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Abstract
Thyroid carcinoma is the most common endocrine malignancy, and although the disease generally
has an excellent prognosis, therapeutic options are limited for patients not cured by surgery and
radioiodine. Thyroid carcinomas commonly contain one of a small number of recurrent genetic
mutations. The identification and study of these mutations has led to a deeper understanding of the
pathophysiology of this disease and is providing new approaches to diagnosis and therapy.
Papillary thyroid carcinomas usually contain an activating mutation in the RAS cascade, most
commonly in BRAF and less commonly in RAS itself or through gene fusions that activate RET.
A chromosomal translocation that results in production of a PAX8-PPARG fusion protein is found
in follicular carcinomas. Anaplastic carcinomas may contain some of the above changes as well as
additional mutations. Therapies that are targeted to these mutations are being used in patient care
and clinical trials.
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1. Introduction
Cancer is a consequence of accumulated genetic alterations; understanding how these
changes effect the disease state offers the hope of developing new and better treatments, and
may provide improved prognostic information for the individual patient. Thyroid cancer is
the most common endocrine malignancy and more than 1800 US deaths are estimated to
result from thyroid carcinomas annually (Cancer of the Thyroid - SEER Stat Fact Sheets;
Tuttle et al., 2010). We offer below a review of genetic abnormalities commonly
encountered in sporadic thyroid carcinomas. This review will be focused on carcinomas of
the major thyroid cell type, the thyroid hormone-producing follicular cell. It will not discuss
medullary thyroid carcinomas, which are tumors of the calcitonin-producing parafollicular C
cells.

Thyroid carcinomas are classified by their histological appearance in a schema largely
affirmed by more recent molecular data. Differentiated thyroid carcinomas (DTC) are the
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most common and contain cells which retain many features of normal thyrocytes. DTCs are
further divided into papillary and follicular thyroid carcinomas (PTC and FTC,
respectively). Anaplastic thyroid carcinomas (ATC) are completely undifferentiated,
aggressive, therapy resistant, and usually fatal cancers (Cooper et al., 2009). Recurrent
mutations in thyroid carcinomas are predominantly associated with specific tumor
histologies and are implicated in disease etiology (Fig. 1 and Table 1).

2. Papillary thyroid carcinoma
Papillary thyroid carcinomas account for more than 85% of DTCs. PTCs are etymologically
derived from the replacement of normal thyroid follicular structures by papillae - several
layers of neoplastic thyroid epithelial cells lining a fibrous core. Presently PTCs are
identified by certain characteristic nuclear features such as larger, clearer nuclei with
inclusion bodies of cytoplasm and nuclear grooves (Baloch and LiVolsi, 2005). There are
several histological subtypes of PTC, including classic PTC, follicular variant PTC
(FVPTC), tall cell variant (TCV) and others. FVPTCs lack papillary structures but contain
follicles and retain nuclear features of PTC; it is this latter attribute that separates them from
pure FTCs. However, as will be described subsequently, the mutational profile of FVPTCs
closely resembles that of FTCs. TCV PTCs contain cells that are at least twice as tall as
wide. These carcinomas tend to be more aggressive, and the tall cell phenotype has a
specific mutational correlate. Mutations or translocations in BRAF, RET, RAS, and NTRK1
– all participants in the same signaling cascade – are known in PTC (Fig. 2). In addition,
translocations between PAX8 and PPARG occur in FVPTC.

2.1. BRAF
BRAF is a member of a small family of RAF proteins that function as cytoplasmic serine/
threonine protein kinases in the mitogen activated protein kinase (MAPK) signaling cascade.
Members of the MAPK cascade modulate essential cellular processes such as proliferation,
differentiation, and survival. BRAF is physiologically activated by RAS (Avruch et al.,
2001). Once activated, BRAF can activate MEK by phosphorylating it and thereby
transduce the mitogenic signals to downstream elements such as ERK. BRAF mutations
found in cancer generally result in unregulated kinase activity and increased MEK
activation; those mutations which do not exhibit increased kinase activity can nonetheless
produce higher ERK activation downstream (Wan et al., 2004).

A wide variety of BRAF mutations are found in a wide range of cancers, but more than 95%
of all cases are of a single variety denoted BRAFV600E. A missense thymine to adenine
transversion at the 1799 nucleotide position leads to a valine to glutamate substitution at the
600 amino acid position. The mutation results in a constitutively active BRAF, no longer
dependent on RAS, and hence causes constitutive MEK/ERK activation (Cantwell-Dorris et
al., 2011; Wan et al., 2004). In addition to PTCs, BRAFV600E is found in the majority of
malignant melanomas and hairy cell leukemias, as well as in significant fractions of other
cancers such as astrocytomas and carcinomas of the colon, lung and ovary (reviewed in
Pakneshan et al., 2013).

Mutant BRAF expression contributes to the transformation of cell lines and thyroid tumor
formation in mice. BRAFV600E induces genomic instability in the rat PCCL3 thyrocyte cell
line and increases focus formation in NIH3T3 cells (Mitsutake et al., 2005; Moretti et al.,
2006). Expression of rare BRAF mutants, including fusion chimera generated by
chromosomal rearrangements and truncated proteins generated by alternative splicing,
shows that uninhibited BRAF kinase activity generally has pro-oncogenic effects (Baitei et
al., 2009; Ciampi et al., 2005; Liu et al., 2007b). Early or late expression of BRAFV600E in
transgenic mice rapidly produces enlarged and abnormal thyroids followed by invasive PTC
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within a year, confirming BRAF mutations as a causative event in PTCs (Charles et al.,
2011; Knauf et al., 2005).

