for nonzero and zero coefficients, false discovery rates, and the numerical values
of points displayed in the figures (Tables S1–S7), can be found in the online Supplementary
Material.

5. DISCUSSION
The Bayesian model selection procedures described in Section 2 provide consistent
estimation of the true regression model in the sense that the Bayesian posterior probability
of the true model converges to 1 in probability when the conditions of Theorem 1 are
satisfied. In stating this finding, we also note that most Bayesian model selection
procedures, including those based on local priors, provide consistent estimation of the true
model under the conditions of Theorem 1 for fixed p as n → ∞. This fact follows from the
consistency of the Bayes factor when the number of covariates is fixed a priori (e.g., Casella
et al. 2009) and the posterior normality conditions cited by Walker (1969).

An explanation of how the proposed Bayesian model selection procedures are able to
achieve consistency for p = O(n) can be found by comparing nonlocal prior densities to the
double exponential prior distribution implicit to the Bayesian LASSO procedure (Park and
Casella 2008). To simplify matters, we consider the test of whether a single regression
coefficient β1 is equal to 0. If the prior probability that β1 = 0 is 0.5, and there is a 0.5
probability that it is drawn from a pMOM prior, then the marginal prior on β1 can be
depicted by the solid curve in Figure 5. This prior density is an equal mixture of a point
mass at 0 and a pMOM density. In contrast, the double exponential prior associated with the
LASSO is depicted as a dashed line in Figure 5.

The most salient differences between the prior densities pictured in Figure 5 are seen in their
behavior near the value β1 = 0. Although the double exponential prior peaks at 0, it also
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places substantial mass in neighborhoods around 0. Small but nonzero values of the
parameter can thereby be assigned high probability under the LASSO prior. On the other
hand, the marginal prior obtained from the mixture of the pMOM density and point mass
prior assigns negligible probability to small, nonzero values of β1. As a consequence, the
pMOM mixture provides more shrinkage toward 0 for regression coefficients that are not
supported by the data.

To extend the analogy between the LASSO and Bayesian procedures based on double
exponential priors to other classical and Bayesian model selection methods, note that the
LASSO and SCAD procedures select models by minimizing |L1| objective functions of the
general form

(14)

where l(β̂) denotes the log-likelihood function evaluated at an optimal value of β̂, and {wi }
denotes weights. Ridge regression and related L2 estimation procedures determine regression
coefficients that maximize objective functions of the form

(15)

which, from a Bayesian perspective, correspond to imposing a (local) Gaussian prior on the
regression parameter β. By maximizing rather than integrating, the BIC can be justified as an
approximation to Bayes factors obtained by imposing Gaussian (or other local) priors on the
regression coefficients included in each model (e.g., Kass and Raftery 1995). The objective
function associated with model selection using the BIC can be expressed as

(16)

for some positive constant c.

Using similar reasoning, an objective function that might be associated with pMOM priors
can be expressed as

(17)

for some d > 0, whereas the objective function associated with the piMOM priors might be
expressed as

(18)

In both cases, the model that maximizes the objective function over all components of β
included in the model is selected as the best model. By comparing Equations (17) and (18)
with Equation (16), we see that the effect of the nonlocal objective functions is to add to the
standard BIC a penalty term that can become arbitrarily large in models that contain
regression coefficients that are close to 0.
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It is important to note, however, that Equations (17) and (18) do not add an additional
penalty to models that contain coefficients that are large in magnitude. This feature makes it
possible to avoid stiff prior penalties on models that contain many parameters. In contrast,
Theorem 2 shows that severe prior penalties are required on the model space to obtain
consistent results when local priors are imposed on regression coefficients.

With regard to the choice between maximizing an objective function or integrating over a
prior density to obtain a Bayes factor, we feel that the Bayesian approach offers two
advantages. First, the specification of normalized prior densities provides an automatic guide
to the selection of the constants c and d that appear in the objective functions in Equations
(17) and (18). Second, as discussed previously, posing the model selection problem within
the Bayesian context facilitates inference regarding the posterior probability that each model
is true.

Extensions of the results from our simulation study to the p ≫ n setting will require
substantial reformulation of the model selection problem. In such settings, the columns of
the design matrix X cannot be independent, which means that the definition of a true model
will generally be ambiguous. This implies that further constraints are needed to define the
true model, or that an alternative formulation of the inferential problem must be posited. We
are currently investigating such extensions using alternative Bayesian interpretations of
model selection procedures combined with screening techniques suggested by, for example,
Fan and Lv (2008).

In practice, we find that the pMOM priors of order r = 1 and piMOM priors perform well in
applications, although we recommend that the former be used only in conjunction with beta-
binomial priors on the model space. The pMOM priors offer some advantage in
computational speed over piMOM priors, particularly if Ak is chosen to be the identity
matrix (thus eliminating the need to compute the prior normalization constant). This choice
of Ak also stabilizes the posterior covariance matrix of βk when the columns of Xk are
highly correlated. However, the piMOM prior introduces a smaller bias in the estimation of
large components of β. We recommend that τ be chosen based on scientific considerations
whenever possible, but have found that the default values recommended in JR10 work well
in a variety of simulation settings, provided that the columns of Xn have been standardized
so as to have unit variance (see Section 4).

The model selection procedures described in this article have been implemented in the R
package mombf. The R code based on this package that was used to obtain the simulation
results in Section 4 is included in the article’s online Supplementary Material. Instructions
for implementing these model selection procedures for an arbitrary dataset using R can be
obtained by typing vignette(“mombf”) in the R command line (http://cran.r-project.org/web/
packages/mombf/index.html).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Nonlocal prior densities for a single regression coefficient. These densities correspond to the
default nonlocal priors used in the simulation study in Section 4.
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Figure 2.
p(t|yn) versus n. Top: σ2 = 1; middle: σ2 = 1.5; bottom: σ2 = 2.
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Figure 3.
P(t̂ = t) versus n. Top: σ2 = 1; middle: σ2 = 1.5; bottom: σ2 = 2.
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Figure 4.
Out-of-sample RMSE versus n. Top: σ2 = 1; middle: σ2 = 1.5; bottom: σ2 = 2.
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Figure 5.
Nonlocal prior density versus LASSO prior density. The density depicted by the solid line
represents an equal mixture of a one-dimensional pMOM density and a point mass at 0. The
density illustrated by the dashed line represents the double exponential prior density
associated with the LASSO procedure.
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