Due to differing techniques, cohorts, etc., the reported prevalence of BRAF mutations in
PTC varies considerably, though it is clearly the most common mutation in PTC and
therefore in thyroid carcinomas. The estimate for occurrences of BRAF mutations in general
and BRAFV600E in particular range from 28% to 77% of all PTC cases; the average
reported value is ~45% (Cohen et al., 2003; Fernandez et al., 2013; Frattini et al., 2004;
Guerra et al., 2012; Lim et al., 2013; Namba et al., 2003; Nikiforova et al., 2003a;
Nikiforov, 2011; Puxeddu et al., 2004). BRAF mutations are particularly common in TCV
PTC, and are uncommon in FVPTC.

The presence of BRAF mutations correlates with more aggressive disease. Data from
numerous groups and a meta-analysis associate BRAF mutations in PTC with large tumor
size, extrathyroidal extension, higher stage at presentation, lymph node metastasis and
increased risk of recurrence (Elisei et al., 2012; Fernandez et al., 2013; Jo et al., 2006; Kim
et al., 2012; Lim et al., 2013; Namba et al., 2003; Nikiforova et al., 2003a; Xing et al.,
2005). A recent retrospective analysis of 1849 PTC patients (Xing et al., 2013) found a
mortality rate of 5.3% in BRAFV600E-positive patients versus 1.1% in mutation-negative
patients. However, the association of BRAFV600E with mortality was lost after adjusting
for standard clinical and histological prognostic features (e.g. the presence of extrathyroidal
invasion or metastases). On the one hand, this suggests that BRAFV600E is a major driving
force that underlies these traditional clinical and histological prognostic features. On the
other hand, the data call into question the added value of determining the BRAF status of a
given tumor, at least in terms of predicting mortality.

A clinically relevant feature of BRAF-mutated PTCs is their diminished responsiveness to
radioactive iodine (RAI). Thyrocytes concentrate and organify iodine as part of their
physiological function, making RAI useful to identify and ablate remnant and metastatic
thyroid carcinoma. Loss of RAI avidity is a significant problem in progressive disease and
severely limits the available treatment options. BRAF-mutated PTCs are associated with
decreased expression of proteins involved in the uptake and organification of iodide, such as
the sodium iodide symporter (NIS), resulting in an increased number of RAI courses
required to achieve disease free status and increased incidence of RAI refractory recurrence
(Barollo et al., 2010; Durante et al., 2007; Elisei et al., 2012; Gao et al., 2012; Riesco-
Eizaguirre et al., 2006).

Therefore, re-establishment of RAI avidity is a major avenue of research in thyroid cancer.
Small molecule inhibitors against BRAF or its downstream effector MEK are effective at
increasing NIS expression in preclinical models (Durante et al., 2007; Liu et al., 2007a;
Nucera et al., 2009). Selumentinib (AZD6244, ARRY-142886) is a MEK inhibitor that
increases RAI uptake and effects partial responses in some BRAF or RAS -mutated, RAI-
refractory patients (Ho et al., 2013).

Small molecule inhibitors of BRAF are potentially useful drugs in BRAF-mutated PTCs.
Sorafenib (BAY 43-9006) was identified as part of a drug discovery program targeting
BRAF (Lyons et al., 2001). It also blocks the actions of VEGF receptors, PDGF receptors,
Kit, and RET, making it among the first multikinase inhibitors to be in clinical trials
(Caronia et al., 2011; Murphy et al., 2006). Sorafenib exhibits broad but modest and
ultimately transient anti-tumor effects in clinical trials on patients with advanced, metastatic
thyroid cancer, though a positive response does not appear to depend upon the BRAF status
of the tumor (Capdevila et al., 2012; Gupta-Abramson et al., 2008; Hoftijzer et al., 2009;
Kloos et al., 2009; Marotta et al., 2013; Schneider et al., 2012; Shen et al., 2012).
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Vemurafenib is particularly interesting in that it is a specific inhibitor of BRAFV600E, not
wild type BRAF. Vemurafenib is highly therapeutic in BRAFV600E melanomas, although
resistance eventually develops. A phase I trial of vemurafenib in 3 BRAFV600E thyroid
cancer patients resulted in one partial response (Kevin Kim et al., 2013).

2.2 RET
RET is a cell surface receptor tyrosine kinase that transmits environmental cues to RAS and
the downstream MAPK pathway (Marotta et al., 2011). RET mutations in PTC are
exclusively genetic rearrangements resulting in chimeric proteins denoted RET/PTC1, RET/
PTC2, etc. RET/PTC is found in ~15% of PTCs. RET itself is not expressed in normal
thyroid follicular cells, but the juxtaposition of the 3' kinase domain of RET to a 5' partner
and its promoter leads to fusion oncoprotein expression and aberrant kinase activity, with
downstream activation of the RAS/MAPK pathway and the phosphatidylinositide 3-kinase
(PI3K)/AKT pathway (Bunone et al., 2000; Grieco et al., 1990; Melillo et al., 2005; Miyagi
et al., 2004). Although many fusion partners of RET have been described, the most frequent
are CCDC6 (resulting in RET/PTC1) and NCOA4 (resulting in RET/PTC3) (Bongarzone et
al., 1994; Santoro et al., 1994). The common feature of the fusion partners is their ability to
constitutively dimerize, which results in constitutive RET tyrosine kinase activity via
autophosphorylation (Salvatore et al., 2000). There also is evidence that RET/PTC can
heterodimerize with the EGFR, and that the EGFR kinase can then phosphorylate and
activate the RET kinase domain (Croyle et al., 2008).

Exogenously induced expression of RET/PTC proteins results in PTC-like phenotypes in
culture and mouse models. In non-malignant primary thyroid cells or cell lines, RET/PTC
expression decreases thyroid specific gene expression, alters cell and colony morphology to
resemble features of PTC, renders the cells insensitive to or independent of TSH signaling,
and especially in the cases of RET/PTC3, markedly increases cell proliferation (Basolo et
al., 2002; Bond et al., 1994; Santoro et al., 1993; Wang et al., 2003). Transgenic mice that
express RET/PTC1 or RET/PTC3 in the thyroid acquire PTC-like thyroid carcinomas after
long latency periods (Jhiang et al., 1996; Powell et al., 1998; Santoro et al., 1996).

Although RET/PTC rearrangements are substantially less common than BRAFV600E, there
is a specific association of RET/PTC with radiation-induced thyroid cancer. For example,
the Chernobyl accident which released nuclear materials including radioactive iodine was
associated with increased numbers of RET/PTC thyroid cancers (Fugazzola et al., 1995;
Rabes et al., 2000; Thomas et al., 1999). RET/PTC events also are prevalent in patients
previously exposed to other forms of radiation, e.g. as part of medical treatment (Alipov et
al., 1999; Bounacer et al., 1997; Collins et al., 2002; Nikiforov et al., 1997).

In contrast to the less common RET/PTC mutations, RET/PTC1 and RET/PTC3 involve
fusion partners located on the same chromosome as RET. It is thought that chromosomal
proximity of the fusion partners and fragile sites within those genes contribute to the high
incidence of RET/PTC fusions in patients exposed to radiation (Gandhi et al., 2012, 2010a,
2010b; Nikiforova et al., 2000). In concordance with this hypothesis, irradiation of thyroid
cell cultures generates RET/PTC fusions (Ito et al., 1993; Mizuno et al., 2000, 1997).
Interestingly, several other thyroid cancer related mutations such as the AKAP9-BRAF,
NTRK1-T1, and NTRK1-T2 fusions also involve intrachromosomal rearrangements
(Santoro et al., 2006). AKAP9-BRAF in particular is overrepresented in PTCs attributable to
radiation exposure, while BRAF point mutations are rare in the same population (Ciampi et
al., 2005; Lima et al., 2004).

In general the prognosis for RET/PTC thyroid carcinomas is relatively good (Soares et al.,
1998). Few correlations are found between RET/PTC mutations and clinical markers of
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increased mortality or morbidity, though increased lymph node metastases are sometimes
noted (Adeniran et al., 2006; Santoro et al., 2002; Tallini et al., 1998). RET/PTC1 tumors
are associated with classical PTC histology while RET/PTC3 are associated with more
aggressive solid and TCV PTC (Basolo et al., 2002; Nikiforov et al., 1997; Thomas et al.,
1999).

A number of small molecules targeting multiple tyrosine kinases inhibit RET and RET/PTC.
Sunitinib targets RET among many other kinases and has modest efficacy in PTCs, although
it has not been studied specifically in tumors expressing RET/PTC (Carr et al., 2010).
Vandetanib and cabozantinib are inhibitors of multiple tyrosine kinases including RET and
are approved for the treatment of medullary thyroid carcinoma (Thornton et al., 2012).
Medullary thyroid carcinoma is a disease of calcitonin-producing thyroid C cells rather than
thyroid follicular cells, and is frequently associated with activating point mutations in RET.
Whether vandetanib and cabozantinib also may have specific efficacy in RET/PTC
carcinomas is not known.

2.3. NTRK1
Chromosomal rearrangements involving the NTRK1 gene – another receptor tyrosine kinase
- are found infrequently in PTC, probably in less than 5% of cases. Several fusion partners
of NTRK1 have been described, and as with RET/PTC, the common feature is their ability
to constitutively dimerize and thereby inappropriately activate the NTRK kinase
(Bongarzone et al., 1989; Greco et al., 1995; Kaplan et al., 1991; Miozzo et al., 1990). Since
NTRK1 rearrangements occur in a very small percentage of PTCs, data on their clinical
significance is limited (Musholt et al., 2000; Rabes et al., 2000).

2.4. RAS and PAX8-PPARG
Activating RAS mutations and PAX8-PPARG translocations are the most common
mutations found in FVPTCs. They also are the most common mutations in FTCs, and will
be discussed under that heading.

3. Follicular thyroid carcinoma
FTCs account for the remaining differentiated thyroid carcinomas. Presently FTCs are
identified by their thyroid follicular organization and by the lack of PTC nuclear features.
The differences between FTCs and FVPTCs are not always clear. The diagnosis of FTC also
depends on evidence of vascular or capsular invasion in the tissue sample, and therefore
occasionally a minimally invasive FTC will mistakenly be classified as a benign follicular
adenoma. Molecular markers that can reliably distinguish minimally invasive FTCs from
adenomas have proved elusive but are continuously being sought.

3.1. RAS
The three RAS proteins H-RAS, N-RAS and K-RAS are small GTPases that regulate key
cellular processes involved in growth, differentiation, survival, adhesion and migration.
Downstream effectors of RAS include the RAF/MAPK pathway as noted above and the
PI3K/AKT pathway. RAS exists in a GTP-bound active state or a GDP-bound inactive state,
and RAS activation normally is induced by external signals such as from cell surface
receptor tyrosine kinases. Constitutively activating RAS mutations probably are the most
common mutations in all of cancer biology. In the thyroid, RAS mutations are present in
~40% of FTCs, 20–40% of benign adenomas, and 15–20% of PTCs – mostly FVPTC
(Lemoine et al., 1988; Nikiforov, 2011; Suarez et al., 1990). Mutations in codon 61 of N-
RAS are the most common, followed by mutations in codon 61 of H-RAS (Bamford et al.,
2004; Namba et al., 1990; Volante et al., 2009).

Vu-Phan and Koenig Page 5

Mol Cell Endocrinol. Author manuscript; available in PMC 2015 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Expression of mutated RAS oncoproteins transforms cells in vitro and in vivo. N-RASQ61
expression results in TSH independent proliferation and genomic instability in PCCL3 rat
thyroid cell lines. Thyroid specific expression in mice results in the development of
metastatic thyroid carcinoma with mixed follicular, papillary, and undifferentiated areas
(Vitagliano et al., 2006). Expression of HRASV12 achieves similar results in cell lines and
mice (Knauf et al., 2006; Rochefort et al., 1996; Saavedra et al., 2000).

The clinical significance of RAS mutations in thyroid carcinomas is unclear. A number of
studies find correlation between RAS mutations and bone metastases, increased
aggressiveness, or higher mortality across thyroid cancer types (Basolo et al., 2000; Garcia-
Rostan et al., 2003; Hara et al., 1994; Karga et al., 1991; Manenti et al., 1994). On the other
hand, RAS mutations also are prevalent in benign follicular adenomas, and are seen in
unaggressive forms of FVPTC with few metastases (Gupta et al., 2013; Howitt et al., 2013;
Zhu et al., 2003). A retrospective analysis found that RAS mutations are over-represented in
differentiated thyroid carcinomas from patients with radioiodine-avid pulmonary metastases
(Sabra et al., 2013), whereas BRAF mutations are over-represented in non radioiodine-avid
metastatic disease. However, radioiodine-avid lung metastases were rarely cured by
radioiodine therapy, and those with RAS mutations fared no better than radioiodine-avid
metastases with BRAF mutations.

The broad scope of RAS actions presents many potential therapeutic targets.
Farnesylthiosalicylic acid (FTS) blocks the association of RAS with the cell membrane,
resulting in RAS degradation. FTS has efficacy against thyroid cancer cells in pre-clinical
models (Biran et al., 2011; Levy et al., 2010; Marciano et al., 1995). FTS in combination
with the multikinase inhibitor sorafenib may have some activity in patients with metastatic
thyroid carcinoma (Hong et al., 2011). Other drugs may disrupt RAS actions by inhibiting
downstream targets in the MAPK and/or PI3K pathways (Chan et al., 2012; Jin et al., 2011;
Liu et al., 2012). As noted previously, the MEK inhibitor selumentinib increased RAI uptake
in iodide-refractory patients, particularly those with RAS mutations (Ho et al., 2013).

3.2. PAX8-PPARG
PAX8-PPARG is the other major mutation found in FTC, accounting for ~35% of cases. It
also is found in FVPTC and occasionally in benign follicular adenomas (Eberhardt et al.,
2010). A t(2;3)(q13;p25) chromosomal translocation fuses the promoter and most of the
PAX8 gene to the coding exons of the PPARG gene. Thus the PAX8-PPARG fusion protein
(PPFP) is expressed under control of the PAX8 promoter, which is highly active in the
thyroid (Kroll et al., 2000). PAX8 is a transcription factor that is important for thyroid
development, and in the mature gland it drives the expression of many thyroid-specific
genes such as those encoding thyroglobulin, thyroid peroxidase and the sodium iodide
symporter. PPARG is a nuclear receptor transcription factor that is essential for
adipogenesis, but is expressed at very low levels in the normal thyroid and has no known
function in that organ. A separate fusion protein between CREB3L2 and PPARG has been
reported in two cases of FTC (Lui et al., 2008). That two distinct fusion proteins involving
PPARG have been associated with FTC suggests that modulation of PPARG-regulated
pathways is important for PPFP-mediated carcinogenesis. However, the oncogenic
mechanism of PPFP is poorly understood and its functional relationship to PPARG is
complex.

PPFP has been shown to be a dominant negative inhibitor of PPARG-mediated gene
activation in numerous transfection systems (Kroll et al., 2000; Powell et al., 2004; Yin et
al., 2009, 2006). Additionally PPARG often is downregulated in other types of thyroid
carcinomas, PPARG agonists have therapeutic effects in cell and mouse models of various
cancers, and heterozygous PPARG deletion enhances tumorigenesis in a mouse model of
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non-PPFP thyroid carcinoma (Aldred et al., 2003; Kato et al., 2006; Marques et al., 2004;
Park et al., 2005). Overall these studies suggest that PPARG can have tumor suppressive
function, and that PPFP may contribute to thyroid carcinogenesis by impeding this activity
of PPARG.

On the other hand, there also is evidence that PPFP can transactivate at least some PPARG
target genes. Significant numbers of PPARG target genes are upregulated in PPFP tumor
samples compared to non-PPFP FTC or normal thyroid (Giordano et al., 2006; Lacroix et
al., 2005). In vitro, exogenously induced PPFP expression stimulates the promoters of some
PPARG genes while repressing others or sometimes both depending on the cellular context
(Au et al., 2006; Giordano et al., 2006; Powell et al., 2004). Similarly, some PPARG target
genes are induced and others are repressed in a transgenic mouse model of PPFP FTC
(Dobson et al., 2011). However, treatment of these mice with the PPARG agonist
pioglitazone caused broad upregulation of PPARG target genes and induced adipocyte
transdifferentiation in the PPFP thyroid cancer cells. PPFP functional domains therefore
necessarily retain their capacity to act in a strongly PPARG-like manner.

Stable transfection of PPFP in thyroid cell lines results in increased cell division, decreased
apoptosis, and increased colony growth in soft agar (Au et al., 2006; Espadinha et al., 2007;
Powell et al., 2004). Thyroid specific expression of PPFP in transgenic mice results in mild
thyroid hyperplasia, but PPFP expression and thyroid-specific deletion of the tumor
suppressor PTEN synergize to induce metastatic FTC (Diallo-Krou et al., 2009; Dobson et
al., 2011). The mouse data are consistent with the biology of human PPFP FTCs, since these
cancers have increased activated AKT (Diallo-Krou et al., 2009) and PTEN is a negative
regulator of AKT. However, the role of PPFP in thyroid carcinogenesis may be complex
because data suggest that PPFP also may inhibit tumor growth by suppressing
neovascularization (Reddi et al., 2011, 2010).

The prognostic significance of PPFP expression in FTC or FVPTC has not been extensively
studied. PPFP is associated with a younger age at presentation and increased vascular
invasion (French et al., 2003; Marques et al., 2004; Nikiforova et al., 2003b). However,
others report that PPFP is associated with indicators of good prognosis including markers of
differentiation and few metastases (Sahin et al., 2005).

PPARG agonists have been disappointing as therapeutic agents in human cancers, despite
the evidence that PPARG may be a tumor suppressor. However, in the above-mentioned
mouse model of PPFP FTC, pioglitazone was strongly therapeutic, eliminating metastatic
disease and greatly shrinking the size of the primary tumors. In addition, the remaining
thyroid cells became adipocyte-like cells, accumulating large amounts of lipid (Dobson et
al., 2011). It is hypothesized that this unique transdifferentiation event underlies the anti-
tumor efficacy, which reflects the fact that the drug target is PPFP, not PPARG. The results
suggest pioglitazone may be an effective treatment for PPFP thyroid carcinomas in patients.

3.3. PTEN/PI3K/AKT
PTEN is a phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase that functions as a
negative regulator of PI3K (Fig. 2). Activated PI3K phosphorylates AKT, which then
regulates a variety of cellular processes such as protein synthesis, survival and proliferation
via the phosphorylation of many intermediates such as mTOR and FOXO. AKT is
inappropriately active in many cancers, and as a negative regulator of AKT signaling, PTEN
is an important tumor suppressor. Germline PTEN mutations cause Cowden syndrome,
which is associated with increased risk of thyroid cancer, but which will not be discussed
here since the focus of this review is sporadic thyroid cancers.
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However, increased AKT activation also can be seen in sporadic thyroid cancers due to
mutations or epigenetic changes (discussed subsequently) in PTEN or downstream
components of this pathway (Orloff et al., 2013; Paes and Ringel, 2008). The overall
incidence of PTEN mutation in sporadic thyroid carcinoma is ~8% in FTC, 2% in PTC, and
11% in anaplastic thyroid carcinoma (ATC) (Bamford et al., 2004; Dahia et al., 1997;
Halachmi et al., 1998). Activating mutations of PIK3CA, the catalytic subunit of PI3K, are
roughly as prevalent as PTEN mutations, although they occur in a mutually exclusive
manner. In addition, PIK3CA gene copy number gain is found in 28% of FTCs and ~40% of
ATCs, and this also might lead to increased AKT activation (Hou et al., 2007; Liu et al.,
2008; Wang et al., 2007). Although inhibitors of the PI3K/AKT/mTOR pathway have
shown efficacy against thyroid cancer in pre-clinical models, their success in clinical trials
remains to be seen (Lin et al., 2012; Liu et al., 2011; Mandal et al., 2005; Papewalis et al.,
2009).

3.4 IDH1
Isocitrate dehydrogenases 1 and 2 are enzymes of intermediary metabolism that interconvert
isocitrate and 2-oxoglutarate (alpha ketoglutarate). IDH1 is cytoplasmic, whereas IDH2 is
mitochondrial. Mutations in both enzymes have been described in a number of cancers, most
prominently in glioblastoma multiforme and chondrosarcoma (reviewed in Losman and
Kaelin, Jr., 2013). The cancer-associated mutations result in altered enzymatic activity such
that 2-oxoglutarate is converted to 2-hydroxyglutarate rather than isocitrate. Evidence
indicates that accumulation of 2-hydroxyglutarate is important to the role of IDH mutations
in cancer, but the mechanisms by which this happens are poorly understood. Recently, IDH1
mutations have been identified in thyroid carcinomas (Hemerly et al., 2010; Murugan et al.,
2010). In the study by Hemerly and colleagues, IDH1 mutations were found in 24% of
follicular carcinomas, 18% of follicular variant of papillary carcinomas, and 8% of papillary
carcinomas, but these differences in frequency were not significant due to small numbers of
cases. IDH1 mutations also have been found in anaplastic and Hurthle cell carcinomas. The
clinical significance of these mutations is not known. IDH2 mutations have yet to be
identified in thyroid carcinomas.

3.5. THRB
The thyroid hormone receptor beta (THRB) mutation PV was initially knocked into mice to
create a mouse model of resistance to thyroid hormone (Kaneshige et al., 2000).
Homozygous or heterozygous THRB(PV) mice (in conjunction with markedly increased
TSH stimulation) develop metastatic FTC, which was unforeseen (Kato et al., 2004; Suzuki
et al., 2002). Mutations in THRB are generally thought to be very rare to non-existent in
human PTC and FTC (Rocha et al., 2007; Takano et al., 2003), although one publication
reported that nearly all PTCs contain THRB mutations (Puzianowska-Kuznicka et al., 2002).

However the mouse model remains useful to tease out how other clinically relevant
pathways interact to cause human FTC (Guigon and Cheng, 2009). The important role of the
PI3K/AKT pathway in human FTC is recapitulated in these mice, along with the discovery
of a novel interaction between THRB and PI3K regulatory subunit p85 (Furuya et al., 2007,
2006; Guigon et al., 2009; Kim et al., 2005; Saji et al., 2011). Downstream of AKT, beta-
catenin is protected from degradation by THRB(PV) and unliganded wildtype THRB, but
not liganded THRB, suggesting a role for thyroid hormone in beta-catenin regulation
(Guigon et al., 2008).

Vu-Phan and Koenig Page 8

Mol Cell Endocrinol. Author manuscript; available in PMC 2015 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Anaplastic thyroid carcinoma
Anaplastic thyroid carcinoma is the deadliest subtype of thyroid cancer. It is rare, accounting
for at most 2% of cases but causes up to 50% of thyroid cancer deaths (Nagaiah et al., 2011).
Mean survival time is ~5 months from diagnosis. ATCs are completely undifferentiated,
aggressive, and therapy resistant. Treatment strategies are mostly palliative or designed to
prevent airway compromise. Many patients present with widespread metastases but there are
no effective systemic therapies (Smallridge et al., 2012). Targeted therapies may provide
much needed options.

4.1. RAS, BRAF, PTEN, PI3K
A number of mutations described previously in differentiated thyroid carcinomas also are
found in ATC. RAS mutations are found in 27% of cases, BRAF in 25%, PTEN in 11%, and
PI3K catalytic subunit PIK3CA in 12% (Bamford et al., 2004; Smallridge et al., 2009). RET
gene amplifications are reported, but not RET/PTC (Nakashima et al., 2007). The presence
of these genetic changes alongside those more exclusively associated with ATC suggests a
stepwise accumulation of mutations and dedifferentiated phenotypes (Nikiforov, 2004).
Promising preclinical data indicate that these mutations remain relevant and are viable
targets of therapy (Jin et al., 2011; Kim et al., 2007; Lin et al., 2012; Nehs et al., 2012;
Yeung et al., 2007)..

4.2. TP53
TP53 is a tumor suppressor known to be mutated in a large variety of cancers. TP53
mutations are associated with 55% of ATCs but not differentiated thyroid cancers (Donghi
et al., 1993; Fagin et al., 1993; Nakamura et al., 1992). Acquisition of TP53 mutations is
thought to drive disease progression towards anaplasia (La Perle et al., 2000; Matias-Guiu et
al., 1994). TP53 is a transcription factor that modulates the expression of a large number of
genes in response to cellular stresses. TP53 regulates apoptosis, cell cycle progression, DNA
repair, senescence, and stem cell homeostastasis, among many other processes. Loss of
TP53 function abrogates the cell's ability to enter senescence or cell death appropriately
(Stegh, 2012).

Loss of TP53 in transgenic mice leads to tumor formation. TP53 null mice crossed with
RET/PTC1 transgenic mice generate larger, more anaplastic and invasive thyroid tumors (La
Perle et al., 2000). Thyroid-specific loss of TP53 and PTEN results in the development of
undifferentiated, aggressive thyroid carcinomas with substantial gene expression overlap
with human ATC (Antico Arciuch et al., 2011).

Unfortunately, TP53 loss of function through mutation or deletion is difficult to restore. A
number of small molecules exist which inhibit Mdm2, a negative regulator of TP53.
However, a wild-type TP53 still needs to exist in the tumor population for this strategy to be
useful (Shangary et al., 2008; Vassilev et al., 2004). Those patients with genomic loss of
TP53 need another option. Re-introduction of the gene via an adenovirus vector achieved
expression of TP53, but only near the injection site (Lang et al., 2003).

5. Epigenetic changes in thyroid cancer
Epigenetics refers to chromosomal changes that do not involve the nucleotide sequence and
that have the potential to alter gene expression and to be heritable. DNA methylation and
histone modification are common examples of epigenetic changes. The effects of epigenetic
modifications are powerful, yet theoretically reversible by small molecules and endogenous
enzymes, making them attractive targets to turn the course of malignant transformation.
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5.1. DNA methylation
DNA methylation – the addition of a methyl group to the 5 position of cytosine – can lead to
transcriptional silencing of a gene. The mechanism was first proposed for X chromosome
silencing, and later shown to be at work much more widely (Li et al., 1993; Riggs, 1975).
DNA methylation can be permanent and heritable, a mechanism to prevent reversion to less
differentiated states. However, methylation patterns in many cancers including thyroid
cancer are unstable, which may contribute to dedifferentiation as well as to the generation
tumor heterogeneity (Hansen et al., 2011).

Methylation of tumor suppressor genes and markers of differentiation is common during
oncogenesis. P16INK4A, RASSF members 1A, 2, and 10, and PTEN are downregulated in
thyroid cancer by promoter methylation (Elisei et al., 1998; Hou et al., 2008;
Schagdarsurengin et al., 2010, 2009, 2002). PTEN often is methylated in FTC and exhibits a
pattern of increasing methylation with decreasing differentiation. Genes associated with
differentiated function such as SLC5A5 (NIS) and NKX2-1 also are hypermethylated in
undifferentiated thyroid cancer (Kondo et al., 2009; Venkataraman et al., 1999).

While methylation pattern changes are likely part of the transcriptional programs driving
oncogenesis, specific mutations in the methylation pathway also can contribute to the
disease state. Mutations in methylenetetrahydrofolate reductase (MTHFR), an enzyme in the
folic acid metabolism pathway, can lead to defects in DNA methylation (Goyette et al.,
1994; Paz et al., 2002). MTHFR mutations are associated with increased risk of thyroid
carcinoma (Fard-Esfahani et al., 2011; Ozdemir et al., 2012; Prasad and Wilkhoo, 2011).

Treatment with 5-azacytidine or other DNA methyltransferase inhibitors can reverse the
transcriptional repression of DNA methylation. THRB and RAP1GAP are frequently
hypermethylated; 5 azacytidine restored their expression (W. G. Kim et al., 2013; Zuo et al.,
2010). However, the efficacy of 5 azacytidine or similar drugs as tools for redifferentiation
is not well established (Dom et al., 2013; Vivaldi et al., 2009), and these agents would likely
seem to be too non-specific in their effects.

5.2. Histone modifications
Histones are the main protein component of chromosome structure, being the spool around
which short segments of DNA are bound. Post-translational modifications of histones are
numerous and include ADP ribosylation, acetylation, methylation, phosphorylation,
ubiquitination and SUMOylation. These modifications affect transcriptional access to genes
by changing DNA conformation. For example, histone acetylation can cause activation of
gene transcription, deacetylation its arrest.

Global dysregulation of histone modifications is a feature and contributing factor of cancer
(Chi et al., 2010). Acetylation at lysines 9–14 of histone H3 is higher in thyroid cancers
compared to normal, and also higher in response to oncogene expression (Puppin et al.,
2011).

It is not well known how histone modifications at specific sites in the genome contribute to
thyroid carcinoma. However, treatment of thyroid cancer cell lines with histone deacetylase
(HDAC) inhibitors changes the expression levels of key genes. HDAC inhibitors increase
the transcript levels of markers of thyroid differentiation such as NIS, TPO, thyroglobulin
and PAX8, making these possible reagents for restoring RAI avidity or effecting re-
differentiation (Furuya et al., 2004; Kitazono et al., 2001; Pugliese et al., 2013; Puppin et al.,
2005; Zarnegar et al., 2002). The HDAC inhibitor romidepsin restored some degree of RAI
uptake in 2 of 16 patients in a clinical trial, although subsequent therapy with RAI did not
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result in improvement in the overall disease status of these two patients (Sherman et al.,
2012).

The broad actions of HDAC inhibitors also can increase tumor sensitivity to other treatments
or be cytotoxic themselves. Valproic acid increases ATC sensitivity to doxorubicin and
imatinib (Catalano et al., 2009, 2006). HDAC inhibitors alone induce ATC cell death in cell
culture and xenograft models (Borbone et al., 2010; Catalano et al., 2012). A patient was
apparently cured of ATC with multimodality therapy consisting of valproic acid, cisplatin,
doxorubicin, radiation therapy and surgery (Noguchi et al., 2009).

Though not a direct epigenetic effect, inhibition of aurora kinases is another promising
approach. Aurora kinases phosphorylate histones during mitosis to ensure correct
chromosome segregation. Aurora kinases are overexpressed in thyroid carcinomas
(Sorrentino et al., 2005). Multiple aurora kinase inhibitors show antitumor activity in ATC
cell lines and mouse models by inducing mitotic catastrophe (Arlot-Bonnemains et al., 2008;
Baldini et al., 2012; Libertini et al., 2011; Wunderlich et al., 2011).

5.3. Non-coding RNA
The mammalian transcriptome includes many RNA molecules that do not encode proteins.
In fact, it is estimated that non-coding RNA transcripts outnumber mRNAs 10:1. A number
of these play a role in epigenetic processes (Lee, 2012).

Long non-coding RNAs (lncRNAs) can bind to specific genomic DNA regions and direct
epigenetic changes to chromosome structure. For example, HOTAIR is a lncRNA that binds
to Polycomb Repressive Complex 2 and mislocalizes it on the genome, resulting in
inappropriate gene silencing via histone H3 lysine 27 methylation. HOTAIR is
overexpressed in a number of cancers and is predictive of aggressive disease and death. Loss
of HOTAIR conversely inhibits metastatic potential (Gupta et al., 2010; K Kim et al., 2013;
Kogo et al., 2011; Niinuma et al., 2012; Yang et al., 2011). PTEN is reportedly a target of
HOTAIR (Li et al., 2013). However, HOTAIR expression has not been studied in thyroid
carcinoma.

PTC susceptibility candidate 3 (PTCSC3) is a thyroid-specific lncRNA that is dramatically
downregulated in PTC and appears to function as a tumor suppressor, possibly by regulating
the activities of miRNAs (Fan et al., 2013; Jendrzejewski et al., 2012). NAMA is a lncRNA
whose genomic locus exhibits loss of heterozygosity in thyroid carcinoma and whose
expression is downregulated by BRAF activation (BRAFV600E) (Yoon et al., 2007).
However, the function of NAMA has not been characterized.

6. Conclusion
Cancer is a disease of accumulated DNA damage whose progression is thought to be driven
by the acquisition of additional genetic abnormalities. Understanding how these changes
contribute to the disease process is essential to the development of novel prognostic and
therapeutic strategies. The association of recurrent mutations with specific histological
subtypes of thyroid carcinoma corroborates the visual acumen of past pathologists while
offering new ways to confront ambiguous subtypes such as FVPTC. Targeting recurrent
mutations singly can result in transient relief from disease progression. Combination therapy
addressing a more comprehensive catalogue of driving mutations may achieve more durable
responses and perhaps cures. Finally, epigenetic control of the tumor genome also is an
attractive target to reverse disease progression.
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Abbreviations

ATC anaplastic thyroid carcinoma

DTC differentiated thyroid carcinomas

FTC follicular thyroid carcinoma

FTS farnesylthiosalicylic acid

FVPTC follicular variant papillary thyroid carcinoma

HDAC histone deacetylase

IDH isocitrate dehydrogenase

lncRNA long non-coding RNA

MAPK mitogen activated protein kinase

MTHFR methylenetetrahydrofolate reductase

NIS sodium iodide symporter

PI3K phosphatidylinositide 3-kinase

PPFP PAX8-PPARG fusion protein

PTC papillary thyroid carcinoma

RAI radioactive iodine

TCV tall cell variant
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Highlights

• Most thyroid carcinomas contain one of a small number of recurring gene
mutations.

• Specific mutations correlate with histological subtypes of thyroid carcinoma.

• Gene mutations provide insight into thyroid carcinoma pathogenesis.

• Thyroid carcinoma gene mutations are potential drug targets.
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Fig. 1.
Pie chart showing the most common histological types of thyroid carcinoma and the most
common mutations and gene fusions within each type. ATC, anaplastic thyroid carcinoma;
FTC, follicular thyroid carcinoma; FVPTC, follicular variant papillary thyroid carcinoma;
PPFP, PAX8-PPARG fusion protein; PTC, papillary thyroid carcinoma. Recurring
mutations in ATC are not shown.
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Fig. 2.
Gene mutations and signaling pathways in thyroid carcinomas. Simplified schematic
diagrams are shown of the RAS/MAPK and PI3K/AKT pathways. Proteins with reported
mutations in thyroid carcinomas are in red. There are many protein targets of these pathways
that contribute to oncogenesis, some of which are common to both pathways. A subset of
these targets is shown. A question mark appears with the arrow from PAX8-PPARG
because the mechanisms by which this fusion protein contributes to oncogenesis are not well
understood. Similarly, the arrow from IDH1 has a question mark since the mechanisms by
which IDH1 mutations contribute to thyroid cancer are poorly understood. RTK, receptor
tyrosine kinase.
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Table 1

Detailed listing of gene mutations associated with sporadic thyroid carcinomas

Gene Mutations Activating or Inactivating Common associations

AKT1 G49A Activating Poorly differentiated carcinomas.

ALK Exon 23 Activating Poorly differentiated and anaplastic carcinomas.

BRAF V600E, K601E,
AKAP9 gene fusion

Activating Papillary and anaplastic carcinomas. V600E is by far most
common and is over-represented in tall cell variant,
uncommon in follicular variant. AKAP9-BRAF is over-
represented in radiation induced papillary carcinomas.

CTNNB1 Exon 3 Activating Poorly differentiated and anaplastic carcinomas.

IDH1 Exon 4 Abnormal activity Identified in a minor fraction of most types of thyroid
carcinoma.

NDUFA13 (GRIM19) various Inactivating Hurthle cell carcinoma.

NTRK1 Gene fusions with
TPM3, TPR, and
TFG

Activating Infrequently found in papillary carcinoma.

PIK3CA Exons 9, 20 Activating Follicular, poorly differentiated, and anaplastic carcinomas.

PPARG Gene fusion with
PAX8, rarely with
CREB3L2

Context dependent Follicular carcinomas and follicular variant of papillary
carcinomas.

PTEN Deletion or
inactivating mutation

Inactivating Follicular, poorly differrentiated and anaplastic carcinomas.

RAS NRAS Q61, HRAS
Q61, KRAS G12,
G13

Activating Follicular, follicular variant of papillary, poorly
differentiated and anaplastic carcinomas. NRAS mutations
are most common, KRAS are least common.

RET Gene fusions with
CCDC6 (RET/PTC1),
NCOA4 (RET/
PTC3), and others

Activating Papillary carcinomas. Gene fusions result in constitutively
active RET kinase domain. RET/PTC1 and RET/PTC3 are
over-represented in radiation induced thyroid cancer.

TP53 Exons 5–8 Inactivating Poorly differentiated and anaplastic carcinomas.
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